Problème EasyDyn : Le pendule libre

O. Verlinden, G. Kouroussis

17 mars 2004

1 Description du système

Ce système est représenté à la Figure 1 . Il se compose d'un solide S_{0} en translation selon l'axe x (glissement sans frottement). Le second solide, S_{1}, est une barre pouvant tourner sans perte autour du premier. C'est en fait un pendule synchrone dont la base est libre selon l'horizontale.

Fig. 1 - Pendule libre $\left(b=1.5 m, h=0.5 m, l=2 m, m_{0}=5 \mathrm{~kg}, m_{1}=2 \mathrm{~kg}\right)$

2 Résultats demandés

On demande de simuler le mécanisme, soumis à la gravité, pendant 5 secondes, pour les conditions initiales $q_{1}=\pi / 2$, les autres étant nulles.

On demande aussi :

1. De générer dans un premier temps la cinématique en appliquant les lois classiques de la mécanique, et en utilisant le calcul vectoriel d'EasyDyn..
2. D'effectuer la même tâche mais avec, cette fois-ci, l'utilitaire cagem sous MuPAD de manière symbolique. Comparer les deux <approches » et conclure.
3. De générer l'animation en même temps que la simulation (peu importe laquelle).

3 Résultats typiques

Les résultats suivants ont été obtenus selon les deux approches (vectorielle et symbolique).

Fig. 2 - Evolution temporelle des paramètres de configuration

Fig. 3 - Evolution temporelle des dérivées premières des paramètres de configuration

Fig. 4 - Evolution temporelle des dérivées secondes des paramètres de configuration

