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Abstract

The main topic of the thesis is the data-driven identification of the
region of attraction (ROA) of asymptotically stable equilibrium points.
Although this is the main computational contribution, satisfying the un-
derlying conditions to make this possible constitutes most of the work
of the thesis. To achieve an accurate data-driven approximation of the
ROA in systems with multiple fixed or equilibrium points it is necessary
to properly complete a series of steps parting from some trajectories of the
system, i.e., assuming there is no access to the differential or difference
model equation. The main condition is an accurate approximation of
the Koopman operator because it provides a set of eigenfunctions where
a particular composition of them gives another non-trivial eigenfunction
with an associated eigenvalue that is unitary. The main property of this
eigenfunction is that it gives the stable manifold of saddle points in the
boundary of the ROA, where this stable manifold is in fact, the actual
boundary of the ROA. Therefore, for this whole procedure to work, it it
also necessary to have an approximation of the location and stability of
the fixed points of the system, recalling that the only input to the algo-
rithm is a set of trajectories of the system. Consequently, the algorithm
must be an appropriate approximation of the dynamics of the system and
be able to provide a difference equation able to give the location and sta-
bility of fixed points upon further traditional non-linear system analysis.
The algorithm that has the potential to achieve these requisites is the
extended dynamics mode decomposition (EDMD) algorithm, where most
of the work of this thesis focuses in transforming the potential into actual.
For the most part, the development focus is on the numerical stability
of the algorithm, reducing the computational effort and necessary steps
to perform the approximation. Techniques such as the p-q-quasi norm
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reduction of orthogonal polynomials and polynomial element elimination
according to its error, ensures that smaller bases perform the approx-
imations while guaranteeing the existence of solutions because of the
orthogonality property. Improvements such as the recovery of the state
via the inverse of univariate order-one polynomials reduce the number
of necessary matrix inversions. Finally, a priori expansions of the state
with arbitrary trigonometric functions or any other kind of elemental
functions, expand the possible types of systems that the algorithm can
handle. As a consequence of these improvements, the thesis achieves the
original objectives of analyzing systems and controlling sets of intercon-
nected systems in a data-driven context. Finally, the main application
of the thesis is the analysis of the ROA to the anaerobic digestion pro-
cess, where the analysis of multi-stability phenomena that guarantees the
proper operation of the reactor is of paramount importance.
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dx1
. . 40

3.3 Parameters of the inverted pendulum on a cart. . . . . . 54

3.4 Empirical error for each polynomial basis used in the p-q
Trigonometric EDMD. . . . . . . . . . . . . . . . . . . . 65

3.5 p, q, dimension, and empirical error for the non-affine ap-
proximation of the interconnected duffing equation. . . . 71

3.6 p, q, dimension, and empirical error for the input-affine
approximation of the interconnected duffing equation. . . 74

4.1 Duffing equation fixed points location. . . . . . . . . . . 86

4.2 Fixed point stability for the Duffing equation. . . . . . . 88

4.3 Lotka-Volterra equation fixed points, location and stability. 100

4.4 Location of fixed points. . . . . . . . . . . . . . . . . . . 104

4.5 Stability of fixed points. . . . . . . . . . . . . . . . . . . 104

5.1 Model parameters . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Algorithm Parameters. . . . . . . . . . . . . . . . . . . . 115

5.3 Basis for the first state variable x1. Solution to the Jacobi
ODE with parameters η = 0.5 and ν = 1. . . . . . . . . . 117

xv



LIST OF TABLES LIST OF TABLES

5.4 Grid optimization results for different types of polynomials.122

5.5 Anaerobic digestion fixed points for u = 0.47, xin1 = 75,
and xin2 = 160. . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 Anaerobic digestion fixed points for u = 0.47, xin1 = 75,
and xin2 = 160. . . . . . . . . . . . . . . . . . . . . . . . 124

