
— User guide —

EasyMod — A MatLab/Scilab toolbox for experimental
modal analysis

G. Kouroussis
Université de Mons — Faculty of Engineering

Department of Theoretical Mechanics, Dynamics and Vibrations

Boulevard Dolez 31 | B–7000 Mons

e–mail: Georges.Kouroussis@umons.ac.be

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 1

1 Getting started

This document describes how to start using the EasyMod toolbox for MatLab or SciLab.
It is a user guide to EasyMod version 2.1.0. It is a combination of a reference guide,
providing an overview of all functions of EasyMod, and a tutorial, presenting an example
to illustrate the use of EasyMod. This document is not meant as a textbook on modal
analysis. The theoretical background of experimental modal analysis, as well as the
various identification algorithms, are assumed to be known by the user. For interested
persons, major of experimental modal analysis methods are presented in other more works:

D. J. Ewins, Modal Testing: Theory and Practice. John Wiley & Sons, Great Yarmouth
(UK), 1991.

N. M. M. Maia et al., Theoretical and Experimental Modal Analysis. John Wiley & Sons,
Exeter (UK), 1997.

2 About the EasyMod toolbox

From the last thirty years, many experimental modal analysis software packages have
been developed. Initially composed by simple SDOF methods (peak picking/mode

picking, circle–fit or line–fit), they have been updated to new complex methods, allowing
rapid and efficient analyses. In fact, simple methods have been abandoned in favour of
MDOF ones. Nonetheless, these simple methods are very interesting for the education
and allow a progressive approach in the modal analysis fundamentals teaching.

To fill this gap, the Department of Theoretical Mechanics, Dynamics and Vibrations

has developed some MatLab routines , which have been included in the so-called toolbox
EasyMod, working under MatLab. The power of matrix manipulation added to a
user-friendly platform are elements paving for this choice, in addition to the fact that
MatLab is a reference program in engineering. The functioning and the possibilities
of EasyMod are illustrated in the Figure 1 with an emphasis on the identification and
validation methods.

To date, three identification methods have been implemented:

• two SISO (single-input/single-output) methods : the circle-fit and line-fit ;

• one MIMO (multi-input/multi-output) method : the LSCE (least-square complex
exponential).

Several MatLab/Scilab functions have been developed for various applications in struc-
tural dynamics:

• reading and witting of UFF (universal file format) files,

• generating of frequency response function (FRF) from massM, stiffnessK, damping
C matrices defining discrete systems,

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 2

Input files

FRF data file

FRF data file
unv58

unv151

unv55

Output filesToolbox

Results file

geometry files
unv15 and unv82

graphical visualization with EasyANIM identification method validation method

Mode indicators

ISUM , ISRe, ISIm

Circle–Fit

Line–Fit

LSCE

FRF by FRF

FRF by FRF

means on the results

means on the results

for all the FRFs
in a large frequency range

standard procedures
for visualization

FRFs creation

from M, K, C matrices

mode shapes comparison

MAC correlation

mode shapes verification

modal collinearity

modes shapes

visualization animation
Geometry definition

Figure 1: Schematic operating diagram of toolbox EasyMod

• mode indicators (sum of FRFs, sum of FRFs real part and sum of FRFs imaginary
part) and their visualization,

• MAC (modal assurance criterion) and modal collinearity for a comparison of two
sets of analysis.

3 Obtaining and installing EasyMod

EasyMod can be downloaded from the internet at http://mecara.fpms.ac.be/EasyMod.
It is distributed as a RAR archive.

For MatLab uses, the archive should be extracted to a directory on the hard disk, e.g.
C:\Program Files\MATLAB\R2010a\toolbox\ (for Windows OS). After extraction of the
RAR archive, this directory contains a number of M-files, classified in several subfolders:

• general: this folder contains all general functions (file writing and reading, mode
indicator, MAC, FRF generation,. . .);

• LeastSquareComplexExponential: this folder contains user’s functions related to
the least-square complex exponential method (calculation and visualization);

• CircleFit: this folder contains user’s functions necessary to the circle–fit method;

• LineFit: this folder contains user’s functions necessary to the line–fit method;

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 3

• Local: this folder contains internal functions necessary to the toolbox basic
functions.

