Conformal Carrollian geometry at null infinity

Xavier **BEKAERT**

Institut Denis Poisson (Tours)

11th of June 2024 @ Mons

- R. Penrose, "Relativistic Symmetry Groups" in A. O. Barut (ed), *Group Theory in Non-Linear Problems* (Springer, 1974) 1-58.
- R. Geroch, "Asymptotic Structure of Space-Time" in F.P. Esposito, L. Witten (eds) Asymptotic Structure of Space-Time (Springer, 1977) 1-105.
- C. Duval, G. W. Gibbons and P. A. Horvathy, "Conformal Carroll groups and BMS symmetry," Class. Quant. Grav. **31** (2014) 092001 [arXiv:1402.5894 [gr-qc]].

Carrollian geometry: a brief history

• **1965:** J.-M. Lévy-Leblond (and, independently, S. Gupta) investigated the Inönu-Wigner contraction of the Poincaré group that arises in the ultrarelativistic limit $(c \rightarrow 0)$, which Lévy-Leblond dubbed "Carroll group" as a tribute to the exotic (mad?) causal features of spacetime in this limit.

Carrollian geometry: a brief history

- **1965:** J.-M. Lévy-Leblond (and, independently, S. Gupta) investigated the Inönu-Wigner contraction of the Poincaré group that arises in the ultrarelativistic limit $(c \rightarrow 0)$. He called it "Carroll group" as a tribute to the exotic (mad?) features of this limit.
- **1965-1977:** Penrose and Geroch introduced the intrisinc boundary approach to the celebrated Bondi-Mezner-Sachs (BMS) group of asymptotic symmetries for asymptotically flat spacetimes.
- **1979:** Henneaux investigated (from a Hamiltonian perspective) the ultrarelativistic limit of spacetime geometry and dynamical gravity.
- 2014: Duval, Gibbons, Horvathy revisited the Geroch-Penrose definition of BMS group and identified the latter with the natural conformal extension of the Carroll group, and reinvented the Henneaux definition of what they decided to call a "Carrollian manifold," i.e. a manifold endowed with a degenerate metric of null signature (0,+,...,+) whose radical defines the fundamental vector field of a principal line bundle.

Carrollian geometry: a brief history Outline

Outline

Introduction

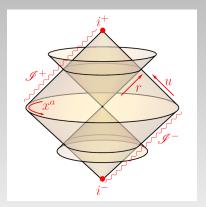
- Carrollian geometry: a brief history
- Outline

2 Conformal Carrollian geometry

- Principal bundle geometry
- Carrollian geometry
- Conformal Carrollian geometry
- Generalised BMS geometry

Introduction Conformal Carrollian geometry Principal bundle geometry Carrollian geometry Conformal Carrollian geometry Generalised BMS geometry

Intrinsic and geometric view of BMS symmetries



Intrinsic view

Although BMS group is often discussed from the point of view of asymptotic symmetries of a bulk spacetime, it can be formulated in an

- intrinsic (*i.e.* purely from the boundary) and
- geometric (*i.e.* global and coordinate-free) way.

This point of view on BMS group

- goes back to Penrose (1965) and Geroch (1977)
- allows to interpret the BMS group as a conformal extension of Carroll group (Duval-Gibbons-Horvathy, 2014)

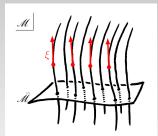
Introduction Conformal Carrollian geometry Principal bundle geometry Carrollian geometry Conformal Carrollian geometry Generalised BMS geometry

Principal bundle (aka ambient) geometry

Fundamental vector field

Fundamental vector field: (essentially) equivalent data

- Nowhere vanishing vector field $\xi = \xi^{\mu} \partial_{\mu} \neq 0$ on a manifold \mathscr{M}
- Congruence of parametrised curves from ${\mathbb R}$ to ${\mathscr M}$
- Principal $\mathbb R$ -bundle $\mathscr M$ with fundamental vector field ξ



