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Carrollian geometry: a brief history

1965: J.-M. Lévy-Leblond (and, independently, S. Gupta)
investigated the Inönu-Wigner contraction of the Poincaré group
that arises in the ultrarelativistic limit (c→ 0), which Lévy-Leblond
dubbed �Carroll group� as a tribute to the exotic (mad?) causal
features of spacetime in this limit.
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Carrollian geometry: a brief history

1965: J.-M. Lévy-Leblond (and, independently, S. Gupta)
investigated the Inönu-Wigner contraction of the Poincaré group
that arises in the ultrarelativistic limit (c→ 0). He called it �Carroll
group� as a tribute to the exotic (mad?) features of this limit.

1965-1977: Penrose and Geroch introduced the intrisinc boundary
approach to the celebrated Bondi-Mezner-Sachs (BMS) group of
asymptotic symmetries for asymptotically �at spacetimes.

1979: Henneaux investigated (from a Hamiltonian perspective) the
ultrarelativistic limit of spacetime geometry and dynamical gravity.

2014: Duval, Gibbons, Horvathy revisited the Geroch-Penrose
de�nition of BMS group and identi�ed the latter with the natural
conformal extension of the Carroll group, and reinvented the
Henneaux de�nition of what they decided to call a �Carrollian
manifold,� i.e. a manifold endowed with a degenerate metric of null
signature (0,+,...,+) whose radical de�nes the fundamental vector
�eld of a principal line bundle.
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Intrinsic and geometric view
of BMS symmetries
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Intrinsic view

Although BMS group is often discussed from the point of view of
asymptotic symmetries of a bulk spacetime, it can be formulated in an

intrinsic (i.e. purely from the boundary) and

geometric (i.e. global and coordinate-free) way.

This point of view on BMS group

goes back to Penrose (1965) and Geroch (1977)

allows to interpret the BMS group as a conformal extension of
Carroll group (Duval-Gibbons-Horvathy, 2014)
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Principal bundle
(aka ambient) geometry
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Fundamental vector �eld

Fundamental vector �eld: (essentially) equivalent data

Nowhere vanishing vector �eld ξ = ξµ∂µ ̸= 0 on a manifold M

Congruence of parametrised curves from R to M

Principal R-bundle M with fundamental vector �eld ξ
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Fundamental vector �eld

Fundamental vector �eld: (essentially) equivalent data

Nowhere vanishing vector �eld ξ = ξµ∂µ ̸= 0 on a manifold M

Congruence of parametrised curves from R to M

Principal R-bundle M with fundamental vector �eld ξ

The curves are the integral lines of the fundamental vector �eld;
they are also the orbits of the R-action on M .

The space M̄ of such orbits is the base manifold of the principal
bundle

M̄ = M /R
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Fundamental vector �eld

Fundamental vector �eld: (essentially) equivalent data

Nowhere vanishing vector �eld ξ = ξµ∂µ ̸= 0 on a manifold M

Congruence of parametrised curves from R to M

Principal R-bundle M with fundamental vector �eld ξ

Local expression: there exist a coordinate system (u, xa) such that

Fundamental vector �eld ξ = ∂
∂u

Curves xa = xa0 parametrised by u

R-action u→ u− u0 (u0 ∈ R)
Fibration π : M ↠ M̄ : (u, xa) 7→ xa
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Fundamental vector �eld

Example 1 : Future null in�nity I +
d+1 at the conformal boundary of

the compacti�cation of Minkowski spacetime Rd+1,1

Coordinates (u, xa) on I +
d+1

∼= R× Sd

Fundamental vector �eld ξ = ∂
∂u is null

Null rays generating the cone
R-action u→ u− u0 (u0 ∈ R)
Fibration π : I +

d+1 ↠ Sd : (u, xa) 7→ xa

Cover of B. Oblak, arXiv:1610.08526
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Fundamental vector �eld

Example 2: Möbius model (projective null cone)

