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Motivation

Gravitational Waves (GW) are experimentally observed

We need a theory which will be helpful for studies of GW

Consider the interactions between to rotating (Kerr) Black Holes by
exchange of Gravitational Waves

It is complicated, if one uses the Einstein equations

Use Effective Field Theory approach : model rotating Black Holes as
localized massive objects (particles) with a large spin. It is possible,
because of the ”No - Hair” Theorem

Use the Post Minkowskian Approximation i.e., weak fields Gm
rc2 << v2

c2

but v2

c2 ∼ 1. Perturb around special relativity (expansion in G)



Black Holes. Reminder

The most general solution of Einstein equations

Rµν −
1

2
gµνR = 8πGTµν

with Tµν = 0 and spherical symmetry

ds2 = −
(

1− 2MG

r

)
dt2 +

dr2(
1− 2MG

r

) + r2(dθ2 + sin 2θ dφ2)

G - Newton constant, M - mass

If the Schwarzschild radius rs = 2MG is bigger than the radius of the
gravitating object, we have a Schwarzschild Black Hole. Event horizon is
at rs

Radial propagation of the light

ds2 = 0, dθ = dφ = 0, dt =
dr(

1− 2MG
r

)
Near horizon t ∼ 2MG ln(r − 2MG)→∞: It takes an infinite time for a
light to reach the horizon



Black Holes. Reminder

If dr = dθ = dφ = 0, then

ds2 = −
(

1− 2MG

r

)
dt2 = −dτ2

τ is a proper time. The time measured by observer at infinity is
bigger than the proper time: we have a time dilation.

“No hair” theorem: Each Black Hole is described by its mass M ,
charge Q, coordinates xi, momenta pi and angular momenta J ij

Rotating (Kerr) Black Hole

ds2 = −∆

ρ2
(dt− a sin 2θ dφ)2 +

sin 2θ

ρ2
((r2 + a2)dφ− adt)2 +

+
ρ2

∆
dr2 + ρ2dθ2

where: ∆ = r2 − 2GMr + a2, ρ2 = r2 + a2 cos 2θ

Two parameters M - mass and J = ma -angular momentum



Black Holes. Wordline Description

This approach has the following steps (J.Vines, arXiv: 1709.06016):

Both for Schwarzschild and Kerr Black Holes. Let us consider the later.

Linearize the metric around a flat background

gµν(x) = ηµν + hµν(x) +O(G2)

Here gµν(x) is the exact Kerr metric, hµν(x) is the exact solution of
linearized field equations

�hµν = −16πGPµναβTαβ

and of the Lorentz gauge condition

Pµναβ = δ
(α
(µδ

β)
ν) −

1

2
ηµνηαβ

The gauge invariance
δhµν = ∂µλν + ∂νλµ

is used to achieve the Lorentz gauge



Black Holes. Wordline Description

The action

Stot. = SGrav.[h] + Sint.[Ψ, h] + Skin.[Ψ] +O(G2) =

= − 1

64πG

∫
d4x (∂ρhµν)Pµναβ(∂ρhµν) +

1

2

∫
d4xhµνT

µν [Ψ];

+Stot.[Ψ, h = 0] +O(G2)

The variables Ψ describe an arbitrarily parametrized worldline
xµ = zµ(τ), with tangent żµ = dzµ

dτ , along with some other variables ψ(τ)

Stress -energy tensor does not depend on hµν

Tµν(x) =

∫
dτ T̃µν(ψ, ∂)δ4(x− z) +O(G2)

T̃µν is a differential operator

T̃µν = ż(µpν) + ż(µSν)α∂α + ...

where pµ and Sµν are momentum and spin operators

No other variables due to the ”no hair” theorem



Black Holes. Wordline Description

Worldline fields obey a constraint

Sµνpν = 0→ Sµν = εµναβa
αpβ and aµpµ = 0

The vector aµ is called a spin -vector

Therefore, our ψ variables are pµ and aµ. Define the mass via
pµ = Muµ, where uµ is a time-like unit vector