The EasyMod directory must be added to the MatLab path to make the toolbox functions
available in MatLab:

• In MatLab, click on File, Set Path...

• Click on Add with Subfolders and select the EasyMod directory.

• Save the path and close the dialog window.

For Scilab uses, the corresponding archive contains several .sci files in the same
subfolder classification. Under scilab prompt, it is possible to create binary files with the
help of the function genlib which saves the functions to their corresponding .bin file and
are mentioned in the path to make the toolbox functions available:

genlib("EasyMod",DIRECT+’\EasyMod’) ;

genlib("EasyMod_G",DIRECT+’\EasyMod\General’) ;

genlib("EasyMod_L",DIRECT+’\EasyMod\Local’) ;

genlib("EasyMod_CF",DIRECT+’\EasyMod\CircleFit’) ;

genlib("EasyMod_LF",DIRECT+’\EasyMod\LineFit’) ;

genlib("EasyMod_LSCE",DIRECT+’\EasyMod\LeastSquareComplexExponential’) ;

where DIRECT is the local folder where the toolbox folders are placed. These commands
must be launch at each startup of SciLab. To avoid it, they can be placed in the file
loader.sce used to load modules in Scilab.

4 Terms of use

EasyMod/EasyAnim are free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation;
either version 2, or (at your option) any later version. EasyMod/EasyAnim are distributed
in the hope that it will be useful, but without any warranty; without even the implied
warranty of merchantability or fitness for a particular purpose. See the GNU General
Public License for more details.

Scientific publications presenting results obtained with EasyModmust include a proper
reference. In order to refer to EasyMod, please add at least one of the following articles
to the list of references:

[1] G. Kouroussis, L. Ben Fekih, C. Conti, O. Verlinden, EasyMod: A MatLab/SciLab
toolbox for teaching modal analysis, Proceedings of the 19th International Congress

on Sound and Vibration, Vilnius (Lithuania), July 9-12, 2012.

[2] G. Kouroussis, L. Ben Fekih, C. Conti, O. Verlinden, EasyMod : du développement
d’un toolbox sous MatLab vers l’enseignement des bases de l’analyse modale
expérimentale, 3ième Colloque “Analyse vibratoire Expérimentale”, Blois (France),
20 et 21 novembre 2012.

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 4

5 Functions — By format

All the information is saved in files called universal files, for whom the format is standard
in the field of vibration/dynamic experimentation. They are defined as data files con-
taining measurement, analysis, units or geometry1, under ASCII format. The following
structure is dedicated:

bbbb-1

bbxxx ←− 58 for FRF data, 15 et 82 for geometry, 164 for the units,. . .

...

...

...

...



















related data in the appropriate format

bbbb-1 (b: blank space)

Figure 2: Structure of universal files

The main advantage of this format is that all commercial software packages can, in
principle, import or export these files. Files supported by EasyMod are:

• the 58 file giving a selected FRF (or time history or coherence),

• the 55 file for the modal analysis and the associated parameters (natural frequency
fk, loss factor ηk and the modal constant/residue Bijk),

• the files 15 and 82 are related to the geometry, for nodes and connexion respectively,

• the 151 file which is a head file and brings together all the aforementioned files.

Methods implemented in EasyMod are presented as functions to be described in the
next section. Don’t hesitate to use the help command of MatLab/Scilab.

These functions work with variables of various types. The most usual ones are:

• real numbers as the frequency step Df, the number of experimental nodes No,
their number (numin and numout), frequencies (fmin, fmax) or modal parameters
(frequencyk, etak and Bijk);

• vectors as those related to the frequency (f, freq), the circular frequency omega,
the time time, the local parameters (freq_local, H_local and H_gen_local) or
those related to the FRF in various formats (recept, mobil or inert);

• a set of vectors like the matrix H containing all the FRFs to analyse, or its equivalent
h in time domain for the impulse response;

• matrices like mass M, damping C or stiffness K;

1The widely used extensions are .UFF, .UF or .UNV.