Inversion xµ = xµ

x2 ⇒ I ± ↔ N ∓

Past lightcone N − ⊂ Rd+1,1 of the origin of Minkowski spacetime

Coordinates (u, xa) on N − ∼= R× Sd

Etc (idem as I +)
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Invariant lift of a function

Consider a principal R-bundle π : M ↠ M̄ with fundamental vector
�eld ξ.

f = π∗f̄ = f̄ ◦ π ∈ C∞(M ) , Lξf = 0 ,

which leads to the bijection

C∞
inv
(M ) ∼= C∞(M̄ ) .
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Projection on the base manifold

Consider a principal R-bundle π : M ↠ M̄
with fundamental vector �eld ξ.

Projectable vector �eld: X ∈ X(M ) such that LξX = f ξ
where f ∈ C∞(M )

Super-projectable vector �eld: X ∈ X(M ) such that LξX = f ξ
with Lξf = 0

Invariant vector �eld: X ∈ X(M ) such that LξX = 0

Remark: Vertical vector �elds, i.e. X = h ξ with h ∈ C∞(M ), are
necessarily projectable.

Xavier Bekaert Conformal Carrollian geometry at null in�nity



Introduction
Conformal Carrollian geometry

Principal bundle geometry
Carrollian geometry
Conformal Carrollian geometry
Generalised BMS geometry

Projection on the base manifold

Consider a principal R-bundle π : M ↠ M̄
with fundamental vector �eld ξ.

Projectable vector �eld: X ∈ X(M ) such that LξX = f ξ
where f ∈ C∞(M )

Super-projectable vector �eld: X ∈ X(M ) such that LξX = f ξ
with Lξf = 0

Invariant vector �eld: X ∈ X(M ) such that LξX = 0

Remark: Projectable vector �elds are in�nitesimal automorphisms of the
�bre bundle

u′ = u+ ϵ F (u, x) , x′ = x+ ϵG(x) .
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Projection on the base manifold

Consider a principal R-bundle π : M ↠ M̄
with fundamental vector �eld ξ.

Projectable vector �eld: X ∈ X(M ) such that LξX = f ξ
where f ∈ C∞(M )

Super-projectable vector �eld: X ∈ X(M ) such that LξX = f ξ
with Lξf = 0

Invariant vector �eld: X ∈ X(M ) such that LξX = 0

Remark: Invariant vector �elds are in�nitesimal automorphisms of the
principal R-bundle,

u′ = u+ ϵ F (x) , x′ = x+ ϵG(x) .

Xavier Bekaert Conformal Carrollian geometry at null in�nity



Introduction
Conformal Carrollian geometry

Principal bundle geometry
Carrollian geometry
Conformal Carrollian geometry
Generalised BMS geometry

Projection on the base manifold

Example: Invariant vertical vector �elds (X = h ξ with Lξh = 0)
generate vertical automorphisms of the principal R-bundle

u′ = u+ f(x) , x′ = x ,

which are interpreted as �supertranslations� in the BMS context.

Fig. 2 in R. Penrose, 1974
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Pullback from the base manifold

Consider a principal R-bundle π : M ↠ M̄
with fundamental vector �eld ξ.

Invariant di�erential one-form: A ∈ Ω1(M ) such that LξA = 0

Horizontal di�erential one-form: A ∈ Ω1(M ) such that A · ξ = 0

Basic di�erential one-form: invariant & horizontal
⇔ A = π∗Ā with Ā ∈ Ω1(M̄ )

These de�nitions generalise to covariant tensor �elds (e.g. the Carrollian
metric).
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Pullback from the base manifold

Consider a principal R-bundle π : M ↠ M̄
with fundamental vector �eld ξ.

