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1 Introduction

The main inconvenience of classical techniques like the FEM or the FD is that, in general, they result

into a large set of ODEs. This is specially critical when dealing with real time tasks as optimization

and control. During the last decades a number of techniques for the model reduction of PDEs systems

have arosen. One interesting option when dealing with homogeneous boundary conditions is the

Laplacian Spectral Decomposition (LSD) technique.

In dissipative systems, the dynamics evolve to a low dimensional subspace and remain in it in the

future. This property will allow us to approximate the dynamics of the system by computing only the

dynamics in the low dimensional subspace. The basis functions of such subspace can be computed in

many different forms. In the case of the LSD, they are obtained by the spectral decomposition of the

Laplacian operator. This is:

∆φi = −λiφi, i = 1, ..., neig (1)

where neig is the number of basis functions considered.

As shown in the matfem user’s manual, there exists a relationship between the FEM matrices

and spatial derivatives and integrals. For the sake of clarity, such relationships are rewritten here in

Table 1.

Using these matrices, Eqn (1) can be approximated as follows:

MM−1(DM+ BM)φi = −λiφi, i = 1, ..., neig (2)

which is the expression used in the matlsd function.

A more detailed description of this technique can be found in the literature (Christofides, 2001;

Vilas, 2008; Garcı́a, 2008).

In the section 2 the function matlsd will be employed for computing the basis functions which

will define the low dimensional subespace.
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Continuous Discrete

1
∫
V g(ξ)f(ξ)dξ GTMMF

2
∫
V g(ξ)∂f(ξ)

∂ξi
dξ GTCMiF

3
∫
V g(ξ)∆f(ξ) dξ −GT (DM+ BM)F

4
∂

∂ξi
MM−1CMi

5
∂2

∂ξ21
+

∂2

∂ξ22
+

∂2

∂ξ23
−MM−1 (DM+ BM)

Table 1: Relationships between the continuous spatial derivatives and integrals and their discrete
counterparts using the FEM matrices. Vectors G andF are the FEM discretized versions of continuous
functions g(ξ) and f(ξ).

2 The Function matlsd

This function will compute the basis functions using the LSD technique. The way of calling the

function is

[phi , lambda] = matlsd(MM, DM, BM, k, v);

where the input and output parameters are

Input variables:

MM: Mass matrix of the FEM

DM: Diffusion matrix of the FEM

BM: Boundary (homogeneous part) matrix of the FEM

k: Diffusivity

v: Velocity

Output variables:

phi: Eigenvectors of the laplacian operator

lambda: Eigenvalues of the laplacian operator

If the velocity is not introduced, the function takes automatically the value v = 1. It is important

to remark that this technique only works with homogeneous boundary conditions. When non ho-
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mogeneous BC are considered, we can define a state transformation in order to obtain an equivalent

system with homogeneous BC.

3 Examples

In this section the same examples as in the matfem function manual will be employed to illustrate

the use of the matlsd function.

3.1 A simple diffusion problem

Using the LSD technique, compute the numerical solution of equation:

∂z

∂t
= κ

∂2z

∂x2
; κ = 0.1 (3)

with boundary conditions

z(0, t) = 3,
∂z(L, t)
∂x

= 0. (4)

Note that in this example non-homogeneous boundary conditions are considered. The LSD method

does not allow working directly with this kind of BC, therefore a state transformation is requiered

to obtain an equivalent system with homogeneous BC. In this case, the following transformation is

defined:

z = z − z(0, t) = z − 3.

Note that
∂z

∂t
=
∂z

∂t
,

∂z

∂x
=
∂z

∂x
,

∂2z

∂2x
=
∂2z

∂2x
.

Using these relations, system (3) can be rewritten as:

∂z

∂t
= κ

∂2z

∂x2
; κ = 0.1 (5)

with boundary conditions

z(0, t) = 0,
∂z(L, t)
∂x

= 0. (6)

We can, now, apply the LSD technique to this problem and recover the original field by z = z+3. The

spatial domain is V = {x/x ∈ [0, π]}. The initial conditions are chosen as z(x, 0) = −x2 + 2πx+ 3

As indicated before, the FEM matrices are employed to approximate the continuous eigenvalue

problem by a discrete version. So the first step is to obtain the FEM matrices as indicated in the

matfem user’s manual. After this we can compute the basis functions by:
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[Phi , lambda] = matlsd(MM, DM, BM, k);

neig = 3; % Number of basis functions

Phi = Phi(: , 1:neig);

lambda = lambda(1:neig , 1:neig);

In this case we choose to use only 3 basis functions. The next step is to project Eqn (3) over the basis

functions, this is: ∫
V

Φ
∂z

∂t
dξ =

∫
V
κΦ

∂2z

∂x2
dξ

which, taking into account the boundary conditions, the orthonormality of basis functions, the rela-

tionships of Table 1 and Eqn (2) can be rewritten in discrete form as:

mt = −ΦTMMMM−1(κDM +BM)Φm = −ΦT (κDM +BM)Φm = −Λm

with initial conditions:

m0 = ΦTMMz0

So that the system of ODEs remains:

dm = -lambda*m;

Note that now we are solving 3 ODEs instead 21. The maximum error at t = 0 is about 1% and

it decreases very fast with time, in fact, for t > 5 the maximum error remains below 0.004%. If we

consider the same example with two basis functions, the maximum error for all t > 5 is lower than

the 0.1%.