xvi



Chapter 1

Introduction

The concept of stability is ubiquitous in the world, just by riding
a bicycle, a person experiences the act of maintaining stability. It is a
concept that pervades any type of systems, physical, social, economical,
ecological, or biochemical among others. A possible definition of stabil-
ity is the property of a system that causes it to return to its original
condition when it experiences a disturbance from the equilibrium state.
Being these equilibrium states the main concept of system analysis and
the synthesis of forces or moments that drive them to a desired equilib-
rium, understanding equilibrium as a condition where a system remains
unchanged in the absence of external influences. Within the analysis of
these equilibrium states, it is important to determine if they are unstable
or stable, and if they are the latter, the analysis turns toward its robust-
ness; the ability of the system to return to its equilibrium state after small
disturbances. As a consequence of not having just one stable point, i.e.,
the multi-stability phenomena, there is a limit to the disturbance such
that the system does not converges to another (possibly undesired) stable
point. How big is this disturbance limit, gives a measure of the stabil-
ity of the point, and this measure is related to the concept of region
of attraction (ROA). A simple example of the concept of stability and
equilibrium points is a ball that can move between two wells, depicted in
Figure 1.1. The system has three equilibrium points, the bottom of the
two wells and the top of the hill where the wells are stable points and the
hill is unstable. Assuming that the objective is to keep the ball in the well
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CHAPTER 1. INTRODUCTION

on the left, any disturbance is bounded such that the ball does not pass
through the unstable point at the hill. Otherwise it will converge to the
undesired well on the right. Meaning that the ROA of the desired state
is the area to the left of the unstable point at the hill. These unstable
points and the analysis of certain invariant subspaces that they posses
are the foundation for the identification of the ROA of stable points.

Figure 1.1: Ball between two valleys where there are three equilibrium or
fixed points: the left one is the desired stable point, in the center there
is an unstable point, and the right is the undesired stable point.

The subject matter of control systems deals with the analysis and syn-
thesis algorithms for these equilibrium states, called equilibrium points
in the continuous-time analysis, and fixed points when the system is in
discrete-time. Given that the results of this thesis are in discrete-time,
the remainder of this thesis will refer to these equilibrium states as fixed
points.

When dealing with the analysis of fixed points, systems with unique
equilibrium states are rare, the norm are systems that deal with the multi-
stability phenomena. Conversely, the analysis of non-linear systems often
focuses on the stability and especially, the global stability of systems with
unique fixed points. Whereas the concept of the ROA is as important
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as its stability. Questions such as: how far a disturbance can drive the
system away from an equilibrium point without leaving the region where
it can converge back to it? Or, from which initial conditions does the
system converge to the desired point? Are as important as determining
the local stability of fixed points.

Traditional model-based methods such as Lyapunov, dissipativity,
passivity (Energy-based) or input-output based techniques for non-linear
systems [Haddad and Chellaboina, 2008, Khalil, 2002, Garcia-Tenorio
et al., 2016] are suitable for low dimensional dynamical systems or low-
order systems, but they cannot get a handle on complexity [Ahmadi and
Parrilo, 2011, Majumdar et al., 2014, Anderson and Papachristodoulou,
2010, Giesl and Hafstein, 2015, Budišić et al., 2012, Skar et al., 1981,
Cuesta et al., 1999], not only for the difficulty of the analysis but also
because modeling complex systems is a difficult task. Therefore, complex
dynamic systems require tools for their analysis that transcend beyond
the current knowledge in control theory [Dimirovski, 2016]. The escalat-
ing behavior in the number of equilibria, and the modeling difficulties do
not allow for a simple and straightforward approach. Still, the overall
performance has to be guaranteed.

In order to solve this issue, instead of approaching it with the tra-
ditional model based techniques, data-driven frameworks are a suitable
alternative to get a solution. Within these data-driven strategies, that
include artificial intelligence, machine learning and the whole plethora
of algorithms encapsulated by these techniques, the extended dynamic
mode decomposition (EDMD) that under certain conditions gives an ap-
proximation of the Koopman operator is a promising alternative that
makes possible the use of a modern approach where traditional analysis
methods still apply.

The Koopman operator framework provides a way of having eigen-
functions φ of a linear operator U be observables or measures of a partic-
ular dynamical system, i.e., the evolution of eigenfunctions relate to the
evolution of the states of the system [Koopman, 1931]. For discrete-time
systems, the application of U on φ gives the same function scaled by its
corresponding eigenvalue µ as in

Uφ = µφ. (1.1)
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This approach is suitable for an analysis of the evolution of eigen-
functions rather than the analysis of state evolution [Budišić et al., 2012,
Mezić, 2017]. The trade-off with this approach concerns linearity and di-
mensionality, finite-dimensional nonlinear systems described by an infinite-
dimensional linear system.

Given that this operator is linear, it has a spectral decomposition that
contains information about the underlying non-linear dynamical system.
Furthermore, the analysis of eigenfunctions allows the identification of
invariant subspaces that capture specific characteristics of the dynamical
system. If an eigenfunction has an eigenvalue equal to one, the value of
this function is invariant along the trajectories of the dynamical system.
Coupled with the fact that finding the ROA of a stable fixed point relies
on the ability to approximate some invariant subspaces of the system
state space, for a specific type of system, these unitary eigenfunctions
give the solution to the multi-stability phenomena.