Fundamental vector field

Fundamental vector field: (essentially) equivalent data

- Nowhere vanishing vector field $\xi = \xi^{\mu} \partial_{\mu} \neq 0$ on a manifold \mathscr{M}
- Congruence of parametrised curves from ${\mathbb R}$ to ${\mathscr M}$
- Principal $\mathbb R$ -bundle $\mathscr M$ with fundamental vector field ξ
- The curves are the integral lines of the fundamental vector field; they are also the orbits of the \mathbb{R} -action on \mathcal{M} .
- $\bullet\,$ The space $\bar{\mathcal{M}}\,$ of such orbits is the base manifold of the principal bundle

$$\overline{\mathscr{M}} \,=\, \mathscr{M} \,/\, \mathbb{R}$$

Fundamental vector field

Fundamental vector field: (essentially) equivalent data

- Nowhere vanishing vector field $\xi = \xi^{\mu} \partial_{\mu} \neq 0$ on a manifold \mathscr{M}
- Congruence of parametrised curves from ${\mathbb R}$ to ${\mathscr M}$
- Principal \mathbb{R} -bundle \mathscr{M} with fundamental vector field ξ

Local expression: there exist a coordinate system (u, x^a) such that

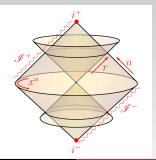
- Fundamental vector field $\xi = \frac{\partial}{\partial u}$
- Curves $x^a = x_0^a$ parametrised by u
- \mathbb{R} -action $u \to u u_0$ ($u_0 \in \mathbb{R}$)
- Fibration $\pi: \mathscr{M} \twoheadrightarrow \mathscr{\bar{M}}: (u, x^a) \mapsto x^a$

Fundamental vector field

Example 1 : Future null infinity \mathscr{I}_{d+1}^+ at the conformal boundary of the compactification of Minkowski spacetime $\mathbb{R}^{d+1,1}$

- Coordinates (u,x^a) on $\mathscr{I}^+_{d+1}\cong \mathbb{R}\times S^d$
- Fundamental vector field $\xi = \frac{\partial}{\partial u}$ is null
- Null rays generating the cone
- \mathbb{R} -action $u \to u u_0$ ($u_0 \in \mathbb{R}$)

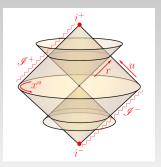
• Fibration
$$\pi:\mathscr{I}_{d+1}^+\twoheadrightarrow S^d:(u,x^a)\mapsto x^a$$



Fundamental vector field

Example 2: Möbius model (projective null cone)

- Inversion $x^{\mu} = \frac{x^{\mu}}{x^2} \quad \Rightarrow \quad \mathscr{I}^{\pm} \leftrightarrow \mathscr{N}^{\mp}$
- ullet Past lightcone $\mathscr{N}^- \subset \mathbb{R}^{d+1,1}$ of the origin of Minkowski spacetime
- \bullet Coordinates (u,x^a) on $\mathscr{N}^-\cong \mathbb{R}\times S^d$
- Etc (idem as 𝒴⁺)



Invariant lift of a function

Consider a principal \mathbb{R} -bundle $\pi : \mathcal{M} \twoheadrightarrow \tilde{\mathcal{M}}$ with fundamental vector field ξ .

$$f = \pi^* \overline{f} = \overline{f} \circ \pi \in C^\infty(\mathscr{M}), \qquad \mathcal{L}_{\xi} f = 0,$$

which leads to the bijection

$$C^{\infty}_{inv}(\mathcal{M}) \cong C^{\infty}(\bar{\mathcal{M}}).$$

Consider a principal \mathbb{R} -bundle $\pi : \mathcal{M} \twoheadrightarrow \overline{\mathcal{M}}$ with fundamental vector field ξ .

- Projectable vector field: $X \in \mathfrak{X}(\mathscr{M})$ such that $\mathcal{L}_{\xi}X = f\xi$ where $f \in C^{\infty}(\mathscr{M})$
- Super-projectable vector field: $X \in \mathfrak{X}(\mathscr{M})$ such that $\mathcal{L}_{\xi}X = f \xi$ with $\mathcal{L}_{\xi}f = 0$
- Invariant vector field: $X \in \mathfrak{X}(\mathscr{M})$ such that $\mathcal{L}_{\xi}X = 0$

Remark: Vertical vector fields, i.e. $X = h\xi$ with $h \in C^{\infty}(\mathcal{M})$, are necessarily projectable.

