
User’s Manual for the Function matpod. A MATlab function
for the Proper Orthogonal Decomposition technique

The MatMOL Group (2009)

1 Introduction

The main inconvenience of classical techniques like the FEM or the FD is that, in general, they result

into a large set of ODEs. This is specially critical when dealing with real time tasks as optimization

and control. During the last decades a number of techniques for the model reduction of PDEs systems

have arosen, among which, one of the most popular is the proper orthogonal decomposition (POD)

(Sirovich, 1987; Berkooz et al., 1993).

In dissipative systems, the dynamics evolve to a low dimensional subspace and remain in it in the

future. This property will allow us to approximate the dynamics of the system by computing only the

dynamics in the low dimensional subspace. The basis functions of such subspace can be computed in

many different forms. In the case of the POD, the procedure is as follows:

• Obtain a set of measurements or simulation data representative of the behaviour of the system.

• Compute the kernel K(ξ, ξ′) of the integral equation

φi(ξ) = λi

∫
V
K(ξ, ξ′)φi(ξ′)dξ′, (1)

For a discrete set of data (Zi), the kernel is computed as:

K =
1
`

∑̀
i=1

ZiZ
T
i . (2)

where ` number of elements in the data set.

• Solve the integral equation (1).

In the toolbox, this procedure for obtaining the basis functions will be known as direct method.

It must be pointed out that for large values of N , solving Eqn (1) can be computationally involved.

In order to avoid this problem, a useful alternative, proposed in Sirovich (1987) and known as the

1



method of snapshots or strobes, is briefly discussed. In this method, which will be known in the

toolbox as indirect method, each eigenfunction is expressed in terms of the original data as:

φj =
∑̀
i=1

wjiZi, (3)

where wji are the weights to be computed. To this purpose, the following matrix is defined

Mij =
1
`
〈Zi, Zj〉V . (4)

Introducing Eqns (2) and (3) in the eigenvalue problem (1), results into:

MWj = λjWj , (5)

where the eigenvectorsWj have as element the weights in equation (3) so thatWj = [wj1, w
j
2, ..., w

j
` ]
T .

A more detailed description, including references, about this technique can be obtained in the

thesis (Vilas, 2008; Garcı́a, 2008).

Another important point which will be employed along the examples is the relationship between

the FEM matrices (see the reference manual of the user manual matfem.m function) and spatial

derivatives and integrals. Such relationships are summarized in Table 1.

Continuous Discrete

1
∫
V g(ξ)f(ξ)dξ GTMMF

2
∫
V g(ξ)∂f(ξ)

∂ξi
dξ GTCMiF

3
∫
V g(ξ)∆f(ξ) dξ −GT (DM+ BM)F

4
∂

∂ξi
MM−1CMi

5
∂2

∂ξ21
+

∂2

∂ξ22
+

∂2

∂ξ23
−MM−1 (DM+ BM)

Table 1: Relationships between the continuous spatial derivatives and integrals and their discrete
counterparts using the FEM matrices. Vectors G andF are the FEM discretized versions of continuous
functions g(ξ) and f(ξ).

In the section 2 the function matpod will be employed for computing the basis functions which

will define the low dimensional subespace.

2



2 The Function matpod

This function will compute the basis functions using the POD technique from a set of experimental

or simulation data. The discretization of the data must coincide with the discretization of the finite

element method. The way of calling the function is

[pods] = matpod(V , MM , mth , ener)

where the input and output parameters are

Input variables:
V: Set of simulation or experimental data. Each column corresponds with

a snapshot at a given time
MM: Mass matrix obtained from the FEM. The FEM discretization must

coincide with the discretization for V
mth: Method used for computing the basis functions. ’d’ is the direct

method, ’i’ is the indirect method. The indirect method results
more efficient if the number of discretization points is much larger
than the number of measurements.

ener: Energy captured by the PODs.

Output variables:
pods: This is a structure where pods.phi are the basis functions and

pods.lambda the eigenvalues

It is important to note that the rows of the data matrix V are related to the FEM spatial discretiza-

tion while the data at different times are stored in the columns.

3 Examples

In this section the same examples as in the matfem function manual will be employed to illustrate

the use of the matpod function.