An advantage of using the Koopman operator is that there are sev-
eral methods to have a finite-dimensional approximation of this infinite-
dimensional operator via snapshot data of the system with the appli-
cation of, among others, the EDMD algorithm [Williams et al., 2015].
A solution that is closely related to modern data-driven and machine
learning techniques, where the analysis comes solely from information
gathered either from the numerical integration of a nonlinear differen-
tial equation, or from the measurements of a real system. In contrast
with traditional techniques that rely upon the explicit knowledge of the
differential equation that comes from modeling and identification meth-
ods [Garnier and Wang, 2008, Augusiak et al., 2014, ElKalaawy and
Wassal, 2015], where the identification also relies on the available data
of the system, the EDMD avoids the modeling and identification tasks.
Moreover, it also gives an approximation of the system dynamics with
the additional benefit of having an expanded linear approximation of
some measurements or observables of a system, opening up the possi-
bility of adapting traditional linear system analysis techniques to these
approximations.

Juxtaposing the analysis of eigenfunctions and the linear evolution
of observables provides a set of tools for accurately handling nonlinear
dynamical systems. Giving the possibility to find the fixed points, their
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stability, and finally, analyze the spectral decomposition to determine the
ROA of asymptotically stable points. Additionally, the linear evolution
of observables allows for the application of linear control techniques such
as model predictive control (MPC) for the synthesis of controllers that
drive the system into the desired equilibrium [Korda and Mezić, 2018b].

In order to take advantage of these benefits; eigenfunctions and linear
predictors, it is necessary to have an accurate approximation of the Koop-
man operator from the available data. Although, there are several meth-
ods to compute the approximation [Williams et al., 2015, 2016, Kaiser
et al., 2018, Li et al., 2017], all of those have some inherent difficulties
that hinder the fulfillment of the objectives of this thesis. Accordingly
most of the development of this thesis focuses in the refinement of the
EDMD algorithm using orthogonal polynomial basis as a means to over-
come those difficulties. The main contribution in this regard is in the
amount of necessary data to calculate the approximation of the discrete-
time Koopman operator. In contrast to the available methods, the algo-
rithm developed in this thesis achieves an accurate representation with
one order of magnitude reduction in the amount of data. Another reason
for the improvement of the algorithm is with regards to the dimension of
the basis, for the regular formulations the dimension of the observables
grows exponentially with the addition of state variables, due to the curse
of dimensionality problem, increasing the number of state variables or
the maximum order of the polynomials hinders the possibility of calcu-
lating the discrete time approximation of the operator. Therefore, the
use of p-q-quasi norm reduction methods, based on the proposed ideas for
reliability analysis in polynomial chaos expansion [Konakli and Sudret,
2016a,b], gives a truncation scheme on the polynomial basis that serve as
the observables for the discrete-time approximation of the EDMD. More-
over, the accuracy of the linear predictors and eigenfunctions is directly
related to the contribution of each of the observables on the approxima-
tion. Hence, an error criterion on the contribution of these individual
elements, in conjunction with an error threshold based on the error of
the individual elements of the basis that must remain, serves to eliminate
those elements that contribute to the inaccuracies in the approximation.

Indeed, there are some polynomial elements that must remain in the
basis since the use of orthogonal polynomials is sufficient to easily recover
the state. Some of the available methods include elements in the set of
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observables that capture directly each of the states, with the risk of break-
ing the orthogonality of the basis, and making the problem impossible
to solve or numerically unstable. Whereas machine learning techniques,
such as radially basis functions and Kernel methods need to solve a sec-
ond minimization problem to recover the state as a linear combination of
the observables, at the risk of having inaccurate solutions, or no solution
at all.

The solution to this dilemma, of including or not elements that di-
rectly capture the state is the selection of univariate and order one in-
jective polynomial elements for the recovery of the state [Garcia-Tenorio
et al., 2020]. There is no need to break the orthogonality of the set while
still being able to recover the state as a linear function of the observables,
without a second optimization solution. In addition to the recovery of
the state, the exponential growth of the maximum order and dimension
of the set of observables based on orthogonal polynomial has a solution
via p-q-quasi norms, and polynomial accuracy methods.

In summary, the methods and algorithms achieve the following anal-
ysis objectives:

1. Approximate the discrete-time Koopman operator with the least
amount of data, and with a reduced set of observables, both in
dimension and maximum order of the polynomials.