Ehresmann connection one-form: invariant di�erential one-form
A ∈ Ω1

inv(M ) such that A · ξ = 1

Horizontal vector �eld: X ∈ X(M ) such that A ·X = 0

A �at Ehresmann connection de�nes a foliation of M by horizontal
leaves ∼= M̄ .
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Carrollian geometry
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Carrollian structure

Original motivation: ultrarelativistic (aka Carrollian) structures are the
duals of nonrelativistic (aka Galilean) structures [Duval, Gibbons,
Horvathy, 2014]
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Carrollian structure :

Field of observers

&

Carrollian metric
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Timelike metric structure

Field of observers: fundamental vector �eld ξ = ξµ∂µ ̸= 0 on the
spacetime manifold M �bred over the absolute space M̄ .

Provides a distinction between the type of vectors in Carroll geometry:V
µ = f ξµ with

{
f ̸= 0 Timelike (or Vertical)

f > 0 Future-oriented

V µ ̸= f ξµ Spacelike
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Timelike metric structure

Field of observers: fundamental vector �eld ξ = ξµ∂µ ̸= 0 on the
spacetime manifold M̄ �bred over the absolute space M̄ .

⇒ The integral lines of the fundamental vector �eld are the only
admissible worldlines and they are vertical: all inertial observers are at
rest.
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Timelike metric structure

Field of observers: fundamental vector �eld ξ = ξµ∂µ ̸= 0 on the
spacetime manifold M̄ �bred over the absolute space M̄ .

⇒ The integral lines of the fundamental vector �eld are the only
admissible worldlines and they are vertical: all observers are at rest.
This property is another motivation for the nickname �Carroll� (Dyson,
1965), cf the Red Queen: �it takes all the running you can do, to keep in
the same place.�
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Timelike metric structure

Field of observers: fundamental vector �eld ξ = ξµ∂µ ̸= 0 on the
spacetime manifold M �bred over the absolute space M̄ .

An a�ne parameter u of this congruence of Carroll worldlines (i.e.
ξ = ∂/∂u) is a Carroll time.
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Spacelike metric structure

Carrollian metric: Positive semi-de�nite metric γ on the spacetime M
whose kernel is spanned by the fundamental vector �eld{

γµνV
µW ν ⩾ 0

γµνV
µ = 0 ⇔ V µ = f ξµ

Remark: There is a one-to-one correspondence between

invariant Carrollian metrics γµν on M and

Riemannian metrics γ̄ab on the base M̄

since an invariant Carrollian metric is basic, γ = π∗γ̄.
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Spacelike metric structure

An invariant Carrollian metric allows to measure distances and angles on
the base manifold M̄ .
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Carrollian structure

De�nition (Henneaux, 1979)

(Invariant) Carrollian structure: two data

1 Field of observers

2 (Invariant) Carrollian metric

One will focus on invariant Carrollian structures, so this assumption will
sometimes be implicitly assumed from now on.

Example 1: Flat Carrollian spacetime

Cartesian coordinates (u, xi) on R× Rd

Time translation generator ξ = ∂
∂u

Flat Carrollian metric = pullback of the metric on the Euclidean
space

ds2R×Rd = δij dx
idxj = dℓ2Rd
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Carrollian structure

Example : Future null in�nity in Bondi frame

Coordinates (u, xa) on I +
d+1

∼= R× Sd

Null vector �eld ξ = ∂
∂u

Carrollian metric = pullback of the metric on the unit sphere

ds2
I+

d+1

= γab(x) dx
adxb = dℓ2Sd
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Carrollian structure

Carrollian structure: following two data

1 Field of observers

2 Carrollian metric

Remarks:

Intrisic: A Carrollian structure has exactly the same number of
independent components as a Lorentzian structure (i.e. a relativistic
metric) in the same dimension.

Extrinsic: Any Carrollian spacetime can be embedded inside a
Lorentzian spacetime of one extra dimension.
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Carrollian structure

The pullback of a Lorentzian structure on a null hypersurface in a
relativistic spacetime de�nes a Carrollian structure on this submanifold.

