
User’s Manual for the Function matfem. A MATlab function

for the Finite Element Method

The MatMOL Group (2009)

Introduction

The Finite Element Method (FEM) is a technique for computing the numerical solution of a partial

differential equations. In this toolbox we consider equations with the general form:

da
∂z

∂t
+

−→
∇· (−→v z) =

−→
∇·

(

κ(z)
−→
∇z

)

+ f(z) (1)

and with boundary conditions (BC)

−→
n ·

(

κ(z)
−→
∇z

)

+ qz = g
∣

∣

∣

B

. (2)

where
−→
∇ is the gradient operator and −→

n is a unitary vector pointing outwards the spatial domain. It

is important to remark that BC (2), typically known as Robin BC, can represent other type of BC. For

instance, by setting q = 0 and g = 0 the classical Neumann BC are recovered, this is −→n ·
−→
∇z = 0

∣

∣

∣

B

.

For obtaining Dirichlet BC a large value of q is chosen, for instance q = 1000, in such case g will be

chosen as g = qz∗ where z∗ is the value of the field in the boundary. Since q and g are very large, the

term −→
n ·

(

κ(z)
−→
∇z

)

can be neglected as compared with them, and thus Eqn (2) can be approximated

by qz = g which is equivalent to z = z∗.

In the FEM, the spatial domain is discretized into a number of finite elements. Through this

discretization, the original PDE (1) with BC (2) is approximated by a number of ordinary differential

equations (ODE). It is not the aim of this report to give an introduction to the FEM, the reader

interested in a deeper insight in the FEM is referred to the literature (Reddy, 1993; Zienkiewicz

et al., 2005; Pozrikidis, 2005; Garcı́a, 2008; Vilas, 2008). The system of ODE can be expressed in

matrix form as:

daMM
dZ

dt
+ (κDM + vCM + qBM) Z = F + G (3)

where MM, DM, CM, BM are, respectively, the mass, diffusion, convection and homogeneous

boundary matrices. Z is the discretized version of the field z as indicated in Figure 1. Multiplying

1



x
1

x
2

x
3

x
4

x
5

x
6

z

f

Z2

Z3

Z4

Z5

Z6

Z1

F2

F3

F4

F5

F6

F1

Discretization Points

Figure 1: Discretization of field z and function f .

Eqn (3) byMM−1 and rearranging the terms one has that:

da
dZ

dt
= −MM−1 (κDM + vCM + qBM)Z + MM−1F + MM−1G (4)

It should be remarked that F = MM−1F corresponds to the value of the discretized version of the

nonlinear function f as indicated in Figure 1. Finally, G is a vector with all the elements zero except in

the boundary points (in 1D problems these correspond with the first and last points) in which it takes

the value of g in Eqn (2). In the same way, matrix BM is a matrix of zeros except in the boundary

(for 1D problems BM(1, 1) and BM(N,N)). In these points it can be:

• 1 for Robin BC

• 0 for Neumann BC

• 105 for Dirichlet BC1.

Another advantage of the FEM matrices is that they can be employed for approximating spatial

derivatives and integrals by algebraic operations as indicated in Table 1.

The objective of section is to explain how to use the matfem function for obtaining these matri-

ces.

1It should be highlighted that the only requirement on the value of BM at a Dirichlet boundary condition is that it has

to be large. In the Matlab
c© function it has been fixed to 10

5 but other (500, 1000, 2300, 1e6, ...) could be employed.

2



Continuous Discrete

1
∫

V
g(ξ)f(ξ)dξ GTMMF

2
∫

V
g(ξ)

∂f(ξ)
∂ξi

dξ GTCMiF

3
∫

V
g(ξ)∆f(ξ) dξ −GT (DM + BM)F

4
∂

∂ξi

MM−1CMi

5
∂2

∂ξ2
1

+
∂2

∂ξ2
2

+
∂2

∂ξ2
3

−MM−1 (DM + BM)

Table 1: Relationships between the continuous spatial derivatives and integrals and their discrete

counterparts using the FEMmatrices. Vectors G andF are the FEMdiscretized versions of continuous

functions g(ξ) and f(ξ).