2. Approximate the location of the system fixed points, which is made
possible by the linear predictors of the observables that can easily
recover the state.

3. Accurately determine their stability (asymptotically stable, unsta-
ble or saddle points) because the approximation also provides a
nonlinear evolution map of the state. This mapping can be lin-
earized and evaluated at the fixed points to asses stability.

4. Identify the saddle points in the boundary of the ROA.

5. Generate an eigenfunction with unitary associated eigenvalue or
in the ideal case, have this eigenfunction present in the original
approximation.
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6. Find an algebraic criterion that accurately classifies an arbitrary
initial condition in the state space to its corresponding attractor,
with the benefit that the criterion is a comparison between real
numbers, therefore, suitable to handle higher dimensional systems.

It is important to emphasize that the analysis is solely data-driven,
and although this thesis makes use of the differential model equations,
it is only to produce the data for the analysis. This data-driven pre-
supposition also restricts the analysis to hyperbolic systems, this as that
we are not able to characterize a limit cycle or chaotic behavior with-
out the differential equation. Without this restriction, the results of this
thesis still apply, with the caveat that there are better alternatives for
two dimensional systems, or slices of three dimensional ones using time
averages [Mezić, 2005], or for a higher dimensional system, finding the
isostables of a dynamical system by the Laplace averages of the differen-
tial equation forward integration [Mauroy et al., 2013].

Production

1. Journal: Garcia-Tenorio Camilo, Gilles Delansney, Mojica-Nava
Eduardo, VandeWouwer Alain, “Trigonometric Embeddings in Poly-
nomial EDMD and Linear Representations of Interconnected Os-
cillators” in “Submitted”.

Journal presenting the results of applying trigonometric, or in gen-
eral any functional embeddings into the set of state variables of the
system. These embeddings serve to improve the accuracy of the
EDMD algorithm by incorporating a priori knowledge of the dif-
ferential equation in to the set of observables while preserving the
benefits of the p-q and polynomial accuracy reduction methods.

2. Journal: Garcia-Tenorio Camilo, Tellez-Castro Duvan, Mojica-Nava
Eduardo, Vande Wouwer Alain, “Hyperbolic Systems Region of At-
traction via EDMD Koopman Operator” in “Submitted”.

Journal paper covering an in depth analysis of the data driven algo-
rithm for obtaining the ROA of asymptotically stable fixed points.
The method covers the key aspects in dynamical system analysis for
the estimation of the ROA: Finding the fixed points of the system,
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giving their stability, and estimating the boundary of the ROA for
the stable points.

3. Journal: Garcia-Tenorio Camilo, Sbarciog Mihaela, Mojica-Nava
Eduardo, VandeWouwer Alain, “Analysis of the ROA for the Anaer-
obic Digestion Process via Data-Driven Koopman Operator” in “Ac-
cepted in Nonlinear Engineering”

Journal paper covering an in depth analysis of the multi-stability
problem for the Anaerobic digestion process. This work also presents
in detail the reduction methods for the observables based on orthog-
onal polynomials.

4. Colloquium/Abstract: Garcia Tenorio Camilo, Mojica-Nava Ed-
uardo, Vande Wouwer Alain, “Linear Predictors for Interconnected
Systems: a Koopman Operator Approach” in “39th Benelux Meet-
ing on Systems and Control”, 128, Elspeet, The Netherlands, 2020.

Abstract that shows the general idea for the linear predictors when
dealing with external forcing signals and interconnection inputs.

5. Conference: Garcia-Tenorio Camilo, Tellez-Castro Duvan, Mojica-
Nava Eduardo, Vande Wouwer Alain, “Analysis of a Class of Hy-
perbolic Systems via Data-Driven Koopman Operator” in “23rd In-
ternational Conference on System Theory, Control and Computing
(ICSTCC)”, Sinaia, Romania, 2019.

Conference paper that describes some of the methods that achieve
the approximation of the ROA for the multi-stability problem. Spe-
cializes in the study of polynomial systems under the MAK model-
ing paradigm for biochemical reaction networks. Precedes the ROA
Journal paper submission.

6. Colloquium/Abstract: Garcia-Tenorio Camilo, VandeWouwer Alain,
Mojica-Nava Eduardo, “Biochemical Reaction Networks, Dynamics
and Regions of Attraction: A Koopman Operator Based Approach”
in “38th Benelux meeting on Systems and Control”, Lommel, Bel-
gique, 2019.