Example 1: Null hyperplane v = v0 in Minkowski spacetime Rd+1,1

(pullback of metric ds2 = 2 dudv + δijdx
idxj ⇒ �at Carrollian

spacetime ξ = ∂
∂u and γij = δij)

Example 2: Future/Past lightcone N ± in Minkowski spacetime

Example 3: Future/Past null in�nity I ± at the conformal boundary of
compacti�ed Minkowski spacetime
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Carrollian isometries

Carrollian isometry: di�eomorphism of M preserving the

1 Field of observers ξ′ = ξ

2 Carrollian metric γ′ = γ

Remark: For an invariant Carrollian structure, these Carrollian isometries
project onto isometries of the Riemannian metric on the base.
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Carrollian isometries

Carrollian isometry: di�eomorphism of M preserving the

1 Field of observers ξ′ = ξ

2 Carrollian metric γ′ = γ

Example: Vertical automorphisms of the principal R-bundle

u′ = u+ f(x) , x′ = x ,

which are interpreted as �supertranslations� in the BMS context.

In particular, Carrollian time translations and Carrollian boosts at null
in�nity arise from bulk (time and, respectively, spatial) translations in the
interior Minkowski spacetime.
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Carrollian isometries

Carrollian isometry: di�eomorphism of M preserving the

1 Field of observers ξ′ = ξ

2 Carrollian metric γ′ = γ

Remark: The algebra of Carrollian isometry generators has a structure of
semi-direct sum

carr isom(M ) ∼= isom(M̄ ) A C∞(M̄ )
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Strong Carrollian structure

De�nition

Strong Carrollian structure: three data

1 Field of observers

2 Carrollian metric

3 Compatible a�ne connection

Example: Flat Carrollian spacetime

Cartesian coordinates (u, xi) on R× Rd

Time translation generator ξ = ∂
∂u

Flat Carrollian metric = pullback of the metric on Euclidean space

ds2R×Rd = δij dx
idxj = dℓ2Rd

Flat a�ne connection Γρ
µν = 0
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Strong Carrollian isometries

Strong Carrollian isometry: di�eomorphism of M preserving the

1 Field of observers ξ′ = ξ

2 Carrollian metric γ′ = γ

3 A�ne connection ∇′ = ∇

Remark 1: The Lie algebra of strong Carrollian isometry generators of
�at Carrollian spacetime is the �nite-dimensional Carroll algebra, i.e. the
Inönu-Wigner contraction of the Poincaré group arising in the
ultrarelativistic limit

iso(d, 1)
c→0−→ carr(d, 1)

In fact, preserving the �at connection only leaves a�ne transformations,
thereby leaving only the Carrollian time translations and Carrollian boosts

u′ = u+ a+ bi x
i , x′ = x ,

among the vertical automorphisms.
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Strong Carrollian isometries

Strong Carrollian isometry: di�eomorphism of M preserving the

1 Field of observers ξ′ = ξ

2 Carrollian metric γ′ = γ

3 A�ne connection ∇′ = ∇

Remark 2:The Carroll algebra, has a structure of semidirect sum

iso(d, 1) = so(d, 1) A Rd+1 c→0−→ carr(d, 1) = (iso(d) A Rd)⊕ R

wich can be understood as follows: (i) the time translation generator ∂u
is central in the Carroll algebra and (ii) the homogeneous Carroll algebra
has itself a structure of semidirect sum

so(d, 1)
c→0−→ iso(d)

since the Carroll boost generators B̂i = xi∂u commute with each other
and transform as vectors under rotations.
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Aristotelian structure

De�nition

Aristotelian structure: three data

1 Field of observers

2 (Invariant) Carrollian metric

3 (Principal) Ehresmann connection

Example: Flat Aristotelian spacetime

Cartesian coordinates (u, xi) on R× Rd

Time translation generator ξ = ∂
∂u

Flat Carrollian metric = pullback of the metric on Euclidean space

ds2R×Rd = δij dx
idxj = dℓ2Rd

Flat Ehresmann connection A = du
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Aristotelian isometries