Consider a principal \mathbb{R} -bundle $\pi : \mathcal{M} \twoheadrightarrow \overline{\mathcal{M}}$ with fundamental vector field ξ .

- Projectable vector field: $X \in \mathfrak{X}(\mathscr{M})$ such that $\mathcal{L}_{\xi}X = f\xi$ where $f \in C^{\infty}(\mathscr{M})$
- Super-projectable vector field: $X \in \mathfrak{X}(\mathscr{M})$ such that $\mathcal{L}_{\xi}X = f \xi$ with $\mathcal{L}_{\xi}f = 0$
- Invariant vector field: $X \in \mathfrak{X}(\mathscr{M})$ such that $\mathcal{L}_{\xi}X = 0$

Remark: *Projectable* vector fields are infinitesimal automorphisms of the fibre bundle

$$u' = u + \epsilon F(u, x), \quad x' = x + \epsilon G(x).$$

Consider a principal \mathbb{R} -bundle $\pi : \mathcal{M} \twoheadrightarrow \overline{\mathcal{M}}$ with fundamental vector field ξ .

- Projectable vector field: $X \in \mathfrak{X}(\mathscr{M})$ such that $\mathcal{L}_{\xi}X = f\xi$ where $f \in C^{\infty}(\mathscr{M})$
- Super-projectable vector field: $X \in \mathfrak{X}(\mathscr{M})$ such that $\mathcal{L}_{\xi}X = f \xi$ with $\mathcal{L}_{\xi}f = 0$
- Invariant vector field: $X \in \mathfrak{X}(\mathscr{M})$ such that $\mathcal{L}_{\xi}X = 0$

Remark: *Invariant* vector fields are infinitesimal automorphisms of the principal \mathbb{R} -bundle,

$$u' = u + \epsilon F(x), \quad x' = x + \epsilon G(x).$$

Example: Invariant vertical vector fields $(X = h \xi \text{ with } \mathcal{L}_{\xi} h = 0)$ generate vertical automorphisms of the principal \mathbb{R} -bundle

$$u' = u + f(x) \,, \quad x' = x \,,$$

which are interpreted as "supertranslations" in the BMS context.

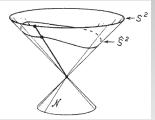


Fig. 2 in R. Penrose, 1974

Pullback from the base manifold

Consider a principal \mathbb{R} -bundle $\pi : \mathcal{M} \twoheadrightarrow \overline{\mathcal{M}}$ with fundamental vector field ξ .

- Invariant differential one-form: $A \in \Omega^1(\mathscr{M})$ such that $\mathcal{L}_{\xi}A = 0$
- Horizontal differential one-form: $A \in \Omega^1(\mathscr{M})$ such that $A \cdot \xi = 0$
- Basic differential one-form: invariant & horizontal $\Leftrightarrow A = \pi^* \overline{A}$ with $\overline{A} \in \Omega^1(\overline{\mathscr{M}})$

These definitions generalise to covariant tensor fields (e.g. the Carrollian metric).

Pullback from the base manifold

Consider a principal \mathbb{R} -bundle $\pi : \mathcal{M} \twoheadrightarrow \overline{\mathcal{M}}$ with fundamental vector field ξ .

- Ehresmann connection one-form: invariant differential one-form $A\in\Omega^1_{\rm inv}(\mathscr{M})$ such that $A\cdot\xi=1$
- Horizontal vector field: $X \in \mathfrak{X}(\mathscr{M})$ such that $A \cdot X = 0$

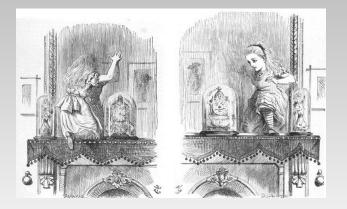
A flat Ehresmann connection defines a foliation of $\mathscr M$ by horizontal leaves $\cong \bar{\mathscr M}$.