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 5

• strings for filenames (filename) and method names (methodname) ;

• structures2 like infoFRF or infoMODE which are defined as:

infoFRF.































response response node
dir_response response direction
excitation excitation node
dir_excitation excitation direction
infoMODE (array of) structure related to the modal analysis

infoMODE.











frequencyk natural frequency
etak loss factor
Bijk Modal constant

6 Functions — By category

This section enumerates all EasyMod functions. Additional information can be obtained
by using the help function in MatLab or Scilab.

6.1 General functions

[H,freq,infoFRF] = unv151read(filename): This function reads the 151 type UFF
file in order to extract the information of all FRFs only.

[coh,freq,infoFRF] = unv151readcoh(filename): This function reads the 151 type
UFF file in order to extract the coherences only.

[H,freq,infoFRF] = unv58read(filename): This function reads the 58 type UFF file
containing the information of a FRF.

infoMODE = unv55read(filename,No): This function reads the 55 type UFF file
containing the information about the modal parameters.

unv58write(H,numin,dir_excitation,numout,dir_response,fmin,finc,filename):
This function writes the information of a FRF in a 58 type UFF file.

unv55write(infoMODE,filename,ind_complex): This function writes the information
about the modal parameters in a 55 type UFF file.

unv15and82write(Nodes,Connexions,filename,NodeColor,LineColor): This func-
tion records the geometry information (nodes and connexions) in UFF file bringing
together the file type 15 (for the nodes) and the file type 82 (for the connexions between
nodes).

[Hswitch,freqswitch,infoFRFswitch] = switchfrf(H,freq,infoFRF): This func-
tion switches the FRF Hij(ω) to Hji(ω), according to the Betti-Maxwell theorem.

2In the case of MDOF data, it represents an array of structure.

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 6

[H_estimate,freq,infoFRF] = estimate_frf(x,y): This function builds the H1

estimator from time history of input x and output y.

[I] = ind_mode(H): This function generates three mode indicators — sum of FRFs,
sum of FRFs real part and sum of FRFs imaginary part.

[cursor1,cursor2] = plot_ind_mode(I,freq): This function displays the three mode
indicators — sum of FRFs, sum of FRFs real part and sum of FRFs imaginary part.

[recep,mobil,inert] = gen_frf(M,D,K,numin,numout,freq): This function gener-
ates a FRF from mass, damping and stiffness matrices, in various format (compliance,
mobility, accelerance).

infoFRF = add_data(index_FRF,frequencyk,etak,Bijk,infoFRF,index_mode):
Storage of modal parameters for each FRF and for each DOF.

infoMODE = save_result_modal(infoFRF): This function saves the information related
to the modal parameters.

EM_plot_Bode(freq,H,fmin,fmax): This function plots the Bode’s diagram of a FRF
in a specific frequency range.

M_plot_Nyquits(freq,H,fmin,fmax): This function plots the Nyquist’s diagram of a
FRF in a specific frequency range.

[MODE_REAL] = cplxtoreal(MODE_CPLX): This function transforms complex mode
shapes to real mode shapes.

[psi1,freq1,psi2,freq2] = appariement(infoMODE1,infoMODE2,coupled): This
function brings together the correlated modes issued from two sets of data.

infoMODE = readansys(name,fpts,name_out): This function allows to extract natural
frequencies and mode shapes calculated by the FEM software ANSYS from the result
file generated by ANSYS (for updating procedures).

6.2 Circle–fit method

[f_loc,H_loc,H_gen_loc,infoMODE,circ_prop] = circle_fit(H,f,fmin,fmax):
Identification based on the circle-fit method (SDOF method) giving the natural fre-
quency, the loss factor and the modal constant.

plot_circ_prop_fit(f_loc,H_loc,H_gen_loc,infoMODE,circ_prop): Graphical
representation of the results provided by the function circle_fit.

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 7

6.3 Line–fit method

[f_loc,H_loc,H_gen_loc,infoMODE,line_prop] = line_fit(H,f,fmin,fmax): Iden-
tification based on the line-fit method (SDOF method) giving the natural frequency, the
loss factor and the modal constant.

plot_line_fit(f_loc,H_loc,H_gen_loc,infoMODE,line_prop): Graphical represen-
tation of the results provided by the function line_fit.

6.4 LSCE method

[x,time] = InvFft(H,omega): Calculation of impulse response from FRF.

