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Abstract—This paper presents a framework, called EasyDyn,
developed for the simulation of dynamics problems and in
particular, multibody systems. The system is not classically
defined from a data file but from a C++ file where the user
must program the kinematics and the expression of applied
forces acting on each body. By kinematics, we mean the ex-
pression of position, velocity and acceleration of each body
in terms of generalized coordinates. From the kinematics
and the efforts, EasyDyn automatically builds and integrates
the equations of motion, according to methods described in
the paper.

To help the user in his task, the library provides on one
hand object-oriented classes for vector algebra (vectors, ro-
tation and inertia tensors, homogeneous transformation ma-
trices) so that vector expressions can be written as is in the
C++ code without having to manage the coordinates. On
the other hand, a MuPAD script is distributed with the library
to automatically generate a core C++ program from a min-
imal information. In particular, the script uses the symbolic
features of MuPAD to derive the expressions of velocities and
accelerations from only the position information. The user
just needs to add the contribution of the efforts in the C++
initial code, which is made easier by the vector library and
the availability of some basic routines.

The library and all the tools it relies on are available for
free on the internet and can be used either under Windows
or Unix. It was not designed as a replacement of commercial
softwares. The latter are developed for the purpose of effi-
ciency and productivity for high-end applications. On the
contrary, EasyDyn has been written so as to get the maximum
compacity, readability, and scalability of the code, often to
the detriment of efficiency. It is particularly well-suited for
teaching and, as it is open source, offers a foundation for
collaborative or research work.

Keywords— Dynamics, simulation, second-order differen-
tial equations, multibody systems, object-oriented program-
ming, open source, symbolic

I. Introduction

Commercial tools like ADAMS, LMS/DADS or SIMPACK are
now commonly used in industry to simulate the kinematic
and dynamic behaviour of multibody systems like manip-
ulators, aircrafts, vehicles or complex articulated mecha-
nisms. Those tools are powerful, user-friendly and efficient
but represent a human and financial investment that the
industry cannot afford if the application is not inside its
core business. Moreover, as the source code is not avail-
able, the user is highly dependent on the editor for any
adaptation of the program.

As an alternative, some simulation codes like DynaFlex,
Dynamechs, or MBDyn, unfortunately not sufficiently known,
can be downloaded from the net and used for free as a re-
placement of their commercial counterpart. These tools
have the advantage to be open source [1], and can conse-
quently be adapted by the community of users according to
their needs. In this paper, we describe another open source
solution, consisting of a C++ library called EasyDyn, where
the system is not defined in a data file but as a C++
program from the description of the kinematics and the

applied forces. The library then provides the routines to
build and integrate the equations of motion. Besides the
C++ library, a MuPAD script has been written to generate
symbolically the complete kinematics (velocities and accel-
erations) from only the position information.

The major purpose of the approach is to give to the
user the maximum control. The library, initially developed
for teaching [6] is easily readable, relies only on software
available for free on the net and can be used under Windows
or Unix. Moreover, as the source is available, EasyDyn can
be adapted to any particularity of the application.

In this paper, we first describe the theoretical back-
ground of the library and then present the principal im-
plementation details. The potentialities of the library are
finally illustrated through some examples.

II. Description of the system

A multibody system consists of rigid or flexible bodies
connected to each other by kinematic joints and/or ele-
ment forces like springs or dampers. We will consider that
the system comprises nB bodies whose spatial situation is
described by ncp configuration parameters gathered in a
vector denoted q.

The configuration parameters are chosen arbitrarily, in
a number corresponding to the number of degrees of free-
dom. The approach is said to be in minimal or generalized

coordinates [3].
A local reference frame i composed of unit vectors xi,

yi, zi is attached to body i and will be used to express the
spatial situation of the body. Although it is not necessary,
we will assume that it is located on the center of gravity.
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Fig. 1. Reference frame of a body

Body 0 is assumed to be fixed. The related reference
frame x0, y0, z0 will be used as the global reference frame.

