EasyDyn problem : Sliding Pendulum

O. Verlinden, G. Kouroussis

17 mars 2004

1 Description of the system

The considered system is represented in figure 1. It consists of a body S_{0} in translation with respect to x axis. The second body, S_{1}, is a pendulum attached to the previous body by a revolute joint of horizontal axis (z axis).

FIG. 1 - Sliding pendulum $\left(b=1.5 m, h=0.5 m, l=2 m, m_{0}=5 k g, m_{1}=2 \mathrm{~kg}\right)$

2 Requested results

It is asked to simulate the behaviour of the system, subjected to gravity, with the initial condition $q_{1}=\pi / 2$.

The problem will be solved in two manners

1. by expressing the kinematics from the classical laws of mechanics, with the help of the vector operators implemented in EasyDyn ;
2. with the help of the CAGeM utility.

The simulation will be performed from 0 to 5 s .

3 Typical results

Figures 2 to 4 give the expected evolutions of the configuration parameters and their time derivatives.

Fig. 2 - Evolution of configuration parameters

Fig. 3 - Evolution of first time derivatives of configuration parameters

Fig. 4 - Evolution of second time derivatives of configuration parameters