Introduction Conformal Carrollian geometry Principal bundle geometry Carrollian geometry Conformal Carrollian geometry Generalised BMS geometry

Carrollian geometry

Carrollian structure

Original motivation: ultrarelativistic (aka Carrollian) structures are the duals of nonrelativistic (aka Galilean) structures [Duval, Gibbons, Horvathy, 2014]



Introduction Conformal Carrollian geometry Principal bundle geometry Carrollian geometry Conformal Carrollian geometry Generalised BMS geometry

Carrollian structure :

Field of observers & Carrollian metric

Xavier Bekaert Conformal Carrollian geometry at null infinity

Timelike metric structure

Field of observers: fundamental vector field $\xi = \xi^{\mu}\partial_{\mu} \neq 0$ on the spacetime manifold \mathcal{M} fibred over the absolute space $\overline{\mathcal{M}}$.

Provides a distinction between the type of vectors in Carroll geometry:

$$\begin{cases} V^{\mu} = f \, \xi^{\mu} & \text{with} \\ V^{\mu} \neq f \, \xi^{\mu} \end{cases} & \begin{cases} f \neq 0 & \text{Timelike (or Vertical)} \\ f > 0 & \text{Future-oriented} \\ \end{cases}$$

Timelike metric structure

Field of observers: fundamental vector field $\xi = \xi^{\mu}\partial_{\mu} \neq 0$ on the spacetime manifold $\overline{\mathcal{M}}$ fibred over the absolute space $\overline{\mathcal{M}}$.

 \Rightarrow The integral lines of the fundamental vector field are the only admissible worldlines and they are vertical: all inertial observers are at rest.

Timelike metric structure

Field of observers: fundamental vector field $\xi = \xi^{\mu} \partial_{\mu} \neq 0$ on the spacetime manifold $\overline{\mathcal{M}}$ fibred over the absolute space $\overline{\mathcal{M}}$.

 \Rightarrow The integral lines of the fundamental vector field are the only admissible worldlines and they are vertical: all observers are at rest. This property is another motivation for the nickname "Carroll" (Dyson, 1965), cf the Red Queen: "it takes all the running you can do, to keep in the same place."

Timelike metric structure

Field of observers: fundamental vector field $\xi = \xi^{\mu}\partial_{\mu} \neq 0$ on the spacetime manifold \mathcal{M} fibred over the absolute space $\overline{\mathcal{M}}$.

An affine parameter u of this congruence of Carroll worldlines (i.e. $\xi=\partial/\partial u)$ is a Carroll time.

Spacelike metric structure

Carrollian metric: Positive semi-definite metric γ on the spacetime \mathcal{M} whose kernel is spanned by the fundamental vector field

$$\begin{cases} \gamma_{\mu\nu} V^{\mu} W^{\nu} \ge 0 \\ \gamma_{\mu\nu} V^{\mu} = 0 \quad \Leftrightarrow \quad V^{\mu} = f \, \xi^{\mu} \end{cases}$$

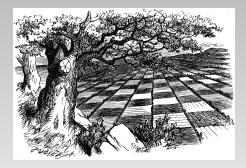
Remark: There is a one-to-one correspondence between

- invariant Carrollian metrics $\gamma_{\mu\nu}$ on \mathcal{M} and
- Riemannian metrics $ar{\gamma}_{ab}$ on the base $ar{\mathcal{M}}$

since an invariant Carrollian metric is basic, $\gamma = \pi^* \bar{\gamma}$.

Spacelike metric structure

An invariant Carrollian metric allows to measure distances and angles on the base manifold $\bar{\mathcal{M}}.$



Carrollian structure

Definition (Henneaux, 1979)

(Invariant) Carrollian structure: two data

- Field of observers
- (Invariant) Carrollian metric

One will focus on *invariant* Carrollian structures, so this assumption will sometimes be implicitly assumed from now on.