The Function matfem

This function was constructed from the free library FSELIB (see Pozrikidis (2005) for details). The

original library consists of a number of Matlab c© functions which allow us to carry out different steps

of the FEM: from spatial domain discretization (using different techniques) to the computation of the

FEM matrices (using different boundary conditions, basis functions,...). The matfem presented in

this report is limited to the 1D case using first and second order polynomials2 as basis functions and

the user is responsible for defining the spatial domain discretization. Nevertheless, as an advantage,

this function is more transparent to the user than the FSELIB library. This will allow the user to

obtain the FEM matrices and to deal with the boundary conditions in a more systematic way. The

way of calling the function is

[fem_im] = matfem(xe, bc_x0, bc_xL,fem_om)

where the input and output parameters are

Input parameters:

xe: Coordinates of the spatial discretization points.

bc_x0: Type of boundary conditions at the beginning of the domain.

bc_xL: Type of boundary conditions at the end of the domain.

2For constructing these, new discretization points are considered. These points are located at the middle of each finite

element.

3



fem_om: This variable indicates the FEM matrices that the user wants to

compute. The matrix is indicated by means of a string: ’MM’ for

the mass matrix, ’DM’ for the diffusion matrix, ’CM’ for the

convection matrix and ’BM’ for the boundary matrix. The last

element of this variable indicates the type of basis functions

employed: ’lin’ for linear and ’quad’ for quadratic. In the case

of linear basis functions the last element can be omitted.

The boundary type can be ’dir’ (Dirichlet boundary conditions), ’neu’

(Neumann boundary conditions) or ’rob’ (Robin boundary conditions)

Output parameters:

fem_im: The output parameters are the matrices indicated in fem_om.

They must be sorted following the same sequence used in fem_om.

If quadratic elements are chosen, it may result convenient to

recover the mesh with the interior points. This is done by

adding a new output variable.

A simple example

Compute the mass and the boundary matrices, using linear basis functions, with Dirichlet boundary

conditions in the first point and Neumann in the last point. The spatial domain goes from 0 to π and

21 spatial discretization points are required. In Matlab c© this is carried out by:

xe = linspace(0,pi,21); % Spatial discretization

[mass, boundary] = matfem(xe, ’dir’, ’neu’,’MM’,’BM’);

This is equivalent to

xe = linspace(0,pi,21); % Spatial discretization

[mass, boundary] = matfem(xe, ’dir’, ’neu’,’MM’,’BM’,’lin’);

When quadratic basis functions are chosen, a new input parameter is introduced, so that:

xe = linspace(0,pi,21); % Spatial discretization

[mass, boundary,xex] = matfem(xe, ’dir’, ’neu’,’MM’,’BM’, ’quad’);

Note that an extra output parameter (xex) is obtained. xex contains the extended mesh with the inte-

rior points. For details about this, the reader is referred to the bibliography (Reddy, 1993; Zienkiewicz

et al., 2005; Pozrikidis, 2005).

Examples

In this section some problems will be employed to illustrate the use of the matfem function.

4



A simple diffusion problem: FEM solution

Use the matfem function to compute the numerical solution of equation:

∂z

∂t
= κ

∂2z

∂x2
; κ = 0.1 (5)

with boundary conditions

z(0, t) = 3,
∂z(L, t)

∂x
= 0. (6)

These are Dirichlet in the first point and Neumann homogeneous in the last point. The spatial domain

is V = {x/x ∈ [0, π]}. The initial conditions are chosen as z(x, 0) = −x2 +2πx+3 and the number

of discretization points will be N = 21. Since no convection is included in the formulation, the FEM

matrices to be computed are: MM, DM and BM which is done by:

L = pi; % Length of the spatial domain

ndisc = 21; % Number of discretization points

xe = linspace(0,L,ndisc); % Spatial discretization

% Call to the function which computes the FEM matrices

[MM, DM, BM] = matfem(xe, ’dir’, ’neu’,’MM’,’DM’,’BM’);

inv_MM = inv(MM);

Note that BM(1, 1) = 105 (Dirichlet boundary conditions) and BM(N,N) = 0 (Neumann homo-

geneous boundary conditions). Now we have to define the vector G. Since the boundary conditions

are constant, this vector can be defined in the main program. In the first point we have Dirichlet BC

so, according to the explanation given in the introduction, the value of g in this point must be g = qz∗,

thus G(1) = 3BM(1, 1). In the last point we have g = 0. The rest of the code is standard and it is

included in Ex1.m and ode ex1.m.

When quadratic basis functions are considered, the code is modified so that

% Call to the function which computes the FEM matrices

[MM, DM, BM,xe] = matfem(xe, ’dir’, ’neu’,’MM’,’DM’,’BM’,’quad’);

ndisc = length(xe);

inv_MM = inv(MM);

Note that now the number of discretization points (ndisc) is recomputed for taking into account the

interior points. The rest of the code is the same as in the linear case and it is included in Ex1 quad.m.

5



Reaction-Diffusion-Convection problem: FEM solution

In this example reaction and convection terms are considered. The model equations are

∂z

∂t
= κ

∂2z

∂x2
− v

∂z

∂x
+ f(z); f(z) = z − z3 (7)

where κ = 0.5 and v = 0.01, with the usual Danckwerts boundary conditions

−→
n · κ

−→
∇z

∣

∣

∣

x=0
= v(zin − z|x=0) ⇐⇒ κ

∂z

∂x

∣

∣

∣

∣

x=0

= v(z|x=0 − zin) (8)

−→
n ·

−→
∇z

∣

∣

∣

x=L
= 0, (9)

with zin being the concentration in the inlet stream (zin = 100sin(7t) + 50). The spatial domain is

V = {x/x ∈ [0, π]}. The initial conditions are z(x, 0) = (−x2+2πx+2πk/v+50)/150. Regarding

the spatial discretization, in this example, a variable element size will be employed. In this regard,

from x = 0 to x = L/3, 11 elements points will be employed. In the rest of the domain 10 elements

will be employed. This discretization can be carried out, for instance, as follows:

L = pi; % Length of the spatial domain

ndisc = 21; % Number of discretization points

n1 = 11; % First part of the reactor

n2 = ndisc - n1 + 1; % Second part of the reactor

xe1 = linspace(0,L/3,n1); % First part of the reactor

xe2 = linspace(L/3,L,n2); % Second part of the reactor

xe = [xe1 xe2(2:end)]; % Total spatial discretization

In this case, the FEM matrices are computed as follows:

% Call to the function which computes the FEM matrices

[MM, DM, CM, BM] = matfem(xe, ’rob’, ’neu’,’MM’,’DM’, ’CM’, ’BM’);

inv_MM = inv(MM); % This will be employed later

G = zeros(ndisc , 1); % For the boundary conditions

Note that, in this example, the boundary conditions are not constant so they cannot be defined in the

main program. The dimensions of matrix G can be defined in the main file as shown above but it has

to be filled in the function where the ODEs as indicated below:

function dz = ode_ex2(t, z, Sp_oper, G, inv_MM, v)

6



% Boundary conditions

zin = 100*sin(7*t)+50; % Inlet concentration

G(1) = v*zin; % Boundary condition in the first point

GG = inv_MM*G;

GG in this code corresponds to MM−1G in Eqn (4). The rest of the code is included in Ex2.m and

ode ex2.m.

When quadratic basis functions are considered, the code is modified so that

[MM, DM, CM, BM, xe] = matfem(xe, ’rob’, ’neu’,’MM’,’DM’, ’CM’,...