The situation of each body will be expressed by means
of the homogeneous transformation matrix T 0,i, giving the
situation of the local frame i with respect to the global



frame in terms of the configuration parameters q. Let us
recall that this matrix has the following form

T 0,i(q) =

(

R0,i(q) {ei(q)}0
0 0 0 1

)

(1)

where
• ei is the coordinate vector of frame i with respect to the
global reference frame 0 ({ei}0 being the 3x1 matrix gath-
ering the components of the coordinate vector ei expressed
in the coordinate system of frame 0);
• R0,i is the rotation tensor describing the orientation of
frame i with respect to frame 0.

Physically the columns of R0,i correspond to the unit
vectors xi, yi and zi, expressed in the axes of frame 0

R0,i = ({xi}0 {yi}0 {zi}0) (2)

As an example, let us consider the double pendulum il-
lustrated in figure 2. It is composed of 2 bodies, each one
with its own frame. Two revolute joints constraint the mo-
tion of the bodies, on O between the ground and body 1
and on A between bodies 1 and 2. It is easy to figure out
that the system has 2 degrees of freedom so that the con-
figuration of the system can be univoquely defined from
angles q1 and q2 indicated on the figure.

G2

���������
���������
���������
���������

q

q

1

2

A

O

x
g

x

y

G1

1

1

2
2

y

x

y

0

0

Fig. 2. Double pendulum

The homogeneous transformation matrices giving the sit-
uation of the two bodies can be easily established as

T 0,1 =













c1 −s1 0
l1
2
s1

s1 c1 0 − l1
2

c1

0 0 1 0
0 0 0 1













(3)

T 0,2 =













c12 −s12 0 l1s1 +
l2
2
s12

s12 c12 0 −l1c1 −
l2
2

c12

0 0 1 0
0 0 0 1













(4)

with l1 and l2 the lengths of the arms, c1 = cos(q1), s1 =
sin(q1), c12 = cos(q1 + q2) and s12 = sin(q1 + q2).

We will denote vi and ωi the translation and rotation
velocities of the reference frame of a body i. They are
expressed in terms of the configuration parameters q and
their time derivatives q̇ upon which they depend linearly
as

vi =

ncp
∑

j=1

di,j · q̇j ωi =

ncp
∑

j=1

θi,j · q̇j (5)

The vectors di,j and θi,j represent the partial contributions
of parameter qj in the translation and rotation velocities
of frame i.

In the same way, the translation and rotation accelera-
tions of the reference frame of body i will be denoted ai
and ω̇i and will be expressed in terms of the configuration
parameters q and their first and second time derivatives q̇
and q̈.

III. Equations of motion

When a multibody system is described in terms of gen-
eralized coordinates (without constraints), the application
of the d’Alembert’s principle [3], leads to the following gen-
eralized equations of motion

∑nB

i=1 d
i,j · (Ri −miai)

+θi,j · (Mi −ΦGi
ω̇i − ωi ×ΦGi

ωi) = 0 j = 1, ncp (6)

with
• mi and ΦGi

the mass and the central inertia tensor of
body i;
• Ri and MGi the resultant force and moment, at the
center of gravity Gi, of all applied efforts exerted on body i.

The ncp resulting equations of motion are of the form

M(q) · q̈ + h(q, q̇, t) = 0 (7)

with
• M the mass matrix of dimension ncpxncp, defined by

M jk =
∑nB

i=1 mid
i,j · di,k + θi,j · (ΦGi

· θi,k) (8)

• h a general term gathering the centrifugal and Coriolis
terms and the contribution of the applied efforts.

IV. Integration of second-order differential

equations

Although it is usual to transform second order differen-
tial equations to their equivalent first-order form, we pre-
fer here to work with the natural second-order form of the
equations of motion

f(q, q̇, q̈, t) = 0 (9)

To perform an integration step from time t to time t+h,
so-called integration formulas are introduced, of the form

q̇t+h
i = Λ̌(q̇≤ti , q̈≤ti , q̈t+h

i ) (10)

qt+h
i = Λ(q≤ti q̇

≤t
i , q̈≤ti , q̈t+h

i ) (11)



with q≤t, q̇≤t, q̈≤t a given number of configurations at
and before time t and qt+h, q̇t+h, q̈t+h the configuration
at time t+ h.

For example, the Newmark integration formulas are writ-
ten

qt+h = qt + hq̇t + (0.5− β)h2q̈t + βh2q̈t+h (12)

q̇t+h = q̇t + (1− γ)hq̈t + γhq̈t+h (13)

where β and γ are the Newmark parameters (0.25 ≤ β ≤
0.5 and 0.5 ≤ γ ≤ 1 to assure unconditional stability).