Example 1: Flat Carrollian spacetime

- Cartesian coordinates (u, x^i) on $\mathbb{R} \times \mathbb{R}^d$
- Time translation generator $\xi = \frac{\partial}{\partial u}$
- Flat Carrollian metric = pullback of the metric on the Euclidean space

$$ds^2_{\mathbb{R}\times\mathbb{R}^d} = \delta_{ij} \, dx^i dx^j = d\ell^2_{\mathbb{R}^d}$$

Carrollian structure

Example : Future null infinity in Bondi frame

- Coordinates (u, x^a) on $\mathscr{I}^+_{d+1} \cong \mathbb{R} \times S^d$
- Null vector field $\xi = \frac{\partial}{\partial u}$
- Carrollian metric = pullback of the metric on the unit sphere

$$ds^2_{\mathscr{I}^+_{d+1}} = \gamma_{ab}(x) \, dx^a dx^b = d\ell^2_{S^d}$$

Carrollian structure

Carrollian structure: following two data

- Field of observers
- Oarrollian metric

Remarks:

- <u>Intrisic</u>: A Carrollian structure has exactly the same number of independent components as a Lorentzian structure (i.e. a relativistic metric) in the same dimension.
- <u>Extrinsic</u>: Any Carrollian spacetime can be embedded inside a Lorentzian spacetime of one extra dimension.

Carrollian structure

The pullback of a Lorentzian structure on a null hypersurface in a relativistic spacetime defines a Carrollian structure on this submanifold.

Example 1: Null hyperplane $v = v_0$ in Minkowski spacetime $\mathbb{R}^{d+1,1}$ (pullback of metric $ds^2 = 2 \, du dv + \delta_{ij} dx^i dx^j \Rightarrow$ flat Carrollian spacetime $\xi = \frac{\partial}{\partial u}$ and $\gamma_{ij} = \delta_{ij}$)

Example 2: Future/Past lightcone \mathcal{N}^{\pm} in Minkowski spacetime

Example 3: Future/Past null infinity \mathscr{I}^{\pm} at the conformal boundary of compactified Minkowski spacetime

Carrollian isometries

Carrollian isometry: diffeomorphism of \mathcal{M} preserving the

- Field of observers $\xi' = \xi$
- $\textbf{O} \quad \textbf{Carrollian metric } \gamma' = \gamma$

Remark: For an invariant Carrollian structure, these Carrollian isometries project onto isometries of the Riemannian metric on the base.

Carrollian isometries

Carrollian isometry: diffeomorphism of \mathcal{M} preserving the

- Field of observers $\xi' = \xi$
- $\textbf{O} \quad \text{Carrollian metric } \gamma' = \gamma$

Example: Vertical automorphisms of the principal \mathbb{R} -bundle

$$u' = u + f(x), \quad x' = x,$$

which are interpreted as "supertranslations" in the BMS context.

In particular, *Carrollian time translations* and *Carrollian boosts* at null infinity arise from bulk (time and, respectively, spatial) translations in the interior Minkowski spacetime.

Carrollian isometries

Carrollian isometry: diffeomorphism of \mathcal{M} preserving the

- Field of observers $\xi' = \xi$
- $\textbf{O} \quad \textbf{Carrollian metric } \gamma' = \gamma$

Remark: The algebra of Carrollian isometry generators has a structure of semi-direct sum

$$\operatorname{carr}\operatorname{isom}(\mathscr{M})\cong\operatorname{isom}(\bar{\mathscr{M}})\in C^\infty(\bar{\mathscr{M}})$$

Strong Carrollian structure

Definition

Strong Carrollian structure: three data

- Field of observers
- Oarrollian metric
- O Compatible affine connection

Example: Flat Carrollian spacetime

- Cartesian coordinates (u,x^i) on $\mathbb{R}\times\mathbb{R}^d$
- Time translation generator $\xi = \frac{\partial}{\partial u}$
- Flat Carrollian metric = pullback of the metric on Euclidean space

$$ds^2_{\mathbb{R}\times\mathbb{R}^d} = \delta_{ij}\,dx^i dx^j = d\ell^2_{\mathbb{R}^d}$$

• Flat affine connection $\Gamma^{
ho}_{\mu\nu}=0$

Strong Carrollian isometries

Strong Carrollian isometry: diffeomorphism of ${\mathscr M}$ preserving the

- Field of observers $\xi' = \xi$
- $\textbf{O} \quad \text{Carrollian metric } \gamma' = \gamma$
- $\textbf{O} \ \ \mathsf{Affine} \ \ \mathsf{connection} \ \ \nabla' = \nabla$

Remark 1: The Lie algebra of strong Carrollian isometry generators of flat Carrollian spacetime is the finite-dimensional Carroll algebra, i.e. the Inönu-Wigner contraction of the Poincaré group arising in the ultrarelativistic limit

$$\mathfrak{iso}(d,1) \stackrel{c \to 0}{\longrightarrow} \mathfrak{carr}(d,1)$$

In fact, preserving the flat connection only leaves affine transformations, thereby leaving only the Carrollian time translations and Carrollian boosts

$$u' = u + a + b_i x^i, \quad x' = x,$$

among the vertical automorphisms.