De�nition (Penrose, 1968)

Aristotelian isometries: di�eomorphism of M preserving the

1 Field of observers

2 Carrollian metric

3 Ehresmann connection

Example: The Lie algebra of isometries of the �at Aristotelian spacetime
R⊕ iso(d) is the �static� (i.e. without boosts) algebra in the
classi�cation by Bacry & Lévy-Leblond (1968) of kinematical algebras.
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Bondi-Metzner-Sachs

as

Conformal Carroll
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Brief interlude on densities and weights

De�nition

(Volumic) density with weight w: scalar �eld φ(x) with transformation
law

ϕ′(x′) =

∣∣∣∣ det(∂x′a∂xb

) ∣∣∣∣−w

ϕ(x) .

More generally, a tensor-valued (volumic) density of weight w is a tensor
�eld whose usual transformation law under reparametrisations involves an
extra Jacobian factor to the power w.

The corresponding in�nitesimal transformation law is

δϕ = LXϕ+ w ∂aX
a ϕ ,

where LX is the Lie derivative along X acting on the tensor �eld ϕ; for a
scalar �eld (w = 0) it reduces to δϕ = Xa∂aϕ.
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Brief interlude on densities and weights

De�nition

(Volumic) density with weight w: scalar �eld φ(x) with transformation
law

ϕ′(x′) =

∣∣∣∣ det(∂x′a∂xb

) ∣∣∣∣−w

ϕ(x) .

More generally, a tensor-valued (volumic) density of weight w is a tensor
�eld whose usual transformation law under reparametrisations involves an
extra Jacobian factor to the power w.

Scalar (volumic) densities of weight w = 1 on a manifold (not necessarily
orientable) are the objects that can be integrated in a
coordinate-independent way.
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Brief interlude on densities and weights

Independently of a density's behaviour under di�eomorphisms, one can
also de�ne a notion of weight under Weyl transformations.

De�nition

Conformal densities: The transformation law of a (scalar or tensor)
conformal density ψ of conformal weight ω under Weyl transformations is
given by

gab(x) → g′ab(x) = Ω2(x) gab(x) , ψ′(x) = Ω(x)ω ψ(x) .

Note that a �eld may well be a volumic density and a conformal density
simultaneously.
For instance, the metric gab is a tensor density of volumic weight zero
and conformal weight two.
Similarly, the volume density

√
g on a manifold of dimension d is a scalar

volumic density with volumic weight w = 1 and conformal weight ω = d.
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Conformal Carrollian structure

De�nition (Penrose, 1965; Geroch, 1977)

Conformal Carrollian structure: equivalence class [ξ, γ] of Carrollian
structures, i.e. pairs (ξ, γ), with respect to the equivalence relation

1 Field of observers ξ ∼ Ω−1ξ

2 (Invariant) Carrollian metrics γ ∼ Ω2γ (with LξΩ = 0)

where Ω > 0.

Remark: In the invariant case, the conformal Carrollian metric [γ] on the
Carrollian spacetime M is the pullback of the conformal metric [γ̄] on
the base M̄ .
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Conformal Carrollian isometries

Conformal Carrollian isometry: di�eomorphism of M such that

1 (Conformal rescaling) ξ′ = Ω−1ξ

2 (Conformal isometry) γ′ = Ω2γ

with LξΩ = 0.
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Conformal Carrollian isometries

Conformal Carrollian isometry: di�eomorphism of M such that

1 (Conformal rescaling) ξ′ = Ω−1ξ

2 (Conformal isometry) γ′ = Ω2γ

with LξΩ = 0.

Remark: For an invariant conformal Carrollian structure [ξ, γ], these
conformal Carrollian isometries project onto conformal isometries of the
conformal metric [γ̄] on the base M̄ .
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Conformal Carrollian isometries

Conformal Carrollian isometry: di�eomorphism of M such that

1 (Conformal rescaling) ξ′ = Ω−1ξ

2 (Conformal isometry) γ′ = Ω2γ

with LξΩ = 0.