Abstract that presents the preliminary concepts for the formula-
tion of the solutions based on the Koopman operator for the ROA
problem.
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7. Colloquium/Abstract: Garcia-Tenorio Camilo, VandeWouwer Alain,
Mojica-Nava Eduardo, “Order reduction for EDMD based on ob-
servable error: Application to the anaerobic digestion model” in
“Cape Forum”, Liege, Belgique, 2019.

Abstract that contains the first approach for the order and dimen-
sionality reduction of orthogonal polynomials as an observable basis
for the approximation of the Koopman operator. Exemplified via
the two-dimensional representation of the AD process. Precedes the
Journal submission with the complete analysis of the AD process
and observables reduction methods.

8. Colloquium/Abstract: Garcia-Tenorio Camilo, Sbarciog Mihaela,
Mojica-Nava Eduardo, Vande Wouwer Alain, “Anaerobic Diges-
tion, Dynamics and Regions of Attraction: A Koopman Opera-
tor Based Approach” in “9th IWA Specialized Conference on Sus-
tainable Viticulture, Winery Wastes &; Agri-industrial Wastewater
Management”, Mons, Belgium, 2019.

Abstract preceding the Journal paper on the analysis of the ROA
for the AD process. The abstract shows the feasibility of using the
operator based techniques to analyze the process.

9. Conference: Garcia-Tenorio Camilo, Quijano Nicanor, Mojica-Nava
Eduardo, Sofrony Jorge, “Bond-Graph model-based for IDA-PBC”
in “2016 IEEE Conference on Control Applications (CCA)”, Buenos
Aires, Argentina, 2016.

Conference paper with preliminary research concerning the use of
Bond-Graph models to systematically solve the interconnection and
damping assignment problem under passivity based control tech-
niques.

This thesis is organized as follows: Chapter 2 is a literature review
that covers some history and important references for the development
of the thesis. Chapter 3 contains the main theoretical concepts neces-
sary for the development of the thesis. Section 3.1 contains the theoreti-
cal aspects from discrete-time nonlinear dynamical systems. Under this
discrete-time framework, section 3.2 shows how to perform the analy-
sis under the multi-stability phenomena to determine the ROA of stable
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points. Next, Section 3.3 presents the Koopman operator, introduces its
spectrum, and gives an example of a particular type of discrete-time dy-
namical systems that accepts a closed analytical form. Given that this
operator is more often approximated than calculated, Section 3.4 shows
how to perform the approximation of the discrete part of the operator
based on the EDMD algorithm. In addition to the EDMD algorithm, the
aforementioned section shows the developed improvements to the algo-
rithm that allow the calculation of more accurate approximation with a
reduction of the necessary data. These improvements are the reduction
by p-q-quasi norms, polynomial accuracy and trigonometric embeddings.
For the latter, Section 3.5 shows a detailed description of how to perform
the embeddings along with the algorithmic concepts to handle systems
with forcing inputs. In the context of the EDMD algorithm, for input
signals and interconnected systems, Section 3.6 shows how to handle the
linear predictors coming from the EDMD to handle such combination of
signals to synthesize controllers for the interconnected systems. For clos-
ing this Chapter, Section 3.7 presents the method of mass action systems
for dealing with reaction and their corresponding differential equations.
Next, Chapter 4 shows the main results of the thesis regarding the data-
driven approximation of the ROA using the tools from the previous chap-
ter, describing how to handle the fixed points in Section 4.1, and their
stability in Section 4.2 and the method to analyze the fixed points of the
state space via the approximation of the Koopman operator to get the
ROA of the stable points. The remaining of the Chapter shows several
examples to demonstrate the effectiveness of the algorithm. Chapter 5
shows a detailed analysis of the anaerobic digestion process using the
EDMD-Koopman based approach for the estimation of the ROA, giving
a detailed description on the different methods proposed by the thesis.
Finally, Chapter 6 gives some additional discussion and conclusions re-
garding the subject matter of the thesis and its development.

Notation C denotes the field of complex numbers. R and R+ denote
the field of real and nonnegative real numbers, respectively. For any ma-
trix A ∈ Rn×n, A> denotes transpose, A+ denotes its pseudoinverse, and
||x|| represents the Euclidean norm. For a complex number λ, |λ| repre-
sents its absolute value. For any set A, Ā denotes its closure. For a set of
eigenspaces Ei, ⊕ represents their direct sum. The vector exponentiation
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M±η is defined term by term. A level set of an arbitrary function h(x)
for any constant c is Γ(h(x)) = {x ∈ Rn : h(x) = c}.
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Chapter 2

Literature Review

The main focus of the thesis concerns the approximation of the ROA,
more specifically, its boundary via the analysis of eigenfunctions from the
Koopman operator. Additionally, some of the most important contribu-
tions in this subject matter are in the refinement of the EDMD algorithm
that is a suitable data-driven technique for the approximation of the dis-
crete part of the Koopman operator. Finally, the thesis contributes some
techniques for handling control synthesis algorithms for interconnected
systems, again by improving on the current algorithmic techniques of
the EDMD algorithm. Therefore, this literature review will cover the
relevant topics in order of importance, that is, regions of attraction, the
Koopman operator and EDMD, and finally, interconnected systems.