[lsce_res,infoFRF,infoMODE] = lsce(H,freq,infoFRF): Identification based on the
least-square complex exponential (LSCE) method (MDOF method) giving the natural
frequency, the loss factor and the modal constant in all the frequency range.

6.5 Validation method (in the subfolder General)

[DELTA_FREQ,MAC,coupled] = mac(infoMODE1,infoMODE2,macinf,delfreqsup,graph):
This function calculates the modal assurance criterion (MAC) of two modal parameters
sets and plots, if necessary, the associated chart.

modegauss(infoMODE): This function displays the mode shapes in the Gaussian plane in
order to verify the collinearity property.

. . . and of course the graphical visualization with the help of EasyAnim software
(Figure 3).

Figure 3: Typical view of EasyAnim

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 8

7 Example

Figure 4 presents the illustrative example, consisting of a 3-DOF system, defined by

[M] =







1 0 0
0 1 0
0 0 1





 , in kg

[C] =







40 0 0
0 40 0
0 0 40





 , in Ns/m

[K] =







237315 −161000 0
−161000 398315 −161000
0 −161000 398315





 , in N/m

in the frequency range [0Hz ; 200Hz], the number of samples being imposed to 400.

xxx
xxx
xxx
xxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx

k4

k5

k3

k2

k1

m3

m2

m1

c3

c2

c1

x3

x2

x1

Figure 4: 3-dof discrete model

The generation of FRF related to the proposed system can be easily performed, as
illustrated by the MatLab code:

% The best way to begin

clear all

close all

clc

% Model parameters:

% mass matrix

M = [1 0 0 ; 0 1 0 ; 0 0 1] ;

% damping matrix

C = [40 0 0 ; 0 40 0 ; 0 0 40] ;

% stiffness matrix

K = [237315 -161000 0 ; -161000 398315 -161000 ; 0 -161000 398315] ;

% FRF storage

Df = 200/400;

freq = [Df:Df:200];

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 9

[receptance,mobilite,inertance] = gen_frf(M,C,K,1,1,freq) ;

unv58write(inertance,1,3,1,3,0,Df,’3DL_H11.unv’) ;

[receptance,mobilite,inertance]=gen_frf(M,C,K,1,2,freq) ;

unv58write(inertance,1,3,2,3,0,Df,’3DL_H21.unv’) ;

[receptance,mobilite,inertance]=gen_frf(M,C,K,1,3,freq) ;

unv58write(inertance,1,3,3,3,0,Df,’3DL_H31.unv’) ;

A preliminary test can be done, by using the eig function in order to determine the
eigenvalue:

f1 = 52.4Hz f2 = 91.0Hz f3 = 123.2Hz

We dispose then three UFF files related to the system, representing virtual measure-
ment data. The FRF loading can be made, to get a matrix H containing the three FRF:

% FRF loading

[H11,freq,infoFRF(1)] = unv58read(’3DL_H11.unv’) ;

[H21,freq,infoFRF(2)] = unv58read(’3DL_H21.unv’) ;

[H31,freq,infoFRF(3)] = unv58read(’3DL_H31.unv’) ;

H = [H11,H21,H31] ;

infoFRF2 = infoFRF ;

infoFRF3 = infoFRF ;

The matrix manipulation that MatLab offers can be used to display the FRFs in
various formats (Figure 5):

% Visualization on various layouts

figure

subplot(4,3,1)

plot(freq,20*log10(abs(H11)))

xlabel(’Frequency [Hz]’), ylabel(’H_{11} [dB]’)

subplot(4,3,2)

plot(freq,20*log10(abs(H21)))

xlabel(’Frequency [Hz]’), ylabel(’H_{21} [dB]’)

subplot(4,3,3)

plot(freq,20*log10(abs(H31)))

xlabel(’Frequency [Hz]’), ylabel(’H_{31} [dB]’)

subplot(4,3,4)

plot(real(H11),imag(H11))

xlabel(’H_{11} [real]’), ylabel(’H_{11} [imag]’)

subplot(4,3,5)

plot(real(H21),imag(H21))

xlabel(’H_{21} [real]’), ylabel(’H_{21} [imag]’)

subplot(4,3,6)

plot(real(H31),imag(H31))

xlabel(’H_{31} [real]’), ylabel(’H_{31} [imag]’)

subplot(4,3,7)

plot(freq,real(H11))

xlabel(’Frequency [Hz]’), ylabel(’H_{11} [real]’)