’BM’, ’quad’);

ndisc = length(xe);

The rest of the code is the same as in the linear case and it is included in Ex2 quad.m.

The Burgers equation: FEM solution

The well known Burgers equation presents the following form:

∂z

∂t
=

∂(−0.5z2)

∂x
+ µ

∂2z

∂x2
= −z

∂z

∂x
+ µ

∂2z

∂x2
(10)

The spatial domain is V = {x/x ∈ [0, 1]} and Dirichlet boundary conditions are considered at both

sides of the domain. The value for the boundary and initial conditions is obtained through the analyt-

ical solution given by:

z =
0.1ea + 0.5eb + ec

ea + eb + ec
,

with:

ea = exp

(

0.05

µ
(x − 0.5 + 4.95t)

)

; eb = exp

(

0.25

µ
(x − 0.5 + 0.75 ∗ t)

)

.

ec = exp

(

0.5

µ
(x − 0.375)

)

.

These equations are were written into the burgers exact.m function which is included in the

toolbox. The number of discretization points will be N = 201:

%... spatial grid

x0 = 0.0;

xL = 1.0;

7



n = 201;

dx = (xL-x0)/(n-1);

x = [x0 : dx : xL]’;

The FEM matrices are computed as follows:

[MM, DM, CM, BM] = matfem(x, ’dir’, ’dir’, ’MM’, ’DM’, ’CM’, ’BM’);

inv_MM = inv(MM);

G = zeros(n , 1); % For the boundary conditions

Lapl_op = -inv_MM*DM; % Laplacian operator

Note that BM(1, 1) = BM(N,N) = 105, since Dirichlet boundary conditions are considered at

both sides. In this case we decide to compute together the homogeneous part of the boundary -this is,

the term qz in Eqn (2)- and the inhomogeneous part -this is, the term g in Eqn (2)-. Thus in the code

where the ODEs are defined we have to add:

%... boundary conditions at z = 0

zin = burgers_exact(x0,t);

G(1) = BM(1,1)*(z(1) - zin);

%... boundary conditions at z = zL

zout = burgers_exact(xL,t);

G(n) = BM(n,n)*(z(n) - zout);

GG = -inv_MM*G;

The main difference with respect to the other examples of this manual is the form of the convective

term. For defining it, we use the relations of Table 1 and compute the gradient operator as:

Grad_op = inv_MM*CM; % Gradient operator

The convective term is contructed, in the script were the ODEs are defined, as:

fx = Grad_op*(0.5*z.ˆ2);

The rest of the code is standard and it is included in the scripts burgers main FEM.m and

burgers pde FEM.m.

When quadratic basis functions are considered, the code is modified so that

8



% Call to the matfem function for computing the FEM matrices

[MM, DM, CM, BM,x] = matfem(x, ’dir’, ’dir’, ’MM’, ’DM’, ’CM’,...

’BM’, ’quad’);

n = length(x);

The rest of the code is the same as in the linear case (see the burgers main FEM quad.mMatlab c©

script).

References

Garcı́a, M. R. (2008). Identification and Real Time Optimisation in the Food Processing

and Biotechnology Industries. PhD thesis, University of Vigo, Spain. Available online at

http://digital.csic.es/handle/10261/4662.

Pozrikidis, C. (2005). Introduction to Finite and Spectral Element Methods using Matlab. Chapman

& Hall/CRC.

Reddy, J. N. (1993). An Introduction to the Finite Element Method. McGraw-Hill, 2nd edition.

Vilas, C. (2008). Modelling, Simulation and Robust Control of Distributed Processes: Application

to Chemical and Biological Systems. PhD thesis, University of Vigo, Spain. Available online at

http://digital.csic.es/handle/10261/4236.

Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z. (2005). The Finite Element Method: Its Basis &

Fundamentals. Elsevier, Amsterdam, 6th edition.

9