The interaction term in the Lagrangian is

Lint. =
1

2
T̃µν(p, a, ∂)hµν(x = z)

The hµν for the Kerr metric is

hµν = 4GMPµναβ exp (a ∗ ∂)αγ
uγuβ

r
, (a ∗ b)µν = εµναβa

αbβ

From the equation

hµν = 4GPµναβ Tαβ(p, a, ∂)
1

r

We get: T̃µν(p, a, ∂) = M exp (a ∗ ∂)(µρu
ν)uρ



Spinor- Helicity Formalism. Massless fields

We are again considering D = 4

Light-like momentum is parametrized by commuting Weyl spinors
λα and λ̄α̇, with α, α̇ = 1, 2 being SL(2, C) group indices

pαα̇ = λαλ̄α̇, pαα̇pαα̇ = εαβεα̇β̇pββ̇ pαα̇ = 0

Useful notations

|λ〉 ↔ λα, |λ]↔ λ̄α̇, 〈λ| ↔ λα, [λ| ↔ λ̄α̇

〈λρ〉 = λαρα, [λρ] = λ̄α̇ρ̄
α̇

The vector fields are characterized by polarization vectors

ε+ =
√

2
|q〉[λ|
〈qλ〉

, ε− =
√

2
|λ〉[q|
[λq]

where |q〉 and |q] are arbitrary reference spinors. Their presence is
a result of the gauge invariance.



Spinor- Helicity Formalism. Massless fields

The reference spinors |q〉 and |q] can be chosen for each external
particle separately.

This formalism greatly simplifies calculations of scattering
amplitudes

Example : a scattering of n positive helicity massless vector fields.

We have at most n− 2 Yang-Mills vertices. Each vertex has at
most one momentum. Therefore we have at least one contraction

ε+i (q) · ε+j (q)

Choosing the reference spinor equal to all external particles we get
ε+i (q) · ε+j (q) = 0, therefore

A(1+, 2+, ..., n+) = 0

The first nonzero amplitude (so called MHV)

A(1−, .j−, l−.., n+) =
〈jl〉4

〈12〉 · · · 〈n1〉



Spinor- Helicity Formalism. Massive fields

The four - momentum with p2 = m2 is parametrized by Dirac
spinors λaα and λ̄aα̇, with a = 1, 2 being SU(2) group index

pαα̇ = λaαλ̄α̇,a

|λa〉α 〈aλ|β = mδβα, 〈λaλb〉 = −mεab

It is useful to introduce auxiliary commuting variables za and
consider λα = λaαza, and λ̄α̇ = λ̄aα̇za
The massive spinors satisfy the Dirac equations

pαα̇λ̄
α̇ = mλα, pαα̇λ

α = −mλ̄α̇,

For massive vector fields we have polarization vectors

ε =
√

2
|λ〉[λ|
m

For an arbitrary spin s field the polarization tensor is

ε(s) = (ε)s



Spinor- Helicity Formalism. Cubic Interactions

Three point functions (N. Arkani-Hamed, T.-C. Huang, Y.-t.
Huang, arXiv:1709.04891, (AHH))

One massless field with a helicity h (label ‘3‘) and two massive
fields with equal mass m and spin s (labels ‘1‘ and ‘2‘).

Momentum conservation implies

2p(1) · p(3) = 〈3|p(1)|3] = 0

Therefore

xλ(3),α = λ̄
(3)
α̇

p(1),αα̇

m
Introducing an auxiliary spinor qα one can write

mx〈3q〉 = 〈q|p1|3]

Identifying qα with the reference spinor for massless fields we get
√

2

m
ε(3),+ · p(1) = x,

√
2

m
ε(3),− · p(1) =

1

x



Spinor- Helicity Formalism. Cubic Interactions

A three point function can be expanded in the basis of λ
(3)
α and εαβ

The general expansion has the form

M
(α1,...,αs),(β1,...,βs),h
3 =

= (mx)h

(
2s∑
t=0

gtε
2s−a

(
x
λ(3)λ(3)

m

)t)(α1,...,αs),(β1,...,βs)

Or reintroducing the massive spinors

M s,s,h
3 = (mx)h

(
g0
〈21〉2s

m2s
+ g1x

〈21〉2s−1〈23〉〈31〉
m2s+1

+ ...

)
The requirement that the amplitude has a good Ultraviolet
behaviour, puts all gt = 0, except g0. This is called the minimal
coupling



Spinor- Helicity Formalism. Cubic Interactions. Connection with Black Holes

We shall consider h = 2 (gravity) and h = 1 (vector field)

M s,s,2
3 = (mx)2

〈21〉2s

m2s
, M s,s,1

3 = (mx)
〈21〉2s

m2s
,

For the Kerr black hole, after the Fourier transformation

Tµν(−k) = 2πδ(p · k)p(µ exp

(
S ∗ ik
m

)ν)
ρ

pρ

with (S ∗ ik)µν = εµνρσS
ρkσ

The cubic interaction with graviton is

V3.gr = εµ(k)εν(k)Tµν(−k)

Taking carefully the classical limit of M s,s,2
3 , one obtains V3.gr.