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 10

subplot(4,3,8)

plot(freq,real(H21))

xlabel(’Frequency [Hz]’), ylabel(’H_{21} [real]’)

subplot(4,3,9)

plot(freq,real(H31))

xlabel(’Frequency [Hz]’), ylabel(’H_{31} [real]’)

subplot(4,3,10)

plot(freq,imag(H11))

xlabel(’Frequency [Hz]’), ylabel(’H_{11} [imag]’)

subplot(4,3,11)

plot(freq,imag(H21))

xlabel(’Frequency [Hz]’), ylabel(’H_{21} [imag]’)

subplot(4,3,12)

plot(freq,imag(H31))

xlabel(’Frequency [Hz]’), ylabel(’H_{31} [imag]’)

pause

0 100 200
−100

0

100

Frequency [Hz]

H
11

 [d
B

]

0 100 200
−100

0

100

Frequency [Hz]

H
21

 [d
B

]

0 100 200
−100

0

100

Frequency [Hz]

H
31

 [d
B

]

−5 0 5
0

5

10

H
11

 [real]

H
11

 [i
m

ag
]

−5 0 5
−5

0

5

H
21

 [real]

H
21

 [i
m

ag
]

−5 0 5
−10

0

10

H
31

 [real]

H
31

 [i
m

ag
]

0 100 200
−5

0

5

Frequency [Hz]

H
11

 [r
ea

l]

0 100 200
−5

0

5

Frequency [Hz]

H
21

 [r
ea

l]

0 100 200
−5

0

5

Frequency [Hz]

H
31

 [r
ea

l]

0 100 200
0

5

10

Frequency [Hz]

H
11

 [i
m

ag
]

0 100 200
−5

0

5

Frequency [Hz]

H
21

 [i
m

ag
]

0 100 200
−10

0

10

Frequency [Hz]

H
31

 [i
m

ag
]

Figure 5: FRFs in various formats

Before using an identification method, it is often interesting to use mode indicators,
for checking the local frequency range to analyse (Figure 6):

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 11

[indicators] = ind_mode(H) ;

[cursor1,cursor2] = plot_ind_mode(indicators,freq) ;

figure

subplot(3,1,1)

plot(freq,20*log10(abs(indicators.ISUM)))

xlabel(’Frequency [Hz]’)

ylabel(’Indicator I_{SUM} [dB]’)

subplot(3,1,2)

plot(freq,20*log10(abs(indicators.ISRe)))

xlabel(’Frequency [Hz]’)

ylabel(’Indicator I_{S,Re} [dB]’)

subplot(3,1,3)

plot(freq,20*log10(abs(indicators.ISIm)))

xlabel(’Frequency [Hz]’)

ylabel(’Indicator I_{S,Im} [dB]’)

0 20 40 60 80 100 120 140 160 180 200
−100

−50

0

50

Frequency [Hz]

In
di

ca
to

r
I S

U
M

 [d
B

]

0 20 40 60 80 100 120 140 160 180 200
−100

−50

0

Frequency [Hz]

In
di

ca
to

r
I S

,R
e [d

B
]

0 20 40 60 80 100 120 140 160 180 200
−200

−100

0

100

Frequency [Hz]

In
di

ca
to

r
I S

,Im
 [d

B
]

Figure 6: Mode indicators

The identification step can begin, with the circle-fit method (Figure 7):

% Circle-fit

N = size(H,2) ;

bornes_min = [40 75 110] ;

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 12

bornes_max = [60 100 130] ;

Nbr_mode = length(bornes_min) ;

for i=1:N

for j=1:Nbr_mode

[freq_local,H_local,H_gen_local,infoMODE,circ_prop] = ...

circle_fit(H(:,i),freq,bornes_min(j),bornes_max(j));

plot_circle_fit(freq_local,H_local,H_gen_local,infoMODE,circ_prop);

infoFRF = add_data...