Example: For null in�nity I

Theorem ( (Penrose, 1965) revisited (Duval-Gibbons-Horvathy, 2014) )

BMS transformations = Conformal Carrollian isometries
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Conformal Carrollian isometries

The group of conformal Carrollian isometries of null in�nity coincides
with the BMS group

BMSd+2 = SO(d+ 1, 1)⋉ C∞(Sd)

where the elements of C∞(Sd) transform as densities of conformal
weight −1 under the elements of the Lorentz group SO(d+ 1, 1) realised
as global conformal transformations of the celestial sphere Sd.
The conformal Carrollian isometries of null in�nity Id+1 = R× Sd

project onto conformal isometries of the celestial sphere Sd. In fact,
there is a canonical surjective morphism of groups:

BMSd+2 ↠ SO(d+ 1, 1)

whose kernel is the normal subgroup of vertical automorphisms of the
principal R-bundle. In other words, there is a canonical injective
morphism of groups:

C∞(Sd) ↪→ BMSd+2
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Conformal Carroll-Killing vector �eld

Conformal Carroll-Killing vector �eld: X ∈ X(M ) such that

1 (super-projectable) LXξ = f ξ with Lξf = 0

2 (conformal Killing) LXγ = −2f γ
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Conformal Carroll-Killing vector �eld

Consider an invariant conformal Carrollian structure.

The projection X̄ = π∗(X) on the base M̄ of a conformal Carroll-Killing
vector �eld X on M is a conformal Killing vector �eld X̄ on M̄ .

Conformal Carroll-Killing vector �eld: X ∈ X(M ) such that

1 (super-projectable) LXξ = f ξ with Lξf = 0

2 (conformal Killing) LX̄ γ̄ = −2f̄ γ̄
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Conformal Carroll-Killing vector �eld

The conformal Carroll-Killing vector �elds on Id+1
∼= R× Sd span the

(extended) BMS algebra

(e)bmsd+2 = conf(Sd) A C∞(Sd)

where the elements of C∞(Sd) transform as conformal densities of
weight −1 under

conf(Sd) ∼=

 so(d+ 1, 1) for d ⩾ 3,
X(S1)⊕ X(S1) for d = 2,

X(S1) for d = 1.
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Generalised BMS
geometry
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Campiglia-Laddha structure

Let (M , ξ) be a principal R-bundle and assume M is orientable. Then
an invariant volume form is a nowhere-vanishing top-form
ε ∈ Ωd+1(M ) such that Lξϵ = 0.

Campiglia-Laddha structure: equivalence class [ξ, ε] of pairs (ξ, ε) with
respect to the equivalence relation

1 Field of observers ξ ∼ Ω−1ξ

2 (Invariant) volume forms ε ∼ Ωd+1ε (with LξΩ = 0)
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Generalised BMS transformations

Generalised conformal maps: di�eomorphism of M such that

1 ξ′ = Ω−1ξ

2 ε′ = Ωd+1ε

with LξΩ = 0.

Example: The generalised conformal maps on Id+1
∼= R× Sd span the

generalised BMS algebra

gbmsd+2 = X(Sd) A C∞(Sd)

where the elements of C∞(Sd) transform as volumic densities of weight
−1/d.
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Generalised BMS transformations

This leads to the hierarchy

iso(d+1, 1) ⊂ bmsd+2 ⊆ ebmsd+2 ⊆ gbmsd+2 ⊂ Xspro(Id+1) ⊂ Xpro(Id+1)
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Conclusion
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Summary

(main take away)

At null in�nity, intrinsic & geometric perspective

BMS transformations = Conformal Carrollian isometries
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Thank you for your attention

All illustrations of Alice are from
John Tenniel (1820-1914)
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