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Motivation

@ Gravitational Waves (GW) are experimentally observed
@ We need a theory which will be helpful for studies of GW

o Consider the interactions between to rotating (Kerr) Black Holes by
exchange of Gravitational Waves

@ It is complicated, if one uses the Einstein equations

o Use Effective Field Theory approach : model rotating Black Holes as
localized massive objects (particles) with a large spin. It is possible,
because of the ”No - Hair” Theorem

@ Use the Post Minkowskian Approximation i.e., weak fields %ZL <<z

c2

but “c’—; ~ 1. Perturb around special relativity (expansion in G)



Black Holes. Reminder

@ The most general solution of Einstein equations
1
R, — §gWR =87GT,,

with T),, = 0 and spherical symmetry

2M dr?
d52:— (1 G> dt2+ﬁ+r2(d92+ Sln20d¢2)
T _

G - Newton constant, M - mass

o If the Schwarzschild radius ry = 2M G is bigger than the radius of the
gravitating object, we have a Schwarzschild Black Hole. Event horizon is
at rg

@ Radial propagation of the light

o dr
(1 o 2MG)

T

ds? =0, dd=dp=0, dt=

Near horizon t ~ 2MG In(r — 2MG) — oo: It takes an infinite time for a
light to reach the horizon



Black Holes. Reminder

o If dr = df = d¢ =0, then

T is a proper time. The time measured by observer at infinity is
bigger than the proper time: we have a time dilation.

@ “No hair” theorem: Each Black Hole is described by its mass M,
charge @, coordinates x*, momenta p; and angular momenta J° j

e Rotating (Kerr) Black Hole

A in >0
ds® = —?(dt —asin?0do)? + %((r2 + a?)d¢ — adt)? +
P2
+ Kdr2 + p2d6?

where: A =12 — 2GMr +a?, p?> =7r?+a%cos?0

e Two parameters M- mass and J = ma -angular momentum



Black Holes rdline Description

o This approach has the following steps (J.Vines, arXiv: 1709.06016):
@ Both for Schwarzschild and Kerr Black Holes. Let us consider the later.

@ Linearize the metric around a flat background
guu(x) =Ny + h;w(x) + O(GQ)

@ Here g,, () is the exact Kerr metric, h,, () is the exact solution of
linearized field equations

Ohyy = —167GPuyas T

and of the Lorentz gauge condition
a acfB 1
P[,Ly B — (SEH(SV)) - inuynaﬁ

@ The gauge invariance
Ohpy = OuAy + 0L,

is used to achieve the Lorentz gauge



Black Holes dline Description

@ The action

Stot‘ = SGTavA[h] + Sint. [\117 h] + Skzn[\:[}] + O(Gg) =

_ 1 4 uvafap 1 / 4 n% .
=~ eiC d*x (0phu)P (0hu) + 5 d*x hy, TH W]
+Stot.[¥, h = 0] + O(G?)

@ The variables ¥ describe an arbitrarily parametrized worldline

aH = z#(7), with tangent Z# = %, along with some other variables ¥ (7)

@ Stress -energy tensor does not depend on Ay,
T (z) — /dT T (4, )04 (z — 2) + O(G2)

e TH is a differential operator
T = zepy) 4 zlegvlag 4
where p* and S*¥ are momentum and spin operators

@ No other variables due to the "no hair” theorem



@ Worldline fields obey a constraint

S*p, =0— SH = E“VO,BaapB and a'p, =0

The vector a* is called a spin -vector

@ Therefore, our 1 variables are p* and a”. Define the mass via

p* = Mu#, where u* is a time-like unit vector

@ The interaction term in the Lagrangian is

1.
Lint. = §T‘“’(p, a,0)hu,(x = 2)

@ The hy, for the Kerr metric is

uYub
hyy = 4GMPuapexp (a x 0)%, — (a*b), = s#,,agaabﬁ

@ From the equation

1
Ry = 4GPuyas T (p, a,d) .

We get: TH(p,a,d) = M exp (a * 9)* ju")u?



Spinor- Helicity Formalism. Massless fields

o We are again considering D = 4

o Light-like momentum is parametrized by commuting Weyl spinors
Ao and A4, with a,& = 1,2 being SL(2,C) group indices

. . ad, _ _aBeB,
Pac = >\a>\aa P Pac =€ "€ pﬁﬁpaa =0
@ Useful notations
A e A, A XY A e M e
(Ap) = A%pa,  [Mp] = Aap®

@ The vector fields are characterized by polarization vectors

1.0 L P U]
€+_4/5(@)’ VE[AQ

where |¢) and |g] are arbitrary reference spinors. Their presence is
a result of the gauge invariance.



Spinor- Helicity Formalism. Massless fields

o The reference spinors |g) and |g] can be chosen for each external
particle separately.

e This formalism greatly simplifies calculations of scattering
amplitudes

e Example : a scattering of n positive helicity massless vector fields.