(i,infoMODE.frequencyk,infoMODE.etak,infoMODE.Bijk,infoFRF,j);

end

end

% Results saving

infoMODE1 = save_result_modal(infoFRF);

unv55write(infoMODE1,’3DL_circle_fit.unv’,1);

−3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

Real part FRF

Im
ag

in
ar

y
pa

rt
 F

R
F

Nyquist curve

110 115 120 125 130
−2

0

2

4

6

8

10

12

14

Frequency [Hz]

G
ai

n
 [d

B
]

Bode curve

generated FRF
measured FRF

124 126 128 130
110

112

114

116

118

120

122

Loss factor evolution

After resonance

B
ef

or
e

re
so

na
nc

e

0.044

0.045

0.046

0.047

0.048

0.049

0.05

0.051

0.052

Figure 7: Example of information provided by the circle–fit method

or the line-fit method (Figure 8):

% Line-fit

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 13

N=size(H,2);

bornes_min = [40 75 110];

bornes_max = [60 100 130];

Nbr_mode = length(bornes_min);

for i=1:N

for j=1:Nbr_mode

[freq_local,H_local,H_gen_local,infoMODE,circ_prop] = ...

line_fit(H(:,i),freq,bornes_min(j),bornes_max(j));

plot_line_fit(freq_local,H_local,H_gen_local,infoMODE,circ_prop);

infoFRF2 = add_data...

(i,infoMODE.frequencyk,infoMODE.etak,infoMODE.Bijk,infoFRF2,j);

end

end

% Results saving

infoMODE2 = save_result_modal(infoFRF2);

unv55write(infoMODE2,’3DL_line_fit.unv’,1);

40 45 50 55 60
−2

0

2

4

6

8

10

12

14

Frequency [Hz]

G
ai

n
 [d

B
]

Bode curve

generated FRF
measured FRF

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

Real part FRF

Im
ag

in
ar

y
pa

rt
 F

R
F

Nyquist curve

2000 2500 3000 3500
−4

−2

0

2

4
x 10

4

D
el

ta

Real part

2000 2500 3000 3500
−2

0

2
x 10

4 Imaginary part

2000 2500 3000 3500
−1

0

1

S
lo

pe

Square Frequency [Hz2]

2000 2500 3000 3500
0

0.2

0.4

Square Frequency [Hz2]

Figure 8: Example of information provided by the line–fit method

or the LSCE method which needs a more compact script (Figure 9):

% Least-square complex exponential

[RES,infoFRF3,infoMODE3]=lsce(H,freq,infoFRF3);

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 14

% Results saving

unv55write(infoMODE3,’3DL_LSCE.unv’,1)

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30
Stabilization diagram

Frequency [Hz]

N
um

be
r

of
 m

od
es

 new mode
 frequency stabilization
 frequency − damping stabilization

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

10
5

Number of modes

A
m

pl
itu

de

Least squares error chart

0 5 10 15 20 25 30
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of modes

A
m

pl
itu

de

Conditioning error chart

Figure 9: Example of information provided by the LSCE method

The visualization can be done in MatLab, when the structure geometry is simple
(Figure 10), or with the help of EasyAnim (Figure 11)

% Geometry definition and saving

Nodes = [1 0 0 1 ; 2 0 0 2 ; 3 0 0 3];

Connexions = [1 2 3];

unv15and82write(Nodes,Connexions,’3DL_geometry.unv’,8,8);

pause

% Mode shapes visualization

figure

Methode1 = [real(infoMODE1.Bijk(3,:));real(infoMODE1.Bijk(6,:));...

real(infoMODE1.Bijk(9,:))];

Methode2 = [real(infoMODE2.Bijk(3,:));real(infoMODE2.Bijk(6,:));...

real(infoMODE2.Bijk(9,:))];

Methode3 = [real(infoMODE3.Bijk(3,:));real(infoMODE3.Bijk(6,:));...

real(infoMODE3.Bijk(9,:))];

subplot(3,1,1)