The most often, the integration formulas are implicit
which means that they involve the accelerations at time
t + h. Once positions and velocities have been replaced
by the integration formulas, the equations of motion are
expressed only in terms of the accelerations at time t+ h,
as

f(qt+h, q̇t+h, q̈t+h, t+ h) = f(Λ, Λ̌, q̈t+h, t+ h)

= F (q̈t+h) = 0 (14)

Performing a time step then comes down to solving the
nonlinear equations F in the accelerations q̈t+h. This op-
eration is generally achieved by means of the iterative pro-
cedure of Newton-Raphson, where the nth estimation is
calculated from the preceding one as

q̈t+h,n = q̈t+h,n−1 − J−1 · F (q̈t+h,n−1) (15)

where J is the jacobian matrix of the equations F with
respect to the unknowns q̈t+h. Each term of this matrix,
also called iteration matrix, is defined by

J ij = M ij +CT ij ·
∂Λ̌

∂q̈t+h
+KT ij ·

∂Λ

∂q̈t+h
(16)

with M the mass matrix and KT and CT the tangent
stiffness and damping matrices, defined by

KT ij =
∂f i

∂qj
CT ij =

∂f i

∂q̇j
(17)

V. The EasyDyn library

A. Introduction

Initially developed for teaching [6], the purpose of the
EasyDyn library is to help users to set up and integrate the
equations of motion of a multibody system with a mini-
mal effort. The library, available for free on the internet
(http://www.mecara.fpms.ac.be), is written in C++ and
provides 4 modules
• the sim module to integrate second-order differential
equations;
• the mbs module, a frontend to sim which automatically
builds the differential equations of motion of a multibody
system from the kinematics and the applied forces;
• the vec module, introducing classes related to vector cal-
culus: vectors, rotation tensors, inertia tensors, and homo-
geneous transformation matrices;
• the visumodule, allowing to build object-oriented scenes
composed of moving objects.

The major objective during development was not the nu-
merical efficiency but the compacity, readability and scala-
bility of the code. For instance, the module mbs comprises
only 150 lines of code.

B. The sim module

The sim module consists of routines to integrate second-
order differential equations as far as the user provides the
routine ComputeResidual which yields the residuals of the
differential equations in terms of time, the state variables
and their first and second time derivatives, that’s to say
f(q, q̇, q̈, t)

The only integration method available so far is based
on the Newmark formulas. For the sake of simplicity, the
iteration matrix is built from a numerical derivation [5]
where the jth column is computed from the variation of the
residuals for a variation of the jth configuration parameter

J j =
f(q +∆qj , q̇ +∆q̇j , q̈ +∆q̈j , t)− f(q, q̇, q̈, t)

ε
(18)

where ∆qj , ∆q̇j and ∆q̈j are vectors with all components
null but the jth one, given by

∆q
j
j = εβh2 ∆q̇

j
j = εγh ∆q̈

j
j = ε (19)

The increment ε is chosen from the increment δq on po-
sitions according to the heuristics used in the well-known
integration code DASSL [4]

δq = βh2ε = max(|hq̇|, |q|, εa + εr|q̇|)sign(q̇)
√
u (20)

with u the roundoff error of the computer and εa and εr
the absolute and relative error tolerances used in the inte-
gration process.

The Newmark scheme has an accuracy order equal to 2.
The error on positions depends on the third time derivative
and is estimated from the variation of acceleration over the
time step as

εq =
h3

12

∂3q

dt3
' h3

12

∆q̈

h
=

h2∆q̈

12
(21)

As several configuration parameters are involved, the
global error is estimated from the Euclidean norm of the
variation of acceleration as

εq '
h2‖∆q̈‖
12
√
ncp

(22)

Practically, the time step is chosen to keep the rate of
error εq/h below a tolerance equal by default to 10−6.

For the sake of readability and efficiency, matrix and vec-
tor operations are programmed systematically on the base
of the GSL (GNU Scientific Library), available for free from
the web site of the Free Sotware Foundation(www.gnu.org).

