## EasyDyn Problem: vertical dynamics of a vehicle



Olivier VERLINDEN, Georges KOUROUSSIS

## 1 Description of the system

The purpose of the study is to introduce the vertical dynamics of the GLT vehicle (Guided Light Transit). The particularity of the vehicle is that it presents two displacement modes: a road mode as a bus or a rail mode as a tramway (Figure 1). It consists of three bodies, corresponding to the carbodies of the vehicle, articulated between each other.


Figure 1: Véhicule GLT en mode guidé (Bombardier BN)
As you can shown in figure 2, the joint at points $A$ and $B$ can be considered in this planar case as a revolute joints and the number of degrees of freedom is equal to

$$
\begin{equation*}
f=3 N_{B}-\sum_{j=1}^{N_{J}}\left(3-n_{j}\right)=3 \times \underbrace{3}_{N_{B}}-\underbrace{(3-1)}_{\text {joint at } A}-\underbrace{(3-1)}_{\text {joint at } B}=5 \tag{1}
\end{equation*}
$$

The chosen configuration parameters are : $x_{G_{1}}, y_{G_{1}}, \theta_{1}, \theta_{2}$ et $\theta_{3}$ and correspond respectively to

- $X$ and $Y$ coordinates of the center of gravity of body 1 ;
- inclination angles of the carbodies with respect to the $X$ axis.

The applied forces come from the gravity forces, purely vertical, and the forces coming from the suspension, composed of a spring of stiffness $k$ and rest length $L_{0 i}$ and a damper of coeffcient $c$. All the constants are shown in figure 2 and Tables 1 and 2.


Figure 2: GLT vehicle scheme

Table 1: Inertial data of the mechanism

| Body | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| Mass $(\mathrm{kg})$ | 13560 | 3866 | 10652 |
| Inertial momentum $I_{G, z z}(\mathrm{~kg} . \mathrm{m})$ | 128008 | 19523 | 63022 |

Table 2: Geometrical and dynamic data

| $L_{1}=2,928 \mathrm{~m}$ | $L_{2}=2,700 \mathrm{~m}$ | $L_{3}=4,260 \mathrm{~m}$ |
| :---: | :---: | :---: |
| $L_{4}=4,710 \mathrm{~m}$ | $L_{5}=4,405 \mathrm{~m}$ | $L_{6}=0,950 \mathrm{~m}$ |
| $L_{7}=5,210 \mathrm{~m}$ | $L_{8}=6,915 \mathrm{~m}$ | $h_{r e f}=0,500 \mathrm{~m}$ |
| $h=0,890 \mathrm{~m}$ | $k=120000 \mathrm{~N} / \mathrm{m}$ | $c=20000 \mathrm{N.s} / \mathrm{m}$ |
| $L_{01}=1,023 \mathrm{~m}$ | $L_{02}=1,116 \mathrm{~m}$ | $L_{03}=0,869 \mathrm{~m}$ |
|  | $L_{04}=1,287 \mathrm{~m}$ |  |

## 2 Requested results

It is asked to verify that the initial configuration, given by $h_{r e f}$ is a equilibrium configuration. It is also asked to simulate the vertical dynamics from equilibrium configuration when the center of gravity of body 1 lifts of $\mathbf{2 0} \mathbf{~ c m}$ (get the following parameters: final time of $10 s$ and time step of 0.01 s ). Give the time evolution of the vertical displacement and pitch angle of each carriage.

## 3 Typical results

Figure 3 shows the expected behaviour.


Figure 3: Time evolution of vehicle parameters