The complete code is included in the Matlab c© scripts Ex1 LSD.m and ode Ex1 LSD.m.

3.2 Reaction-Diffusion-Convection problem

In this example reaction and convection terms are considered. The model equations are

∂z

∂t
= κ

∂2z

∂x2
− v ∂z

∂x
+ f(z); f(z) = z − z3 (7)

where κ = 0.5 and v = 0.01, with the usual Danckwerts boundary conditions

−→n · κ−→∇z
∣∣∣
x=0

= v(zin − z|x=0) ⇐⇒ κ
∂z

∂x

∣∣∣∣
x=0

= v(z|x=0 − zin) (8)

−→n · −→∇z
∣∣∣
x=L

= 0, (9)

with zin being the concentration in the inlet stream (zin = 100 sin(7t) + 50). The spatial domain is

V = {x/x ∈ [0, π]}. The initial conditions are z(x, 0) = (−x2 + 2πx+ 2πk/v + 50)/150.
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As in the previous example the boundary conditions are not homogeneous in the first point so a

state transformation is required. Defining a new state variable:

z = z − zin = z − (100 sin(7t) + 50)

and taking into account

∂z

∂t
=
∂z

∂t
− ∂zin

∂t
,

∂z

∂x
=
∂z

∂x
,

∂2z

∂2x
=
∂2z

∂2x
,

Eqn (7) can be rewritten as

∂z

∂t
= κ

∂2z

∂x2
− v ∂z

∂x
+ f(z)− ∂zin

∂t
; f(z) = (z + zin)− (z + zin)3, (10)

with homogeneous boundary conditions:

κ
∂z

∂x

∣∣∣∣
x=0

= v z|x=0 ; −→n · −→∇z
∣∣∣
x=L

= 0, (11)

Now we define the spatial domain and the discretization and compute the FEM matrices. After these

steps, the basis functions are computed as follows:

[Phi , lambda] = matlsd(MM, DM, BM, k, v);

neig = 7; % Number of basis functions

Phi = Phi(: , 1:neig);

lambda = lambda(1:neig , 1:neig);

In this case we choose 7 basis functions. The next step is to project the spatial operator and the initial

conditions.

Sp_oper = - (lambda + v*Phi’*CM*Phi);

proj_op = Phi’*MM;

% Initial conditions

z0 = (-xe.ˆ2 + 2*pi*xe + k*2*pi/v + 50)/150;

z_transform = zeros(steps+1 , 1);

z_transform(1) = 100*sin(7*tlist(1)) + 50;

z0_bar = z0 - z_transform(1);

m0 = proj_op*z0_bar;

In the script where the ODEs are defined we need to project the nonlinear term and the term associated

with the state transformation:
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% Recovery the transformed field

z_bar = Phi*m;

% Recovery the original field

z_trans = 100*sin(7*t) + 50;

z = z_bar + z_trans;

% Derivative of the z transform with respect the time

dztr_dt = 700*cos(7*t);

% Nonlinear term

f = z - z.ˆ3 - dztr_dt;

f = proj_op*f;

% ODE construction

dm = Sp_oper*m + f;

With 8 basis functions the maximum error is always lower than 1%. If we use 7 basis functions for

the projection, the maximum error will increase to 1.7%.

The complete code is included in the Matlab c© scripts Ex2 LSD.m and ode Ex2 LSD.m.

3.3 The Burgers equation

The well known Burgers equation presents the following form:

∂z

∂t
=
∂(−0.5z2)

∂x
+ µ

∂2z

∂x2
= −z ∂z

∂x
+ µ

∂2z

∂x2
(12)

The spatial domain is V = {x/x ∈ [0, 1]} and Dirichlet boundary conditions are considered at both

sides of the domain. Again, we need to transform the original problem with non homogeneous BC

into an equivalent one with homogeneous BC. In the case of the FEM and POD, the values for the

boundary conditions were computed through relatively complex expressions. If we apply the same BC

now, the transformation will require to compute the time and spatial derivatives of such expressions.

In order to avoid this we should note that, for the considered value of µ, the BC can be approximated

as follows:

z(0, t) = 1; z(L, t) = 0.1.
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Thus, defining the state transformation

z = z − (−0.9x+ 1);

we obtain homogeneous boundary conditions.

After defining the spatial grid, we compute the FEM matrices and the basis functions.

[Phi , lambda] = matlsd(MM, DM, BM, mu);

neig = 87; % Number of basis functions

Phi = Phi(: , 1:neig);

lambda = lambda(1:neig , 1:neig);

proj_op = Phi’*MM;

In this problem, the only difference with respect to the others is the convection term. The projection

of this term is carried out in the same manner as if it was a nonlinear term:

fx = Grad_op*(0.5*z.ˆ2);

pfx = proj_op*fx; % Projection of the convection term

As explained in the matpod user’s manual, this problem dissipates energy at a very low rate. This fact

translates into a large number of basis functions to be employed for a good representation. Using the

same number of basis functions than in the POD case leads to a maximum error of 34%1. Augmenting

the number of basis functions to 150, the maximum error decreases to 3%, but the dimensionallity of

the problem is almost the same as in the FEM, so the reduction is quite poor.
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