As an example, let us consider the system represented in
figure 3, consisting of an hydraulic jack pushing a mass m,
attached to the ground by a spring of stiffness k. The jack
comprises two chambers numbered 1 and 2. It is a good
test for EasyDyn as the hydraulic equations are well-known
to be particularly stiff.

The volume flow Qi entering in each chamber i (i=1,2)
verifies on one hand the discharge law through the throt-
tling section Sei

Qi = CdSei

√

2(pEi − pi)

ρ
∗ sign(pEi − pi) (23)



with Cd the orifice discharge coefficient, ρ the fluid density,
pi the fluid pressure inside the chamber, and pEi the circuit
pressure at the entrance of the chamber.

On the other hand, the flow is driven by the variation
of volume of the chamber and by the variation of the fluid
pressure

Qi = V̇i +
Vi
K

ṗi (24)

with Vi the volume of the chamber and K the compress-
ibility coefficient of the fluid.
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Fig. 3. Hydraulic system

If we consider that the position x=0 corresponds to the
rest length of the spring, the dynamic equilibrium of mass
m is given by

mẍ+ kx− p1S1 + p2S2 = 0 (25)

If V0i is the volume of the chamber for the position x=0,
the volume can be expressed in terms of x

V1 = V01 + S1x V2 = V02 − S2x (26)

with S1 and S2 the cross sections of chambers 1 and 2.
The other equations of motion are obtained by matching

the two expressions of the flow

S1ẋ+ V01+S1x
K

ṗ1

−CdSe1

√

2(pE1−p1)
ρ

∗ sign(pE1 − p1) = 0 (27)

−S2ẋ+ V02−S2x
K

ṗ2

−CdSe2

√

2(pE2−p2)
ρ

∗ sign(pE2 − p2) = 0 (28)

Although two equations are of first-order form, they can
be naturally treated by specifying the 3 state variables as

q1 = x q̇2 = p1 q̇3 = p2 (29)

The system has been simulated with the data in table I
with the following initial conditions

x0 = ẋ0 = 0 p10 = p20 =10 bar

for the pressure pE1 increasing linearly from 10 to 100 bar,
in the interval [0:0.01] seconds. The initial accelerations (ẍ,
ṗ1 and ṗ2) are determined from the equations of motion.

Some results are presented in figures 4 to 6. The mass
position (figure 4) is driven initially by the flow through the
orifices and stops when the equilibrium is reached between
the spring reaction and the force exerted by the jack. At
the end of the simulation, the pressure in the chambers is

TABLE I
Simulation data for the hydraulic jack

m=10 kg k = 105 N/m K = 2 · 108 Pa
ρ = 860 kg/m3 pE2 = 10 bar S1=0.001 m2

S2=0.0005 m2 V01 = 10−4 m3 V01 = 3 · 10−4 m3

Cd = 0.611 Se1=10−5 m2 Se2=10−5 m2

the one of the corresponding circuit (figure 5). The stiff
nature of the equations is illustrated on the evolution of
the mass velocity (figure 6) where the oscillations due to
the fluid compressibility can be clearly identified. Figure 7
shows how the integration procedure adapts the time step
during the simulation. This evolution must be correlated
with figure 6. In the beginning of the simulation, a small
time step is necessary due to heavy oscillations of the sys-
tem. Later, the behaviour is quasi-stationary and a larger
time step is allowed. It can be seen that a maximum time
step of 0.0005 seconds has been specified by the user.
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C. The mbs module

The mbsmodule is a frontend to sim which automatically
builds the residuals of the motion equations of a multibody
system according to the formulation presented in section
III. The user just has to provide two principal routines
• ComputeMotion which yields for each body the posi-
tion matrix T 0,i, the translation and rotation velocities vi
and ωi and the corresponding accelerations ai and ω̇i, ex-
pressed in terms of the chosen configuration parameters q
and their first and time derivatives q̇ and q̈
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• AddAppliedEfforts which builds the resultant force Ri

and the resultant moment with respect to center of gravity
MGi, of the applied efforts exerted on each body.

