## Mathématiques Élémentaires

Test n° 4

(13 octobre 2025)



## Question 1.

■ Définissez la racine carrée d'un nombre réel x.

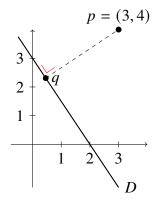
 $\sqrt{x}$  est la valeur  $y \in \mathbb{R}$  telle que  $y^2 = x$  et  $y \ge 0$ .

- À partir de la définition précédente, montrez que  $\forall x \in [0, +\infty[, \sqrt{x} \ge 0.$ Par définition  $y := \sqrt{x}$  vérifie  $y^2 = x$  et  $y \ge 0$ . En particulier  $y = \sqrt{x} \ge 0$ .
- À partir de la définition précédente, montrez que, pour tout  $x \in \mathbb{R}$ , si  $\sqrt{x}$  existe, alors  $x \ge 0$ . Soit  $x \in \mathbb{R}$ . Supposons que  $\sqrt{x}$  existe, c'est-à-dire, au vu de la définition de ce dernier, qu'il existe un  $y \in \mathbb{R}$  tel que  $y^2 = x$  et  $y \ge 0$ . Or on a vu que tout carré est positif. En particulier  $x = y^2 \ge 0$ .

Considérons la droite D ainsi que les points p et q Question 2. représentés sur le dessin ci-contre.

Recherchez les coordonnées de q. Expliquez votre raisonnement.

Voir la correction du test 3, 29 septembre 2008, question 11.



Question 3. Prouver par induction que quel que soit  $n \in \mathbb{N}$ , on a que

$$\sum_{k=0}^{n} 3^k = \frac{3^{n+1} - 1}{2}.$$

On va prouver par induction que

$$\forall n \in \mathbb{N} \quad \underbrace{\sum_{k=0}^{n} 3^k = \frac{3^{n+1} - 1}{2}}_{P(n)}.$$

<sup>&</sup>lt;sup>1</sup>Pour rappel montrons que  $y^2 \ge 0$  quel que soit  $y \in \mathbb{R}$ . En effet, si  $y \ge 0$ , alors  $y^2 = y \cdot y \ge 0$  par la règle de compatibilité de l'ordre avec la multiplication. Si au contraire y < 0, alors -y > 0 et donc, par la compatibilité de l'ordre avec la multiplication,  $y^2 = (-y)^2 = (-y)(-y) \ge 0$ .

(a) Cas de base. On prouve que P(0) est vraie.

Pour cela, on doit montrer que

$$\sum_{k=0}^{0} 3^k = \frac{3^{0+1} - 1}{2}$$

Ce qui est équivalent à 1 = 1, ce qui est vrai.

(b) Cas général. On doit prouver que  $\forall n \in \mathbb{N} \mid P(n) \Rightarrow P(n+1)$ .

Soit  $n \in \mathbb{N}$ .

On suppose que P(n) est vraie

On doit montrer que P(n + 1) est vraie. Cela revient à prouver l'égalité ci-dessous.

$$\sum_{k=0}^{n+1} 3^k = \frac{3^{n+2} - 1}{2}.$$

On part du membre de gauche de l'équation ci-dessus.

$$\sum_{k=0}^{n+1} 3^k = \sum_{k=0}^n 3^k + 3^{n+1}$$

$$= \frac{3^{n+1} - 1}{2} + 3^{n+1}$$

$$= \frac{3^{n+1} - 1 + 2 \cdot 3^{n+1}}{2}$$

$$= \frac{3 \cdot 3^{n+1} - 1}{2} = \frac{3^{n+2} - 1}{2}$$

par hypothèse d'induction

(c) **Conclusion.** On vient donc bien de prouver que quel que soit le naturel  $n \in \mathbb{N}$ ,

$$\sum_{k=0}^{n} 3^k = \frac{3^{n+1} - 1}{2}.$$

Question 4.

- (a) À partir des principes de gestion d'inégalités avec des racines carrées vus au cours (donc sans utiliser d'approximation), prouvez que  $\frac{11-\sqrt{5}}{2} < 5$ .
- (b) Résolvez l'inéquation suivante :

$$\frac{1}{\sqrt{x-4}-1} \le \frac{1}{x-6}.\tag{1}$$

Voir la correction du test 4 du 14 octobre 2024, question 5.