Spinor- Helicity Formalism. Cubic Interactions. Connection with Black Holes

A possible way (M.Chiodaroli, H. Johansson, P. Pichini, arXiv:
2107.14779):

Rewrite the AHH amplitude in an exponent-like form

M s,s,2
3 = −i(ε · p1)2

(
ε2 ·

(
1 +

k · Ŝ
m

+
(k · Ŝ)2

m2

)
· ε1

)s

where Ŝµ is a spin operator

(Ŝµ)αβ = εµνρτp1,ν(Mρτ )αβ, (Mµν)αβ = 2iδ[µα δ
ν]
β

Define the classical spin vector as an expectation value

ε2 · Ŝµ · ε1 ∼
Sµ

s

Finally take limits k << p and s→∞ and get V3.gr



Free Massive Higher Spin Fields

What is an off-shell description of the results above?

Higher Spin fields are usually described by symmetric tensors of
rank s i.e., in terms of φµ1µ2,...,µs(x)

The tensors can be traceless (irreducible) or traceful (reducible)
representations of the Poincarè (or AdSD, dSD) group

We use a gauge invariant approach, similar to the Open String
Field Theory

Free equations

(�−m2)φµ1µ2,...,µs(x) = 0, mass-shell

∂µφµµ2,...,µs(x) = 0, transverse

φµµµ3,...,µs(x) = 0 traceless

We would like to construct an action which gives these conditions
as equations of motion

We shall not impose the zero trace condition



Free Massive Higher Spin Fields

Introduce an auxiliary Fock space spanned by oscillators

[αµ, α
+
ν ] = ηµν , [αD, α

+
D] = 1

A vector in the Fock space

|Φ〉 =

k=s∑
k=0

1

(s− k)!k!
Φµ1µ2,...µs−k(x)αµ1,+αµ2,+...αµs,+(α+

D)k|0〉,

Mass-shell and transversality conditions

l0|ϕ〉 = 0, l|ϕ〉 = 0

with

l0 = p · p+m2, l = p · α+mαD, l+ = p · α+ +mα+
D, pµ = −i∂µ

Introduce ghost variables

{c0, b0} = {c, b+} = {c+, b} = 1

The field has the form: (s is a total number of α+
µ and α+

D oscillators)

|Φ〉 = |ϕ(s)〉+ c+b+|D(s−2)〉+ c0b
+|C(s−1)〉



Free Massive Higher Spin Fields

The physical field is |ϕ(s)〉, the fields |D(s−2)〉 and |C(s−1)〉 are gauge
artefacts

The only nonzero commutator between the operators is

[l, l+] = l0

The corresponding nilpotent BRST charge Q2 = 0

Q = c0l0 + c+l + cl+ − c+c b0,

Since Q2 = 0, a free action

L2 =

∫
dc0〈Φ|Q|Φ〉,

∫
dc0 c = 1

is invariant under gauge transformations

δ|Φ〉 = Q|Λ〉, |Λ〉 = b+|λ〉



Free Massive Higher Spin Fields

An example: massive spin 1. The field φµ(x) is physical, φ(x) and C(x)
are auxiliary

The fields and the parameter of gauge transformations

|Φ〉 =
(
φµ(x)αµ+ + iφ(x)α+

D − ic0b
+C(x)

)
|0〉, |Λ〉 = ib+λ(x)|0〉

The corresponding Lagrangian

L = φµ(�−m2)φµ + φ(�−m2)φ− C2 + 2C∂µφµ − 2mCφ

Gauge transformations

δφµ(x) = ∂µλ(x), δφ(x) = mλ(x), δC(x) = (�−m2)λ(x)

After fixing the gauge one can see, that the system describes D − 1
on-shell degrees of freedom



Massless Higher Spin Fields

The construction is similar to the massive case. To describe free massless
fields, put m2 = 0 and discard α+

