Test n° 4

(13 octobre 2025)

Nom:
Prénom :
Section :

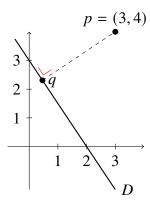
Lisez ces quelques consignes avant de commencer le test. Leur non respect sera pénalisé.

- Veuillez commencer par écrire *lisiblement* en lettres *majuscules* votre NOM, PRÉNOM et SECTION (MATH, PHYS, INFO, MINFO) sur *toutes* les feuilles. Ceci doit être faire *pendant* la durée impartie au test.
- Aucun appareil électronique (calculatrice, GSM, montre connectée,...) n'est autorisé. Si vous les avez avec vous, ils doivent être dans votre sac (en mode silencieux).
- Assurez-vous que vous comprenez la question qui vous est posée et faites attention à ce que le texte que vous écrivez y réponde explicitement (par exemple : le correcteur ne doit pas avoir à conclure lui-même).
- Sauf mention contraire, il est nécessaire de *justifier* vos affirmations. Votre argumentation doit convaincre le lecteur. En l'absence de justification, le résultat final, même correct, n'a pas de valeur.
- Veillez à faire une *rédaction soignée* de vos réponses. Celle-ci sera prise en compte. Notez que nous ne lirons pas vos brouillons (à faire aux dos des feuilles).
- Si une question est étalée sur plusieurs feuilles, veuillez grouper celles-ci lors de la remise de votre copie. N'écrivez *pas* votre réponse sur une feuille d'une *autre question*!

Question 1. Définissez la racine carrée o	l'un nombre réel x.	

■ À partir de la définition précédente, montrez que $\forall x \in [0, +\infty[, \sqrt{x} \ge 0.$

■ À partir de la définition précédente, montrez que, pour tout $x \in \mathbb{R}$, si \sqrt{x} existe, alors $x \ge 0$.


Test n° 4

(13 octobre 2025)

Nom: ______ Prénom: _____ Section:

Question 2. Considérons la droite D ainsi que les points p et q représentés sur le dessin ci-contre.

Recherchez les coordonnées de q. Expliquez votre raisonnement.

/5

Test n° 4

(13 octobre 2025)

Nom :			_	_			
Prénom :	_				 	_1	
Section ·							

Question 3. Prouver par induction que quel que soit $n \in \mathbb{N}$, on a que

$$\sum_{k=0}^{n} 3^k = \frac{3^{n+1} - 1}{2}.$$

Test	n°	4

(13 octobre 2025)

Nom :	_		_	_		_
Prénom :			_		_1	
Section ·						

Question 4.

- /7
- (a) À partir des principes de gestion d'inégalités avec des racines carrées vus au cours (donc sans utiliser d'approximation), prouvez que $\frac{11-\sqrt{5}}{2} < 5$.

(b) Résolvez l'inéquation suivante :

$$\frac{1}{\sqrt{x-4}-1} \leqslant \frac{1}{x-6}.\tag{1}$$

Mathématiques Élémentaires Test n° 4 (13 octobre 2025) Prénom : ______ Section : ______

Question 4 (suite). Poursuivez votre réponse sur cette page.

Mathématiq	ues Élémentaires	Nom :
Test n° 4	(13 octobre 2025)	Prénom :
		Section :
Question 5.	Soient <i>X</i> et <i>Y</i> deux sous-ensembles de	e R.
` '	a définition de $X \subseteq Y$. nition n'est pas correcte, la suite de	la question ne sera pas corrigée.
(b) Détermin	ez si les affirmations ci-dessous sont v	vraies ou fausses. Justifiez vos réponses.
Vrai :	Faux : \square Quels que soient X et Y , s	sous-ensembles de \mathbb{R} , si $X \subseteq Y$, alors $X \cap Y = X$.
Vrai : 🗌	Faux : \square Quels que soient X et Y ,	sous-ensembles de \mathbb{R} , $X \cap Y \neq X \cup Y$.

Test n° 4

(13 octobre 2025)

Nom :	 	
Prénom :	 	<u></u>
Section :		

Question 6. Les affirmations suivantes sont-elles vraies ou fausses? Justifiez vos réponses.

(a) Vrai : \square Faux : \square Les droites $D_1 \equiv (x, y) = (0, 2) + \lambda(1, -3)$, où $\lambda \in \mathbb{R}$, et $D_2 \equiv (x, y) = (\frac{2}{3}, 0) + \mu(-3, 9)$, où $\mu \in \mathbb{R}$ sont confondues.

(b) Vrai : \square Faux : \square Quel que soit le réel λ , le système $\begin{cases} \lambda x - y = \lambda \\ x + \lambda y = -\lambda \end{cases}$, où x et y sont les inconnues, a toujours au moins une solution.