3.1 A simple diffusion problem

Using the POD technique, compute the numerical solution of equation:

∂z

∂t
= κ

∂2z

∂x2
; κ = 0.1 (6)

with boundary conditions

z(0, t) = 3,
∂z(L, t)
∂x

= 0. (7)

These are Dirichlet in the first point and Neumann homogeneous in the last point. The spatial domain

is V = {x/x ∈ [0, π]}. The initial conditions are chosen as z(x, 0) = −x2 + 2πx+ 3

3



As mentioned in section 2, the first step to obtain the basis functions in the POD method is to

generate a set of snapshots (measurements of the real system or simulation data) representative of the

behaviour of the system. In this case, the snapshots were obtained by means of simulation data taken

each 0.1 unit of time till 150 and they were saved in the file data simulation Ex1.mat. Thus,

in the code we first load the snapshots:

load data_simulation_Ex1

After this, we compute the FEM matrices as indicated before and compute the basis functions by

typing:

[pods] = matpod(Z , MM , ’d’ , 99.999);

Phi = pods.phi;

neig = size(Phi , 2);

It is easy to see, by means of the parameter neig, that 3 basis functions are enough to capture the

99.999% of the energy. The next step is to project Eqn (6) over the basis functions, this is:∫
V

Φ
∂z

∂t
dξ =

∫
V
κΦ

∂2z

∂x2
dξ

which, taking into account the boundary conditions, the orthonormality of basis functions and the

relationships of Table 1 can be rewritten in discrete form as:

mt = −ΦTMMMM−1(κDM +BM)Φm = −ΦT (κDM +BM)Φm

with initial conditions:

m0 = ΦTMMz0

So in the Matlab c© code, we can define a new matrix Sp oper and a new vector G of the form:

Sp_oper = - Phi’*(k*DM + BM)*Phi;

G = Phi’*G;

so that the system of ODEs remains:

dm = Sp_oper*m + G;

Note that now we are solving 3 ODEs instead 21. The maximum error at t = 0 is about 2.5% and

it decreases very fast with time, in fact, for t > 5 the maximum error is always below 0.2%. If we

consider the same example but capturing the 99.9% of the energy, the number of basis functions will

be two. In this case the maximum error for all t > 5 is lower than the 1%.

The complete code is included in the Matlab c© scripts Ex1 POD.m and ode Ex1 POD.m.

4



3.2 Reaction-Diffusion-Convection problem

In this example reaction and convection terms are considered. The model equations are

∂z

∂t
= κ

∂2z

∂x2
− v ∂z

∂x
+ f(z); f(z) = z − z3 (8)

where κ = 0.5 and v = 0.01, with the usual Danckwerts boundary conditions

−→n · κ−→∇z
∣∣∣
x=0

= v(zin − z|x=0) ⇐⇒ κ
∂z

∂x

∣∣∣∣
x=0

= v(z|x=0 − zin) (9)

−→n · −→∇z
∣∣∣
x=L

= 0, (10)

with zin being the concentration in the inlet stream (zin = 100sin(7t) + 50). The spatial domain is

V = {x/x ∈ [0, π]}. The initial conditions are z(x, 0) = (−x2 + 2πx+ 2πk/v + 50)/150.

As in the previous case the first step is to obtain the basis functions from the snapshots, which were

previously generated each 0.001 units of time till t = 2 and saved in the file data simulation Ex2:

load data_simulation_Ex2

Now we define the spatial domain and the discretization and compute the FEM matrices. After these

steps, the basis functions are computed as follows:

[pods] = matpod(Z , MM , ’d’ , 99.99);

Phi = pods.phi;

neig = size(Phi , 2);

proj_op = Phi’*MM; % Projection operator

In this case a 99.99% of the energy implies using 3 basis functions. The next step is to project the

spatial operator and the initial conditions.

Sp_oper = - Phi’*(k*DM + v*BM + v*CM)*Phi;

% Initial conditions

z0 = (-xe.ˆ2 + 2*pi*xe + 2*pi*k/v + 50)/150;

m0 = proj_op*z0;

In the script where the ODEs are defined we need to project the boundary conditions and the nonlinear

term1:
1Note that ΦT MMMM−1G = ΦT G

5



% Recovery the original field

z = Phi*m;

% Boundary conditions

zin = 100*sin(7*t)+50; % Inlet concentration

G(1) = v*zin; % Boundary condition in the first point

GG = Phi’*G; % Projection of the BC

% Nonlinear term

f = z - z.ˆ3;

f = proj_op*f; % Projection of the nonlinear function

With 3 basis functions the maximum error is always lower than 3% and for t > 0.1 decreases to

1.6%. In order to capture the 99.999% of the energy four basis functions are required. In this case

the maximum error is always lower than 0.7% and for t > 0.1 decreases to 0.3%.