@ We have at most n — 2 Yang-Mills vertices. Each vertex has at
most one momentum. Therefore we have at least one contraction

& (q)- € (9)

@ Choosing the reference spinor equal to all external particles we get

€ (q) - ej(q) = 0, therefore

A1t 2t . onT) =0
e The first nonzero amplitude (so called MHV)

(g

A1~ .50 .nT) = w2l



Spinor- Helicity Formalism. Massive fields

o The four - momentum with p? = m? is parametrized by Dirac
spinors A% and A%, with a = 1,2 being SU(2) group index
Pas = )\gj\d,a
Mada (NP =mdl,  (XN*N0) = —me®®
o It is useful to introduce auxiliary commuting variables z, and
consider Ao = A% 24, and A\g = A2,
@ The massive spinors satisfy the Dirac equations

padj\d =M, pad)\a = _mj\o'm

e For massive vector fields we have polarization vectors

c— e

m

e For an arbitrary spin s field the polarization tensor is

) — (e)°



Spinor- Helicity Formalism. Cubic Interactions

e Three point functions (N. Arkani-Hamed, T.-C. Huang, Y .-t.
Huang, arXiv:1709.04891, (AHH))

One massless field with a helicity h (label ‘3‘) and two massive
fields with equal mass m and spin s (labels ‘1‘ and ‘2°).

Momentum conservation implies
2pM - pB) = (3]pM|3] = 0

@ Therefore Do
x)\(3),a _ 5\(3)]9( ),k
> m

e Introducing an auxiliary spinor ¢ one can write

mz(3q) = (q|p1(3]

Identifying ¢* with the reference spinor for massless fields we get

V2 @ 0y V2@ L
m m x



Spinor- Helicity Formalism. Cubic Interactions

©

A three point function can be expanded in the basis of Ay’ and €,

o The general expansion has the form

Mg(al7“450‘3)7(617“"58)’}"

ABGIAG) ) t) (1 s00), (B B5)

2s
= (max)" (Z gie2s e (a:
m
t=0

e Or reintroducing the massive spinors
h (21)* (21)*71(23)(31)
M; SN __ (mx)h <90 s +qix m2s + ...

The requirement that the amplitude has a good Ultraviolet
behaviour, puts all g; = 0, except go. This is called the minimal
coupling



Spinor- Helicity Formalism. Cubic Interactions. Connection with Black Holes

e We shall consider h = 2 (gravity) and h = 1 (vector field)

2 (21)%
m23

<21>28

87572 j—
M3 ™" = (mx) T2

) M;’S’l = (mzx)

For the Kerr black hole, after the Fourier transformation

N V)
TH (—k) = 2m(p - k)p™ exp (S - Zk) P’
mJp

with (S xik)t, = ey e SPk?

@ The cubic interaction with graviton is
Va.gr = e"(k)e” (k)T (—k)

o Taking carefully the classical limit of M3 %2 one obtains V3. gr-



Spinor- Helicity Formalism. Cubic Interactions. Connection with Black Holes

e A possible way (M.Chiodaroli, H. Johansson, P. Pichini, arXiv:
2107.14779):

o Rewrite the AHH amplitude in an exponent-like form

M52 = —i(e - p1)? (52' <1+m+( mz) >'51>

where S* is a spin operator

~

(S'LL)Oéﬁ = EquTpl,l/(MpT)a,B, (M'uy)aﬁ - 226([3‘7(52]
@ Define the classical spin vector as an expectation value
S

62'8”'61’\’7
S

e Finally take limits k << p and s — oo and get V3 4,



Free Massive Higher Spin Fields

What is an off-shell description of the results above?

Higher Spin fields are usually described by symmetric tensors of
rank s i.e., in terms of ¢y, ..., ()

The tensors can be traceless (irreducible) or traceful (reducible)
representations of the Poincare (or AdSp, dSp) group

We use a gauge invariant approach, similar to the Open String
Field Theory

Free equations

(e m2)¢u1u27...,us () =0, mass-shell
M ups,...ps(x) =0, transverse

A iz, () =0 traceless

We would like to construct an action which gives these conditions
as equations of motion

We shall not impose the zero trace condition



e Higher Spin Fields

@ Introduce an auxiliary Fock space spanned by oscillators
[O‘uv O‘zﬂ = Nuv, [O‘D’ O‘E] =1

@ A vector in the Fock space
k=s

1
|(I)> - Z mq)ﬂluz,...usfk(‘T)am’JrOém’Jr...a“S’Jr(aE)k|()>’
k=0 A

@ Mass-shell and transversality conditions
lolp) =0, lp) =0
with
lo=p-p+m?, 1l=p-a+map, l+:p'a+—|—mag, Pp = —i0,
@ Introduce ghost variables
{co,bo} = {c,b"} = {cT,b} =1