Strong Carrollian isometries

Strong Carrollian isometry: diffeomorphism of $\mathcal M$ preserving the

- Field of observers $\xi' = \xi$
- $\textbf{O} \quad \text{Carrollian metric } \gamma' = \gamma$
- $\textbf{O} \ \ \mathsf{Affine} \ \ \mathsf{connection} \ \ \nabla' = \nabla$

Remark 2: The Carroll algebra, has a structure of semidirect sum

$$\mathfrak{iso}(d,1)=\mathfrak{so}(d,1)\in\mathbb{R}^{d+1}\quad\overset{c\to0}{\longrightarrow}\quad\mathfrak{carr}(d,1)=(\mathfrak{iso}(d)\in\mathbb{R}^d)\oplus\mathbb{R}$$

wich can be understood as follows: (i) the time translation generator ∂_u is central in the Carroll algebra and (ii) the homogeneous Carroll algebra has itself a structure of semidirect sum

$$\mathfrak{so}(d,1) \stackrel{c \to 0}{\longrightarrow} \mathfrak{iso}(d)$$

since the Carroll boost generators $\hat{B}_i = x_i \partial_u$ commute with each other and transform as vectors under rotations.

Aristotelian structure

Definition

Aristotelian structure: three data

- Field of observers
- (Invariant) Carrollian metric
- (Principal) Ehresmann connection

Example: Flat Aristotelian spacetime

- Cartesian coordinates (u,x^i) on $\mathbb{R}\times\mathbb{R}^d$
- Time translation generator $\xi = \frac{\partial}{\partial u}$
- Flat Carrollian metric = pullback of the metric on Euclidean space

$$ds^2_{\mathbb{R}\times\mathbb{R}^d} = \delta_{ij} \, dx^i dx^j = d\ell^2_{\mathbb{R}^d}$$

• Flat Ehresmann connection A = du

Aristotelian isometries

Definition (Penrose, 1968)

Aristotelian isometries: diffeomorphism of \mathcal{M} preserving the

- Field of observers
- Oarrollian metric
- O Ehresmann connection

Example: The Lie algebra of isometries of the flat Aristotelian spacetime $\mathbb{R} \oplus \mathfrak{iso}(d)$ is the "static" (i.e. without boosts) algebra in the classification by Bacry & Lévy-Leblond (1968) of kinematical algebras.

Introduction Conformal Carrollian geometry Principal bundle geometry Carrollian geometry Conformal Carrollian geometry Generalised BMS geometry

Bondi-Metzner-Sachs as Conformal Carroll

Brief interlude on densities and weights

Definition

(Volumic) density with weight w: scalar field $\varphi(x)$ with transformation law

$$\phi'(x') = \left| \det \left(\frac{\partial x'^a}{\partial x^b} \right) \right|^{-w} \phi(x).$$

More generally, a tensor-valued (volumic) density of weight w is a tensor field whose usual transformation law under reparametrisations involves an extra Jacobian factor to the power w.

The corresponding infinitesimal transformation law is

$$\delta\phi = \mathcal{L}_X \phi + w \,\partial_a X^a \,\phi \,,$$

where \mathcal{L}_X is the Lie derivative along X acting on the tensor field ϕ ; for a scalar field (w = 0) it reduces to $\delta \phi = X^a \partial_a \phi$.

Brief interlude on densities and weights

Definition

(Volumic) density with weight w: scalar field $\varphi(x)$ with transformation law

$$\phi'(x') = \left| \det \left(\frac{\partial x'^a}{\partial x^b} \right) \right|^{-w} \phi(x).$$

More generally, a tensor-valued (volumic) density of weight w is a tensor field whose usual transformation law under reparametrisations involves an extra Jacobian factor to the power w.

Scalar (volumic) densities of weight w = 1 on a manifold (not necessarily orientable) are the objects that can be integrated in a coordinate-independent way.