2.1 Regions of Attraction

The analysis of dynamical systems with multiple equilibrium points
cover their location, the local stability characteristics and for Asymptot-
ically Stable (AS) equilibrium points, the ROA that describes the set
of initial conditions that converge to a specific AS point. The concept
of ROA is crucial for the analysis of a dynamical system, as it is often
necessary to maintain the system in one of the AS equilibrium points,
and guarantee that any perturbation does not make the system converge
into an undesired equilibrium or diverge.
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2.1. ROA CHAPTER 2. LITERATURE REVIEW

Traditionally, the ROA in the multi-stability problem comes from
the maximal Lyapunov set. This is a domain that contains the equilib-
rium point where the local Lyapunov function is positive definite and
its derivative along the trajectories is negative definite. Meaning, that
the estimate of the ROA is the largest level set of the Lyapunov func-
tion where the aforementioned conditions hold [Khalil, 2002], where the
constant value for this largest level set is often called the critical level
value.

Even though there are several optimization methods to find local
Lyapunov functions from linear programing or linear matrix inequali-
ties [Peter Giesl, 2015], this is not an easy task, especially when the
dimensionality of the system grows. Additionally, the level sets of the
Lyapunov function are a conservative approach, given that the Lyapunov
function is not unique, and it is a great challenge to find a function whose
level sets maximize the estimate of the ROA.

In addition to the Lyapunov methods, energy function methods give
a less conservative approximation of the ROA. These methods are re-
stricted to dynamical systems that accept a global or a local energy func-
tion, and the process for either case is similar, the difference between
them is in the method to find the critical level values. If the system
accepts a global function, the theory is equivalent to the Lyapunov func-
tion, that is, to find the critical level value of the energy function where
the energy function is non-negative, and its derivative along the trajec-
tories is decreasing. The critical level value comes from evaluating this
global energy function in the saddle points of the system and selecting
the point with the lowest value after evaluation. If the system accepts a
local energy function, the critical level value comes from the evaluation
of the closest saddle point with the local energy function. The difference
between energy and Lyapunov functions, is that for the latter, the largest
level set does not necessarily intercept with a saddle point in the bound-
ary as it is the case with either form of energy functions. Assume there
is an arbitrary system where the origin is stable and around these point
are several unstable and saddle points. Additionally, assume that there
is an arbitrary Lyapunov and energy function. Figure 2.1 shows such a
system with the potential outcome of the approximation of the ROA via
either method. The derivatives of Lyapunov (left) function along the tra-
jectories of the system are no longer decreasing when outside the square,
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while the energy function (right) is less conservative because its critical
value corresponds to the function evaluated at the nearest saddles (that
are equidistant to the origin).

Figure 2.1: Lyapunov vs. Energy function ROA.

The feasibility of getting a solution with either of these methods is
questionable. Starting from the difficulties in getting a function that sat-
isfies the conditions, coupled with the difficulties of calculating level sets,
those level sets are points of a n− 1 dimensional hyperplane of the state
space, where the classification of an arbitrary initial condition on higher
than three dimensional systems is not trivial. This classification depends
on the geometry of the stable manifold, and the ability to interpolate
between the identified points to perform the comparison.

Along with the traditional analysis of the differential equation via
Lyapunov or energy functions, there are some methods that rely on the
numerical integration of the differential equation in reverse time. This
process is summarized as follows: First, locate all the equilibrium points
of the system and determine their local stability by the Jacobian matrix.
Then, find the stable eigenvectors of the saddle points, next, find the in-
tersection of these eigenvectors with an ε-ball of the saddle point, i.e., a
small n-dimensional hyper-sphere around the saddle point, and integrate
numerically to check which of the asymptotically stable points ROA is
under analysis. Finally, perform the backward integration, or a trajec-
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tory reversing algorithm from several initial conditions close enough to
the intersection point between the stable eigenvectors and the ε-ball to
get the boundary of the ROA. In conclusion, the method gives a set of
trajectories that converge to the saddle point in the boundary. Although
this method can yield an accurate approximation of the boundary of
the ROA, it is computationally intensive, and has the same geometry
and interpolation problems of the Lyapunov and energy function meth-
ods. Figure 2.2 shows a summary of this process: from the fixed points
(green: stable dot, unstable crosses, saddle asterisks) there is an ε-ball
from the saddles. In the intersection of the stable manifold (red lines)
and the ε-ball (yellow dots) the forward integration of the system gives
the stable point under analysis. Finally, The backward integration from
initial conditions near the intersection (green dotted lines) gives an ap-
proximation of the boundary of the ROA.