D dependence everywhere

Fock space state

|Φ〉 =
1

s!
Φµ1µ2,...µs(x)αµ1,+αµ2,+...αµs,+|0〉, [αµ, α

+
ν ] = ηµν

satisfies mass-shell and transversality conditions

l0|ϕ〉 = 0, l|ϕ〉 = 0

with
l0 = p · p, l = p · α, l+ = p · α+, pµ = −i∂µ

The field has the form: (s is a number of α+
µ oscillators)

|Φ〉 = |ϕ(s)〉+ c+b+|D(s−2)〉+ c0b
+|C(s−1)〉

The nilpotent BRST charge

Q = c0l0 + c+l + cl+ − c+cb0,

gives a free Lagrangian L ∼ 〈Φ|Q|Φ〉



Cubic interactions

OUR TASK: describe cubic interactions between two Higher Spin fields
with equal mass m, with massless spin two or spin one

Restrict s = 2 or s = 1 for massless fields

Take three copies of oscillators

[α(i)
µ , α(j),+

ν ] = ηµνδ
ij

take i = 1, 2 for massive, i = 3 for massless fields.

Consider nonlinear gauge transformations

δcub.|Φ(1)〉 ∼ Q(1)|Λ(1)〉 − g(〈Φ(2)|〈Λ(3)|+ 〈Λ(2)|〈Φ(3)|)|V3〉)

The corresponding cubic Lagrangian is

Lcub. ∼
3∑
i=1

〈Φ(i)|Q(i)|Φ(i)〉+ g〈Φ(3)|〈Φ(2)|〈Φ(1)||V3〉

The invariance of Lcub.:
g0 : (Q(1))2 = (Q(2))2 = (Q(3))2 = 0

g1 : (Q(1) +Q(2) +Q(3))|V3〉 = 0



Cubic Interactions

Complete classification of the BRST invariant cubic vertices is
known (R. Metsaev, arXiv: 1205.3131)

They are given in terms of the BRST invariant expressions

K(1) = (p(2) − p(3)) · α(1),+ +mα
(1),+
D + gh.

K(2) = (p(3) − p(1)) · α(2),+ −mα(2),+
D + gh.

K(3) = (p(1) − p(2)) · α(3),+ + gh.

Q = α(1),+ · α(2),+ + α
(1),+
D α

(2),+
D +

α
(1),+
D K(2) − α(1),+

D K(2)

2m
+ gh.

Z = (α(1),+ · α(2),+ + α
(1),+
D α

(2),+
D )K(3) + (α(2),+ · α(3),+)K(1) +

+(α(3),+ · α(1),+)K(2) + gh.

Apparently, any function of K(i), Q and Z is a valid cubic vertex



Cubic Interactions

Our task is to find a function of K(i), Q and Z, which gives the
minimal coupling

Let us consider the physical (α
(i),+
µ only) part of the cubic vertices

The simplest example is 0− 0− 1 case. The fields are

〈φ(1)| = 〈0|φ(1), 〈φ(2)| = 〈0|φ(2), 〈φ(3)| = 〈0|α(3)
µ ε−µ

The relevant cubic vertex has the form

V = K(3)

The three point amplitude is

AφφA =
1

2
ε− · (p(1) − p(2)) = ε− · p(1) =

−imx
2

Similarly, one can find that A1−1−1, A1−1−2 and A2−2−2 are
generated by Z, ZK(3) and Z2 respectively.



Cubic Interactions

The example 3− 3− 2 tells us, that the corresponding vertex is

V = −1

2

(
Z2Q−ZQ2K(3) + Z2K(1)K(2) 1

2m2

)
Only some specific coefficients between the BRST invariant
expressions give the minimal coupling

Generic solution (generalizes an on-shell result of M.Chiodaroli,
H.Johansson and P.Pichini, arXiv: 2107.14779)

For s− s− 2

V (s, s, 2) = − i
2

(K(3))2 − 1

2

(
ZK(3) +

Z2 −Q2K(3)Z
(1−Q)2 − 1

2m2K(1)K(2)

)
For s− s− 1 (so called root Kerr, useful for the double copy
construction)

V (s, s, 1) = − i√
2
K(3) − i√

2

Z −Q2K(3)

(1−Q)2 − 1
2m2K(1)K(2)



Summary and Conclusions

We considered an Effective Field Theory Approach for a graviton
(Electromagnetic field) interacting with a Rotating Black Hole

To this end we used a gauge invariant approach to Massive and
Massless Higher Spin fields

In particular, we used the BRST formalism, which is completely
off-shell

It produces a Lagrangian completion to the on-shell AHH vertex

The approach is simple, since the vertices and BRST charges for
reducible fields are used



THANK YOU!!!