Brief interlude on densities and weights

Independently of a density's behaviour under diffeomorphisms, one can also define a notion of weight under Weyl transformations.

Definition

Conformal densities: The transformation law of a (scalar or tensor) conformal density ψ of conformal weight ω under Weyl transformations is given by

$$g_{ab}(x) \rightarrow g'_{ab}(x) = \Omega^2(x) g_{ab}(x), \qquad \psi'(x) = \Omega(x)^{\omega} \psi(x).$$

Note that a field may well be a volumic density and a conformal density simultaneously.

For instance, the metric g_{ab} is a tensor density of volumic weight zero and conformal weight two.

Similarly, the volume density \sqrt{g} on a manifold of dimension d is a scalar volumic density with volumic weight w = 1 and conformal weight $\omega = d$.

Conformal Carrollian structure

Definition (Penrose, 1965; Geroch, 1977)

Conformal Carrollian structure: equivalence class $[\xi, \gamma]$ of Carrollian structures, i.e. pairs (ξ, γ) , with respect to the equivalence relation

- Field of observers $\xi \sim \Omega^{-1} \xi$
- (Invariant) Carrollian metrics $\gamma \sim \Omega^2 \gamma$ (with $\mathcal{L}_{\xi} \Omega = 0$)

where $\Omega > 0$.

Remark: In the invariant case, the conformal Carrollian metric $[\gamma]$ on the Carrollian spacetime \mathscr{M} is the pullback of the conformal metric $[\bar{\gamma}]$ on the base $\bar{\mathscr{M}}$.

Conformal Carrollian isometries

Conformal Carrollian isometry: diffeomorphism of ${\mathscr M}$ such that

- (Conformal rescaling) $\xi' = \Omega^{-1}\xi$
- $\textbf{O} \quad \textbf{(Conformal isometry)} \ \gamma' = \Omega^2 \gamma$

with $\mathcal{L}_{\xi}\Omega = 0$.

Conformal Carrollian isometries

Conformal Carrollian isometry: diffeomorphism of $\mathcal M$ such that

- (Conformal rescaling) $\xi' = \Omega^{-1}\xi$
- $\textbf{O} \quad \textbf{(Conformal isometry)} \ \gamma' = \Omega^2 \gamma$

with $\mathcal{L}_{\xi}\Omega = 0$.

Remark: For an invariant conformal Carrollian structure $[\xi, \gamma]$, these conformal Carrollian isometries project onto conformal isometries of the conformal metric $[\bar{\gamma}]$ on the base $\bar{\mathcal{M}}$.

Conformal Carrollian isometries

Conformal Carrollian isometry: diffeomorphism of $\mathcal M$ such that

- (Conformal rescaling) $\xi' = \Omega^{-1}\xi$
- (Conformal isometry) $\gamma' = \Omega^2 \gamma$

with $\mathcal{L}_{\xi}\Omega = 0$.

Example: For null infinity *I*

Theorem ((Penrose, 1965) revisited (Duval-Gibbons-Horvathy, 2014)) BMS transformations = Conformal Carrollian isometries

Conformal Carrollian isometries

The group of conformal Carrollian isometries of null infinity coincides with the BMS group

$$BMS_{d+2} = SO(d+1,1) \ltimes C^{\infty}(S^d)$$

where the elements of $C^{\infty}(S^d)$ transform as densities of conformal weight -1 under the elements of the Lorentz group SO(d+1,1) realised as global conformal transformations of the celestial sphere S^d . The conformal Carrollian isometries of null infinity $\mathscr{I}_{d+1} = \mathbb{R} \times S^d$ project onto conformal isometries of the celestial sphere S^d . In fact, there is a canonical surjective morphism of groups:

$$BMS_{d+2} \twoheadrightarrow SO(d+1,1)$$

whose kernel is the normal subgroup of vertical automorphisms of the principal \mathbb{R} -bundle. In other words, there is a canonical injective morphism of groups:

$$C^{\infty}(S^d) \hookrightarrow BMS_{d+2}$$

Conformal Carroll-Killing vector field

Conformal Carroll-Killing vector field: $X \in \mathfrak{X}(\mathscr{M})$ such that

- **(**super-projectable) $\mathcal{L}_X \xi = f \xi$ with $\mathcal{L}_\xi f = 0$
- (conformal Killing) $\mathcal{L}_X \gamma = -2f \gamma$

Conformal Carroll-Killing vector field

Consider an invariant conformal Carrollian structure.