Figure 2.2: Backward evolution for the ROA.

In summary, the method gives a set of trajectories that converge to
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the saddle point in the boundary. Although this method can yield an
accurate approximation of the boundary, it is computationally intensive,
and has the same geometry and interpolation problems of the Lyapunov
and energy function methods. For a detailed approximation of the ROA
in the problem at hand using backward integration we refer to [Sbarciog
et al., 2010b].

2.2 Koopman Operator & EDMD

The Approximation of the Koopman operator (1.1) for control has
its origins in the work of Koopman [1931], where he extends the linear
transformations of the Hilbert space given in harmonic equations and
ergodic theory to Hamiltonian systems. Up until the 2000s, the theory
had applications in ergodic, chaos, and measure theory analysis via the
adjoint Perron-Frobenius operator [Lasota and Yorke, 1982]. In the mid-
2000s Mezić [2005] established the relation that the Koopman operator
has with linear decompositions such as Karhunen-Loeve, singular value,
proper orthogonal, and dynamic mode decomposition (DMD). From this
relation, the Koopman mode decomposition (KMD) was able to exploit
the spectral characteristics of the operator to analyze nonlinear systems,
where KMD is a means to reduce complex flow models and analyze the
properties of the system near the attractors.

The possibility to get the spectrum of nonlinear systems for analysis
gave rise to the extended dynamic mode decomposition (EDMD) [Williams
et al., 2015]. The objective then shifted, from the reduced analysis near
the attractor to a higher dimensional representation. This representa-
tion results in the exchange of dimensionality with complexity, where
low-dimensional nonlinear systems have a high-dimensional representa-
tion with the advantage of the spectral analysis.

There are several variants of the EDMD algorithm, from norm-based
expansions, radial-basis functions, kernel-based [Williams et al., 2016],
orthogonal polynomials, and their variations [Kaiser et al., 2018, Li et al.,
2017]. These representations give tools for analyzing nonlinear systems
via the spectral decomposition and are the fundamentals for developing
synthesis algorithms such as the EDMD for control [Proctor et al., 2016].
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Within the theoretical framework under consideration, that is, the
use of an approximation of the Koopman operator to analyze the system,
there are some recent studies [Mezić, 2005, Lan and Mezić, 2013, Mauroy
et al., 2013, Mauroy and Mezic, 2016] that lead to our theoretical frame-
work and algorithm. Most notably, in [Mezić, 2005] the authors propose
a visual method where the time average of an observable (i.e., an arbi-
trary function of the state space) approximates the eigenfunction of the
Koopman operator whose eigenvalue is approximately unitary. Although
this method provides visual information in two-dimensional systems or
slices of three dimensional ones, the method does not give a criterion to
determine the convergence of an arbitrary point, and is not feasible to
analyze higher dimensional systems. Another notable approach is [Mau-
roy et al., 2013], where the authors calculate isostables of the system.
An isostable of a stable equilibrium point is a set of points, or initial
conditions that converge synchronously to the attractor, that is, they si-
multaneously intersect subsequent isostables along the trajectory to the
stable point. The definition of an isostable comes from the magnitude
of the Koopman operator slowest eigenfunction, whose level sets give the
isostables. Similar to the Lyapunov and energy function based methods,
this approach requires the calculation of the level sets of a particular func-
tion, which yields the same problems related to those methods regarding
the classification of an arbitrary initial condition in higher dimensional
systems.

