EasyDyn Problem: 5 degrees of freedom robot

O. Verlinden, G. Kouroussis

March 8, 2004

1 Description of the system

This problem was used as a benchmark for multibody systems simulation softwares and is described in the book *Multibody System Handbook*, by Werner Schiehlen (Springer-Verlag, 1991).

The considered system is a a robot, as depicted in figure 1 consisting of 3 moving bodies. The configuration of the robot is described in terms of 5 parameters q_0 to q_4 , whose meaning is given on figure 1. Body 0 is attached to the ground by a cylindrical joint of vertical axis (parameters q_0 and q_1). Body 1 is attached to body 0 by a cylindrical joint of horizontal axis (parameters q_2 and q_3). Body 2 rotates with respect to body 1, about an horizontal axis perpendicular to the ones of the previous joints (parameter q_4).

Figure 1: Layout of the robot with local coordinate systems

The inertia characteristics are listed in table 1. The geometric parameters C and L are equal respectively to 0,05 m and 0,50 m. Each local coordinate system is located at the center of gravity of the body.

	Body		
	0	1	2
mass (kg)	250	150	100
I_{xx} (kg.m ²)	(90)	13	4
$I_{yy} \ (kg.m^2)$	(10)	0.75	1
$I_{zz} \ (kg.m^2)$	90	13	4,3

 Table 1: Inertia parameters

2 Requested results

Simulate the behaviour of the robot, when subjected to joint actuator efforts (forces and torques), as defined in table 2. The simulation will be performed from 0 to 2 s, with the following initial conditions

 $q_0 = 2,25 m$ $q_1 = -0.5236 rad$ $q_2 = 0,75 m$ $q_3 = 0 rad$ $q_4 = 0 rad$

Simulation time τ	Efforts
[s]	[N] ou $[N.m]$
	F0Z = 6348
from 0 to $0,5$	F1Y = 36.t + 986
	COZ = 673.t - 508
	C1Y = 0
	C2X = 63, 5
	FOZ = 4905
from $0,5$ to $1,5$	F1Y = -2
	$COZ = 148.exp(-5,5.(\tau - 0,5)) - 8$
	C1Y = 0
	C2X = 49,05
	FOZ = 3462
from $1,5$ to 2	F1Y = -1019
	COZ = 240
	C1Y = 0
	C2X = 34, 6

Table 2: Actuator efforts expressed in local coordinate systems

It is recommended to illustrate the results by an animation.

3 Typical results

Figures 2 to 3 give the expected evolutions of the configuration parameters and their time derivatives.

Figure 4 illustrates the initial and final configurations.

Figure 2: Evolution of configuration parameters

Figure 3: Evolution of time derivatives of configuration parameters

Figure 4: Initial and final configurations