Let us remark that the user doesn’t have to provide the
expression of the partial contributions. It is indeed clear,
from the following relationship

vi =

ncp
∑

j=1

di,j · q̇j ωi =

ncp
∑

j=1

θi,j · q̇j (30)

that the partial contribution di,j (θi,j) is equal to the trans-
lation or (rotation) velocity of body i when all generalized
velocities are null but the jth one. The partial contribu-
tions will then be determined numerically from

di,j = vi|q̇k=δjk
θi,j = ωi|q̇k=δjk

(31)

where δij is the Kronecher index (δij = 1 if i = j, δij = 0
if i 6= j).

D. The vec module

Although the user’s work is largely simplified, writing
the kinematics remains difficult, especially for the acceler-
ations. The main reason is that the laws of mechanics are
compact when expressed in vector form, but become very
complex once projected in a given coordinate system. Let’s
take the example of the double pendulum presented before.
In vector form, the acceleration of the center of gravity of
body 2 is written

aG2
= ω̇1 ×OA+ ω1 × (ω1 ×OA)

+ω̇2 ×AG2 + ω2 × (ω2 ×AG2) (32)

with

ω1 = q̇1~z0 ω̇1 = q̈1~z0 (33)

ω2 = (q̇1 + q̇2)~z0 ω̇2 = (q̈1 + q̈2)~z0 (34)

The expression, already sizeable, becomes much more com-
plex when expressed in the axes of a coordinate sytem, as
shown by the x component of the acceleration aG2, with
respect to the global reference frame

aG2x = q̈1 cos (q1)− q̇2
1 sin (q1) + q̈1 cos (q1 + q2)

+q̈2 cos (q1 + q2)− q̇2
1 sin (q1 + q2)

−q̇2
2 sin (q1 + q2)− 2 q̇1 q̇1 sin (q1 + q2) (35)

It would become even more complex if the two axes of
rotation were not parallel.

To solve the problem, the vec module defines classes re-
lated to the major components of vector algebra: vectors
(type vec), rotation tensors (type trot), inertia tensors
(type tiner) and homogeneous transformation matrices
(type mth). The classical operators have been overloaded
so that vector expressions can be written as in the C++
code. For example, the acceleration of body 2 can be pro-
grammed in the following way (note that all indices are
shifted as they begin from 0 in C)

body[1].T0G=Trotz(q[0])*Tdisp(0,-l1,0)

*Trotz(q[1])*Tdisp(0,-0.5*l2,0);

body[1].omega=body[0].omega+vcoord(0,0,qd[1]);

body[1].omegad=body[0].omegad+vcoord(0,0,qdd[1]);

vec AG2=body[1].T0G.R*vcoord(0,-0.5*l2,0);

body[1].vG=2*body[0].vG+(body[1].omega^AG2);

body[1].aG=2*body[0].aG+(body[1].omegad^AG2)

+(body[1].omega^(body[1].omega^AG2));

This small piece of code illustrates some potentialities of
the library
• the position matrix is built from the multiplication of
predefined forms corresponding to rotations or displace-
ments;
• the routine vcoord allows to build a vector from its 3
components;
• the homogeneous transformation matrix (T0G) comprises
a rotation tensor (R) which can be used to build a vector
expressed in the global frame from its local coordinates.

E. The visu module

The visu module allows to define a graphical scene com-
posed of simple objects like boxes, frustums, lines, trian-
gles, . . . . Each shape is attached to an homogeneous trans-
formation matrix, generally the one giving the situation of
a body, allowing to build successive configurations of the
scene that can be saved to a file and animated by an inde-
pendent viewer distributed with EasyDyn.

Figures 11 and 14 of next section are examples of scenes
built with the help of the visu module.

VI. The help of symbolic tools

Even with the help of the vector classes, the kinematics
remains problematic for an unexperienced user. It can be



dramatically simplified if we figure out that all the kine-
matics can be derived from only the homogeneous trans-
formation matrices.