An interesting exercise here is to check what happens if the snapshots are selected in other way.

For instance, instead using a ∆t = 0.001 between two consecutive measurements try with ∆t = 0.2

or with a final time of t = 0.3 instead t = 2.

The complete code is included in the Matlab c© scripts Ex2 POD.m and ode Ex2 POD.m.

3.3 The Burgers equation

The well known Burgers equation presents the following form:

∂z

∂t
=
∂(−0.5z2)

∂x
+ µ

∂2z

∂x2
= −z ∂z

∂x
+ µ

∂2z

∂x2
(11)

The spatial domain is V = {x/x ∈ [0, 1]} and Dirichlet boundary conditions are considered at both

sides of the domain. The value for the boundary and initial conditions is obtained through the analyt-

ical solution given by:

z =
0.1ea+ 0.5eb+ ec

ea+ eb+ ec
,

with:

ea = exp
(

0.05
µ

(x− 0.5 + 4.95t)
)

; eb = exp
(

0.25
µ

(x− 0.5 + 0.75 ∗ t)
)
.

ec = exp
(

0.5
µ

(x− 0.375)
)
.

6



These equations are were written into the burgers exact.m function which is included in the

toolbox.

The procedure is the same than in the above examples. First we obtain the basis functions from

the snapshots taken by means of a FEM simulation. In this case the time interval between two con-

secutive measurements was 0.001 units of time and the simulation data were save in a Matlab c© file

data simulation burgers.mat.

load data_simulation_burgers

After defining the spatial grid, we compute the FEM matrices and the basis functions.

%... call to the matfem function for computing the FEM matrices
[MM, DM, CM, BM] = matfem(x, ’dir’, ’dir’, ’MM’, ’DM’, ’CM’, ’BM’);
inv_MM = inv(MM);

% Computation of the basis functions
[pods] = matpod(Z , MM , ’d’ , 99.9999);
Phi = pods.phi;
neig = size(Phi , 2);
proj_op = Phi’*MM; % Projection operator

In this problem, the only difference with respect to the others is the convection term. The projection

of this term is carried out in the same manner as if it was a nonlinear term:

fx = Grad_op*(0.5*z.ˆ2);

pfx = proj_op*fx; % Projection of the convection term

It must be remarked that due to the special form of the convection term and the boundary conditions,

this problem dissipates energy at a very low rate. This fact can be seen by comparing the relation

between eigenvalues:
λ1

λ2
≈ 20,

λ2

λ3
≈ 3.5,

λ3

λ4
≈ 2.5,

while in other problems which dissipate much more energy, the relation is much bigger. For instance

in the Reaction-Diffusion-Convection problem presented in this manual, the relation is:

λ1

λ2
≈ 410,

λ2

λ3
≈ 9,

λ3

λ4
≈ 24,

This fact translates into a large number of basis functions to be employed for a good representation.

Capturing the 99.9999% of the energy implies using 73 basis functions and the maximum error is

around 7.8%. Augmenting the number of basis functions to 87, the energy captures is 99.99999%

and the maximum error decreases to 2.8%.

7



References

Berkooz, G., Holmes, P., and Lumley, L. (1993). The Proper Orthogonal Decomposition in the

analysis of turbulent flows. Ann. Rev. Fluid Mech., 25:539–575.

Garcı́a, M. R. (2008). Identification and Real Time Optimisation in the Food Processing

and Biotechnology Industries. PhD thesis, University of Vigo, Spain. Available online at

http://digital.csic.es/handle/10261/4662.

Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. Part I: Coherent structures.

Quaterly of Appl. Math., 45(3):561–571.

Vilas, C. (2008). Modelling, Simulation and Robust Control of Distributed Processes: Application

to Chemical and Biological Systems. PhD thesis, University of Vigo, Spain. Available online at

http://digital.csic.es/handle/10261/4236.

8