(13 octobre 2025)

## Correction

Question 5. Soient X et Y deux sous-ensembles de  $\mathbb{R}$ .

| $(\alpha)$ Domics, in acquinition at $A \subseteq I$ | (a) | Donnez. | la définition | de | X | $\subseteq$ | Y |
|------------------------------------------------------|-----|---------|---------------|----|---|-------------|---|
|------------------------------------------------------|-----|---------|---------------|----|---|-------------|---|

(b) Déterminez si les affirmations ci-dessous sont vraies ou fausses. Justifiez vos réponses.

 $Vrai: \square$  Faux:  $\square$  Quel soient X et Y, sous-ensembles de  $\mathbb{R}$ , si  $X \subseteq Y$ , alors  $X \cap Y = X$ .

 $Vrai: \square$  Faux:  $\square$  Quel soient X et Y, sous-ensembles de  $\mathbb{R}$ ,  $X \cap Y \neq X \cup Y$ .

(a)  $X \subseteq Y$  si et seulement si  $\forall x \in \mathbb{R} \quad (x \in X) \Rightarrow (x \in Y)$ .

(b) Vrai :  $\boxed{\ }$  Faux :  $\boxed{\ }$  Quel soient X et Y, sous-ensembles de  $\mathbb{R}$ , si  $X\subseteq Y$ , alors  $X\cap Y=X$ .

Soient X et Y deux sous-ensembles de  $\mathbb{R}$ . On suppose que  $X \subseteq Y$ , on a donc que si  $\forall x \in \mathbb{R}$   $(x \in X) \Rightarrow (x \in Y)$ .

On doit montrer que  $X \cap Y = X$ . On doit donc montrer deux inclusions d'ensembles.

(i)  $X \cap Y \subseteq X$ .

On doit donc montrer que  $\forall x \in \mathbb{R} \quad (x \in X \cap Y) \Rightarrow (x \in X)$ .

Soit  $x \in \mathbb{R}$ . Par définition de l'intersection de deux ensembles, si  $x \in X \cap Y$ , on a que  $x \in X$  et  $x \in Y$ , donc en particulier  $x \in X$ , ce qui démontre cette première inclusion.

(ii)  $X \subseteq X \cap Y$ .

On doit donc montrer que  $\forall x \in \mathbb{R} \quad (x \in X) \Rightarrow (x \in X \cap Y)$ .

Soit  $x \in \mathbb{R}$ . On sait que  $x \in X$ . Vu que  $X \subseteq Y$ , on a également que  $x \in Y$ . Donc, par définition de l'intersection, on a que  $x \in X \cap Y$ , ce qu'il fallait démontrer.

Vrai :  $\square$  Faux :  $\square$  Quel soient X et Y, sous-ensembles de  $\mathbb{R}$ ,  $X \cap Y \neq X \cup Y$ .

Pour montrer que cette affirmation est fausse, on montre que sa négation est vraie. La négation de l'affirmation est : Il existe X et Y deux sous-ensembles de  $\mathbb{R}$  tels que  $X \cap Y = X \cup Y$ .

On choisit  $X = Y = \{1\} \subseteq \mathbb{R}$ .

On a que  $X \cap Y = \{1\}$  et  $X \cup Y = \{1\}$ . Ce qu'il fallait démontrer.

Question 6. Les affirmations suivantes sont-elles vraies ou fausses? Justifiez vos réponses.

(a) Vrai :  $\square$  Faux :  $\square$  Les droites  $D_1 \equiv (x, y) = (0, 2) + \lambda(1, -3)$ , où  $\lambda \in \mathbb{R}$ , et  $D_2 \equiv (x, y) = (\frac{2}{3}, 0) + \mu(-3, 9)$ , où  $\mu \in \mathbb{R}$  sont confondues.

Voir la correction du test 4, 4 octobre 2010, question 5.

(b) Vrai:  $\Box$  Faux:  $\Box$  Quel que soit le réel  $\lambda$ , le système  $\begin{cases} \lambda x - y = \lambda \\ x + \lambda y = -\lambda \end{cases}$ , où x et y sont les inconnues, a toujours au moins une solution.

Voir la correction du test 4, 14 octobre 2024, question 2.