The translation velocity vi of body i can indeed be de-
rived directly from the homogeneous transformation matrix

{vi}0 =
d

dt
{ei}0 =

ncp
∑

j=1

∂{ei}0
∂qj

· q̇j =
ncp
∑

j=1

{di,j}0 · q̇j (36)

In the same way the rotation vector is related to the time
derivative of the rotation tensor by

{ω̃i}0 =





0 −ωzi
ωyi

ωzi
0 −ωxi

−ωyi
ωxi

0





0

= Ṙ0,i ·RT
0,i (37)

One further derivation then naturally leads to the accel-
erations

{ai}0 =
d

dt
{vi}0 {ω̇i}0 =

d

dt
{ωi}0 (38)

A supplementary tool, called CAGeM (Computer Aided
Generation of Motion) has been developed to help the users
of EasyDyn. Practically, CAGeM is a MuPAD script which
builds the core of a C++ application using mbs to simulate
the behaviour of a multibody system. The MuPAD software
is the result of several years of research in the university of
Paderborn. Although it is also available for free on the net
(http://www.mupad.de), it offers features comparable to
its commercial counterparts like Mathematica or MathCad.

To use CAGeM, the user provides a MuPAD code with the
following information
• the number of bodies and the number of configuration
parameters;
• the inertia data of each body;
• the expression of the homogeneous transformation ma-
trices of each body, expressed in terms of the chosen con-
figuration parameters;
• the initial conditions;
• the gravity vector.
The script CAGeM uses the symbolic derivation features of
MuPAD to build the expressions of velocities and accelera-
tions from the position matrices.

The following code illustrates the user file related to the
example of the double pendulum

titre:="Simulation of a double pendulum":

nbrdof:= 2: // Number of degrees of freedom

nbrbody:= 2: // Number of bodies

// Gravity vector

gravity[1]:=0: gravity[2]:=-9.81: gravity[3]:=0:

// Some Constants

l0:=1.2: l1:=1.1:

// Inertia data

mass[0]:=1.1: mass[1]:=0.9:

Ixx[0]:=1: Ixx[1]:=1:

Iyy[0]:=1: Iyy[1]:=1:

Izz[0]:=l0^2/12*mass[0]:

Izz[1]:=l1^2/12*mass[1]:

// Position matrices

T0G[0] := Trotz(q[0]) * Tdisp(0,-l0/2,0):

T0G[1] := Trotz(q[0]) * Tdisp(0,-l0,0)

* Trotz(q[1]) * Tdisp(0,-l1/2,0):

// Non null initial conditions

qi[1]:=1:

// Simulation conditions

TempsFinal:=5:

StepSave:=0.01:

StepMax:=0.005:

In this case, where the gravity is the only applied effort,
no other task but compiling the resulting code is necessary.
In some cases, the user will have to complete the procedure
AddAppliedEfforts. Let us note that routines are pro-
vided for classical force elements like springs or dampers.
Other routines for other types of elements can be added in
the future. The ability to write the forces in vector form
makes anyway the work much easier.

VII. Examples

A. Double pendulum

The double pendulum presented before has been simu-
lated when subjected to gravity from the following initial
conditions

q1=0, q̇1=0, q2=1 rad, q̇2=0

The generation of the C++ code from MuPAD took less
than 1 second on a PC equipped with a processor run-
ning at 2GHZ. The evolution of the angles is illustrated in
figure 8.
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Fig. 8. Evolution of angles

B. Slider-crank mechanism

The fact of working with generalized coordinates does
not prevent to simulate closed-loop mechanisms, as shown
by the slider-crank mechanism illustrated in figure 9. The
parameters α and x can indeed be expressed univoquely in
terms of the angle q0 by

α = arcsin(
l1 sin(q0)

l2
) x = l1 cos(q0) + l2cos(α) (39)

The relationships can be introduced symbolically in the
MuPAD code describing the system as

l1 := 1: l2 := 2:

alpha := arcsin(l1*sin(q[0])/l2):
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Fig. 9. Slider-crank mechanism

x := l1*cos(q[0]) + l2*cos(alpha):

T0G[0]:= Trotz(q[0]) * Tdisp(l1/2,0,0):

T0G[1] := Tdisp(x,0,0) * Trotz(-alpha)

* Tdisp(-l2/2,0,0):

T0G[2] := Tdisp(x,0,0):

and the intermediary variables α and x will be automati-
cally replaced by their expression and derived in a consis-
tent way.

For more complex systems, the intermediary variables
could eventually be determined in terms of the chosen con-
figuration parameters from the symbolic or numeric res-
olution of constraint equations. This approach has been
largely applied by Hiller et al. [3] on complex mechanical
systems.

