EasyDyn Problem: 5 degrees of freedom robot

O. Verlinden, G. Kouroussis

March 8, 2004

1 Description of the system

This problem was used as a benchmark for multibody systems simulation softwares and is described in the book Multibody System Handbook, by Werner Schiehlen (SpringerVerlag, 1991).

The considered system is a a robot, as depicted in figure 1 consisting of 3 moving bodies. The configuration of the robot is described in terms of 5 parameters q_{0} to q_{4}, whose meaning is given on figure 1 . Body 0 is attached to the ground by a cylindrical joint of vertical axis (parameters q_{0} and q_{1}). Body 1 is attached to body 0 by a cylindrical joint of horizontal axis (parameters q_{2} and q_{3}). Body 2 rotates with respect to body 1 , about an horizontal axis perpendicular to the ones of the previous joints (parameter q_{4}).

Figure 1: Layout of the robot with local coordinate systems
The inertia characteristics are listed in table 1. The geometric parameters C and L are equal respectively to $0,05 \mathrm{~m}$ and $0,50 \mathrm{~m}$. Each local coordinate system is located at the center of gravity of the body.

Table 1: Inertia parameters

	Body		
	0	1	2
mass (kg)	250	150	100
$I_{x x}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	(90)	13	4
$I_{y y}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	(10)	0.75	1
$I_{z z}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	90	13	4,3

2 Requested results

Simulate the behaviour of the robot, when subjected to joint actuator efforts (forces and torques), as defined in table 2 . The simulation will be performed from 0 to 2 s , with the following initial conditions

$$
q_{0}=2,25 \mathrm{~m} \quad q_{1}=-0.5236 \mathrm{rad} \quad q_{2}=0,75 \mathrm{~m} \quad q_{3}=0 \mathrm{rad} \quad q_{4}=0 \mathrm{rad}
$$

Table 2: Actuator efforts expressed in local coordinate systems

Simulation time τ $[s]$	Efforts $[N]$ ou $[N . m]$
0 FOZ $=6348$	
	$\mathrm{~F} 1 \mathrm{Y}=36 . \mathrm{t}+986$
	$\mathrm{COZ}=673 . \mathrm{t}-508$
$\mathrm{C} 1 \mathrm{Y}=0$	
	$\mathrm{C} 2 \mathrm{X}=63,5$
	$\mathrm{FOZ}=4905$
from 0,5 to 1,5	$\mathrm{~F} 1 \mathrm{Y}=-2$
	$\mathrm{COZ}=148 . \exp (-5,5 .(\tau-0,5))-8$
	$\mathrm{C} 1 \mathrm{Y}=0$
	$\mathrm{C} 2 \mathrm{X}=49,05$
	$\mathrm{FOZ}=3462$
from 1,5 to 2	$\mathrm{~F} 1 \mathrm{Y}=-1019$
	$\mathrm{COZ}=240$
	$\mathrm{C} 1 \mathrm{Y}=0$
	$\mathrm{C} 2 \mathrm{X}=34,6$

It is recommended to illustrate the results by an animation.

3 Typical results

Figures 2 to 3 give the expected evolutions of the configuration parameters and their time derivatives.

Figure 4 illsutrates the initial and final configurations.

Figure 2: Evolution of configuration parameters

Figure 3: Evolution of time derivatives of configuration parameters

Figure 4: Initial and final configurations