The projection $\bar{X} = \pi_*(X)$ on the base $\bar{\mathcal{M}}$ of a conformal Carroll-Killing vector field X on \mathcal{M} is a conformal Killing vector field \bar{X} on $\bar{\mathcal{M}}$.

Conformal Carroll-Killing vector field: $X \in \mathfrak{X}(\mathscr{M})$ such that

- **(**super-projectable) $\mathcal{L}_X \xi = f \xi$ with $\mathcal{L}_\xi f = 0$
- (conformal Killing) $\mathcal{L}_{\bar{X}}\bar{\gamma} = -2\bar{f}\bar{\gamma}$

Conformal Carroll-Killing vector field

The conformal Carroll-Killing vector fields on $\mathscr{I}_{d+1} \cong \mathbb{R} \times S^d$ span the (extended) BMS algebra

$$(\mathfrak{e})\mathfrak{bms}_{d+2}=\mathfrak{conf}(S^d)\in C^\infty(S^d)$$

where the elements of $C^\infty(S^d)$ transform as conformal densities of weight -1 under

$$\operatorname{conf}(S^d) \cong \begin{cases} \operatorname{\mathfrak{so}}(d+1,1) & \text{for } d \ge 3, \\ \mathfrak{X}(S^1) \oplus \mathfrak{X}(S^1) & \text{for } d=2, \\ \mathfrak{X}(S^1) & \text{for } d=1. \end{cases}$$

Introduction Conformal Carrollian geometry Principal bundle geometry Carrollian geometry Conformal Carrollian geometry Generalised BMS geometry

Generalised BMS geometry

Xavier Bekaert Conformal Carrollian geometry at null infinity

Campiglia-Laddha structure

Let (\mathcal{M}, ξ) be a principal \mathbb{R} -bundle and assume \mathcal{M} is orientable. Then an **invariant volume form** is a nowhere-vanishing top-form $\varepsilon \in \Omega^{d+1}(\mathcal{M})$ such that $\mathcal{L}_{\xi} \epsilon = 0$.

Campiglia-Laddha structure: equivalence class $[\xi, \varepsilon]$ of pairs (ξ, ε) with respect to the equivalence relation

- Field of observers $\xi \sim \Omega^{-1} \xi$
- (Invariant) volume forms $\varepsilon \sim \Omega^{d+1} \varepsilon$ (with $\mathcal{L}_{\xi} \Omega = 0$)

Generalised BMS transformations

Generalised conformal maps: diffeomorphism of $\mathcal M$ such that

•
$$\xi' = \Omega^{-1}\xi$$

• $\varepsilon' = \Omega^{d+1}\varepsilon$
with $\mathcal{L}_{\varepsilon}\Omega = 0$.

Example: The generalised conformal maps on $\mathscr{I}_{d+1} \cong \mathbb{R} \times S^d$ span the generalised BMS algebra

$$\mathfrak{gbms}_{d+2}=\mathfrak{X}(S^d)\in C^\infty(S^d)$$

where the elements of $C^\infty(S^d)$ transform as volumic densities of weight -1/d.

Generalised BMS transformations

This leads to the hierarchy

 $\mathfrak{iso}(d+1,1)\subset\mathfrak{bms}_{d+2}\subseteq\mathfrak{ebms}_{d+2}\subseteq\mathfrak{gbms}_{d+2}\subset\mathfrak{X}_{\mathsf{spro}}(\mathscr{I}_{d+1})\subset\mathfrak{X}_{\mathsf{pro}}(\mathscr{I}_{d+1})$

Introduction Conformal Carrollian geometry Principal bundle geometry Carrollian geometry Conformal Carrollian geometry Generalised BMS geometry

Conclusion

Summary

(main take away)

At null infinity, intrinsic & geometric perspective

BMS transformations = Conformal Carrollian isometries

Thank you for your attention

All illustrations of Alice are from John Tenniel (1820-1914)