For this example, the generation of the C++ code from
MuPAD takes approximately 3 seconds on a PC equipped
with a 2GHz processor. The response of the system sub-
jected to gravity has been simulated from initial conditions
q0=1 rad and q̇0=0, for the data detailed in table II. The
evolution of the angle q0, represented in figure 10, shows
that the mechanism comes back to the same position after
one oscillation, as there is no energy dissipation.
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Fig. 10. Simulation of the slider-crank mechanism

TABLE II
Characteristics of the slider-crank mechanism

m1=1 kg IG1zz=0.0833 kgm2

m2=2 kg IG2zz=0.6667 kgm2

m3=5 kg IG3zz=2 kgm2

l1=1 m l2=2 m

Fig. 11. Image of the slider-crank mechanism

C. Spatial robot

To show the generality of the library, the robot illus-
trated in figure 12 has been studied. The system is well
documented as it was used as a benchmark for multibody
systems softwares [2].
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Fig. 12. Robot

The robot owns 5 degrees of freedom, depicted in figure
12 (C = 0.05 m and L = 0.5 m) and 3 bodies. With the
help of the symbolic tool, the only information necessary
to build the kinematics is the position matrix, which gives
for the end arm

T0G[2] := Trotz(q[1]) * Tdisp(0,0,q[0])

* Troty(q[3]) * Tdisp(0,q[2]+L,0)

* Trotx(q[4]) * Tdisp(0,C,0):

TABLE III
Inertia parameters of the robot

Body
0 1 2

mass (kg) 250 150 100
Ixx (kg.m2) (90) 13 4
Iyy (kg.m2) (10) 0.75 1
Izz (kg.m2) 90 13 4,3

The generation of the C++ program from MuPAD takes
about 13 seconds on a PC equipped with a processor run-
ning at 2GHz.



The force law at each actuator (table IV) is defined in the
benchmark for a point-to-point motion of the end point.

TABLE IV
Efforts developed by actuators

Time interval τ Efforts
[s] [N ] or [N.m]

F0Z = 6348
[0 : 0.5] F1Y = 36t+ 986

T0Z = 637t− 508
T1Y = 0

T2X = 63.5
F0Z = 4905

[0.5 : 1.5] F1Y = −2
T0Z = 148 exp(−5.5(t− 0, 5))− 8

T1Y = 0
T2X = 49, 05
F0Z = 3462

[1.5 : 2] F1Y = −1019
T0Z = 240
T1Y = 0

T2X = 34, 6

The definition of these efforts in the C++ file is largely
simplified by the elements of the vec library. Local axes
of the frames can indeed be used directly to specify the
direction of each effort. We get for example for the time
interval [0:0.5]

if (t<0.5)

{

body[0].R += 6348 * body[0].T0G.R.uz() ;

body[0].MG += (673*t-508) * body[0].T0G.R.uz() ;

body[1].R += (36*t+986) * body[1].T0G.R.uy() ;

body[0].R -= (36*t+986) * body[1].T0G.R.uy() ;

body[2].MG += 63.5 * body[1].T0G.R.ux() ;

body[1].MG -= 63.5 * body[1].T0G.R.ux() ;

}

Let us note that the user must pay attention to apply the
action and the reaction to assure the coherence of the sim-
ulation.
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Fig. 13. Results of robot simulation

Fig. 14. Robot visualization

VIII. Conclusion

We have presented a framework, called EasyDyn, that
can be used to simulate dynamics problems and in partic-
ular, multibody systems. The system is not described in
a data file but from its kinematics and the expression of
applied forces, programmed in a C++ application. Some
utilities, like vector algebra classes and external symbolic
tools, are provided to make the task of the user as easy as
possible.

Although the framework has been tested on quite com-
plex systems (3D manipulators, controlled systems, railway
vehicles), it is not a replacement of available commercial
simulation tools. In particular, the code was written for a
maximum compacity, readability and scalability, often to
the detriment of efficiency. It constitutes a flexible alter-
native for simple or moderately complex systems. Its main
advantage is to be completely free and open source, allow-
ing the user to tune the routines to its peculiarities, each
one enlarging the application field. It is particularly well-
suited for teaching and offers a foundation for collaborative
or research work.

The future development will focus on the ability to build
and integrate equations of motion comprising kinematic
constraints.
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