@ The field has the form: (s is a total number of o/ and a}, oscillators)

®) = o)) + ¢FbT | DED) 4 bt
@



Free Massive Higher Spin Fields

@ The physical field is |p(®)), the fields |[D®~2)) and |C~D) are gauge
artefacts

@ The only nonzero commutator between the operators is
[0 =1lo
@ The corresponding nilpotent BRST charge Q? = 0
Q = colp+cTl+cl™ —cTeby,
@ Since Q% = 0, a free action
Ly = /dc0<q>|Q|¢>>, /dcoc —1

is invariant under gauge transformations

o|®) = QIA), [A) =bT|A)



Free Massive Higher Spin Fields

An example: massive spin 1. The field ¢, () is physical, ¢(x) and C(x)
are auxiliary

The fields and the parameter of gauge transformations
|®) = (¢ ()t +ig(x)af, —icobtC(x)) |0), |A) =ibTA(z)|0)
The corresponding Lagrangian
L= ¢ (0 —m?)y + (0 —m)p — C2 + 200", — 2mC
Gauge transformations
56,(2) = M), §6(x) =mA(x), 3C(z) = (O - m*)Ax)

After fixing the gauge one can see, that the system describes D — 1
on-shell degrees of freedom



ss Higher Spin Fields

@ The construction is similar to the massive case. To describe free massless
fields, put m? = 0 and discard ozz’; dependence everywhere

@ Fock space state

1
D) = Py, (D@ @0, [ 0] =

satisfies mass-shell and transversality conditions
lolg) =0, ) =0
with
l():p'p, l:pav l+:p'04+7 pu:—iaﬂ
@ The field has the form: (s is a number of o/} oscillators)
) = [) + cTbT[DETD) 4 bT|CED)
@ The nilpotent BRST charge
Q =colg+cTl+clt —cTeby,

gives a free Lagrangian £ ~ (®|Q|®)



Cubic interactions

@ OUR TASK: describe cubic interactions between two Higher Spin fields
with equal mass m, with massless spin two or spin one

@ Restrict s =2 or s = 1 for massless fields
@ Take three copies of oscillators
o9, 0] = 769
take i = 1,2 for massive, i = 3 for massless fields.
@ Consider nonlinear gauge transformations

Ocun|2) ~ QUIAW) — g((BPAD| + (AP (@P)])|15))

@ The corresponding cubic Lagrangian is
3
Lew. ~ Y _(2D1QW]00) + g(@@ (@ |(91|V5)
i=1

@ The invariance of L..p :
@ @MW) =@ =@¥)=0
g' s QW +QP+Q®)s) =0



Cubic Interactions

e Complete classification of the BRST invariant cubic vertices is
known (R. Metsaev, arXiv: 1205.3131)

o They are given in terms of the BRST invariant expressions

KO — (o — p®) . Wt 4 o g,

KO = (o0 — p@). 0O+ 4 g,

ag)’+lC(2) - ozg)’JrlC(Q)
2m

+(a®t . oM@ 4 gh.

0 =W+ . @+ 4 ag)’wg):* i

+ gh.

e Apparently, any function of K, Q and Z is a valid cubic vertex



Cubic Interactions

o Our task is to find a function of £, Q and Z, which gives the
minimal coupling
o Let us consider the physical (a,(f)’Jr only) part of the cubic vertices

o The simplest example is 0 — 0 — 1 case. The fields are
(o] = (010", (6P| = (016, (6] = (Olae,
@ The relevant cubic vertex has the form
V=Kk®

@ The three point amplitude is

1 .
Agon =5 (Y —pP) = pl =

—imx
2

@ Similarly, one can find that A;_1_1, A1_1_2 and As_o_o are
generated by Z, ZK®) and Z2 respectively.



Cubic Interactions

@ The example 3 — 3 — 2 tells us, that the corresponding vertex is

- _ - 2 2K 21~(1) 3 (2)
14 2<ZQ 2B + 22K 2m2>

Only some specific coefficients between the BRST invariant
expressions give the minimal coupling

Generic solution (generalizes an on-shell result of M.Chiodaroli,
H.Johansson and P.Pichini, arXiv: 2107.14779)
o For s —s—2

. 2_ 02k z
_ ez _ L gem 27—k

e For s — s — 1 (so called root Kerr, useful for the double copy

construction)

et Z- Q2

V(s,s,l):—\ﬁ V2(1-09)2— L, ()IC(Q)




Summary and Conclusions

We considered an Effective Field Theory Approach for a graviton
(Electromagnetic field) interacting with a Rotating Black Hole

@ To this end we used a gauge invariant approach to Massive and
Massless Higher Spin fields

o In particular, we used the BRST formalism, which is completely
off-shell

o It produces a Lagrangian completion to the on-shell AHH vertex

e The approach is simple, since the vertices and BRST charges for
reducible fields are used



THANK YOU!!