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 15

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−4

−2

0

2

4

Node positon

M
od

e
sh

ap
e

−
 fi

rs
t m

od
e

Circle−fit
Line−fit
LSCE

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−4

−2

0

2

4

Node positon

M
od

e
sh

ap
e

−
 s

ec
on

d
m

od
e

Circle−fit
Line−fit
LSCE

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−4

−2

0

2

4

Node positon

M
od

e
sh

ap
e

−
 th

ird
 m

od
e

Circle−fit
Line−fit
LSCE

Figure 10: Mode shape visualization in MatLab

h1 = stem(Nodes(:,2),Methode1(:,1),’r’);

hold on

h2 = stem(Nodes(:,2),Methode2(:,1),’b’);

hold on

h3 = stem(Nodes(:,2),Methode3(:,1),’g’);

legend([h1(1);h2(1);h3(1)],’Circle-fit’,’Line-fit’,’LSCE’)

xlabel(’Node positon’)

ylabel(’Mode shape - first mode’)

axis([1 3 -4 4])

subplot(3,1,2)

h1 = stem(Nodes(:,2),Methode1(:,2),’r’);

hold on

h2 = stem(Nodes(:,2),Methode2(:,2),’b’);

hold on

h3 = stem(Nodes(:,2),Methode3(:,2),’g’);

legend([h1(1);h2(1);h3(1)],’Circle-fit’,’Line-fit’,’LSCE’)

xlabel(’Node positon’)

ylabel(’Mode shape - second mode’)

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 16

axis([1 3 -4 4])

subplot(3,1,3)

h1 = stem(Nodes(:,2),Methode1(:,3),’r’);

hold on

h2 = stem(Nodes(:,2),Methode2(:,3),’b’);

hold on

h3 = stem(Nodes(:,2),Methode3(:,3),’g’);

legend([h1(1);h2(1);h3(1)],’Circle-fit’,’Line-fit’,’LSCE’)

xlabel(’Node positon’)

ylabel(’Mode shape - third mode’)

axis([1 3 -4 4])

(a) First mode (b) Second mode (c) Third mode

Figure 11: Mode shape visualization in EasyAnim

Finally, a comparison between the methods using the MAC criterion is given in Fig-
ure 12, obtained with the code:

% Modal assurance criterion between the identification methods

[DELTA_FREQ,MAC,coupled] = mac(infoMODE1,infoMODE2,0.8,0.1,1) ;

[DELTA_FREQ,MAC,coupled] = mac(infoMODE1,infoMODE3,0.8,0.1,1) ;

[DELTA_FREQ,MAC,coupled] = mac(infoMODE2,infoMODE3,0.8,0.1,1) ;

as well as the collinearity property of the mode shapes:

EasyMod — A MatLab/Scilab toolbox for experimental modal analysis 17

1 2 3 4
1

1.5

2

2.5

3

3.5

4

Mode shapes of analysis 2

M
od

e
sh

ap
es

 o
f a

na
ly

si
s

1

MAC matrix

0

0.2

0.4

0.6

0.8

(a) Between circle-fit and
line-fit

1 2 3 4
1

1.5

2

2.5

3

3.5

4

Mode shapes of analysis 2

M
od

e
sh

ap
es

 o
f a

na
ly

si
s

1

MAC matrix

0

0.2

0.4

0.6

0.8

(b) Between circle-fit and
LSCE

1 2 3 4
1

1.5

2

2.5

3

3.5

4

Mode shapes of analysis 2

M
od

e
sh

ap
es

 o
f a

na
ly

si
s

1

MAC matrix

0.2

0.4

0.6

0.8

(c) Between line-fit and
LSCE

Figure 12: MAC analysis of the three methods

% Mode collinearity

modegauss(infoMODE1) ;

modegauss(infoMODE2) ;

modegauss(infoMODE3) ;

 0.5

 1

30

210

60

240

90

270

120

300

150

330

180 0

mode shape:1

Real part

Im
ag

in
ar

y
pa

rt 1

 2

30

210

60

240

90

270

120

300

150

330

180 0

mode shape:2

Real part

Im
ag

in
ar

y
pa

rt

 2

 4

30

210

60

240

90

270

120

300

150

330

180 0

mode shape:3

Real part

Im
ag

in
ar

y
pa

rt

Figure 13: Mode collinearity visualization in MatLab

Through this simple structure, an overview of EasyMod functionalities is illustrated.
If you want to try with an other structure, you can follow this example, and with mea-
surements files (some examples are given in our website — a bike frame, an alpine ski or
a squash racket).