2.3 Interconnected Systems

The concept of interconnected dynamical systems has been a topic of
research since the early ’70s [Siljak, 1972, Grujic and Siljak, 1973, Sezer
and Hüseyin, 1978], where the main focus was on large-scale and mul-
tilevel nonlinear dynamic systems interconnected by a function of their
output variables. The analysis consists of the way of attaining the sys-
tem stability conditions based on the local stability conditions and the
analysis of the interconnection functions of the system. The basis for
the analysis of the system is Lyapunov vector functions (LVF) [Bellman,
1962], in which a vector of distinct Lyapunov functions is defined based
on the functions of the different subsystems. A simple algebraic condition
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on the interconnection matrix gives the interconnection’s overall stabil-
ity. The local dynamics of the local state variables, the interconnection
functions, and a comparison vector function give the interconnection ma-
trix. These methods rely on the ability to find suitable Lyapunov and
comparison functions, which can be a difficult task. Furthermore, they
rely on having the subsystem’s dynamics identified.

Also, in the ’70s, and with a different approach, Willems [Willems,
1972b] set the bases for the energetic analysis of dynamical systems and
the energetic characteristics of the subsystems interconnection. Willem’s
stability analysis consists of the identification of the overall storage func-
tion of the system, all of these subject to the condition of the system
having a “Neutral” interconnection constraint (i.e., the interconnecting
system must be lossless). Another approach for linear systems from Shih-
Ho Wang and Davison [1973] consists of the decentralization of large scale
system’s controllers, with the system considered as a whole, and each sub-
system stabilized via local output feedback with segregated controllers.
Controllable and observable modes introduce the notion of “fixed modes”
that prove stability when they are in the left-hand part of the complex
plane.

In the ’80s, two approaches emerged, Ioannou [Ioannou, 1986] con-
siders the subsystems as linear with a low relative degree of interconnec-
tion to other systems. For the synthesis of controllers, he designs local
controllers assuming there is no noise in the output of the system and
sets the interconnection input to zero. He handles the interconnection
with a stability analysis that assumes that the noise in the system and
the interconnection inputs are bounded signals. The second approach is
from Linnemann [1984] that considers the stabilizability and reachability
conditions of the linear subsystems and the stability conditions of the
dynamics of the linear interconnections. He concludes that a system is
stabilizable by decentralized output feedback if the subsystems are sta-
bilizable by centralized output feedback, and the interaction system is
stable.

The prevalent ideas in the ’90s are by Siljak [1991], where large-scale
systems are interconnections of physical entities or pure mathematical
artifices. These descriptions are partitioned suitably in order to take
advantage of the structural features that reduce the dimensionality of
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the analysis and synthesis methods via graph-theoretical methods. The
approach considers the overall system as a collection of individual sub-
systems whose individual Lyapunov functions are combined to perform
the analysis.

Another interesting approach comes from Maschke and van der Schaft
[1996], where the notion of large-scale is not present; instead, they de-
velop the paradigm of network interconnection, where the different in-
terconnection structures appearing in the network models are analyzed
presenting interconnections as energy exchanging components in some
geometric space in correspondence with Dirac structures. This analysis
is an extension of Willems [1972a,b] energetic analysis, where the Dirac
structures represent the energetic exchange in the interconnection of La-
grangian and Hamiltonian dynamical formalisms.

More recently, an interesting approach to interconnected systems is
in terms of decentralized control as population games, and evolutionary
dynamics [Quijano et al., 2017]. The main idea of this approach is to
use a multi-agent system method where the interactions between agents
comes from a game-theoretical approach. The local controller problem
is a game where where the available control inputs are associated with
strategies and the control objective as a pay-off function.

For the analysis of interconnected systems via the Koopman operator,
there are two recent developments. Mauroy and Hendrickx [2017a] pro-
pose a method in which the application of the EDMD algorithm on some
sparse measurements of some nodes of the network, and possibly from
measurements of just one node of the network gives a spectral decom-
position. From the graph-theoretical properties of the EDMD spectral
decomposition, they deduce the topology of the network, i.e., the arrange-
ment of the different edges and nodes. Meaning that the algorithm is a
graph identification tool when the topology of the network is unknown.
More recently Mauroy and Hendrickx [2017b] extended their previous
theory for forced linear systems in the edges of the network.
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2.4 Summary

The current literature covers several aspects that give the starting
point for the development of the thesis. A key aspect in all of the pre-
vious developments is the availability of a differential equation model to
perform all the calculations. Given that it is not always possible to sat-
isfy this assumption and when possible, several identification techniques
rely on numerical and optimization methods to parametrize the models,
the use of algorithmic techniques such as the EDMD is a promising ap-
proach that relies on the same data, yet bypasses the nonlinear models
to give linear predictors of the state in an extended space of functions.
Therefore, improving the algorithm such that it gives more accurate ap-
proximations with less amount of data is a valuable line of research.

On the subject of linear approximations in an extended space of func-
tions, there is the Koopman operator, an infinite transformation of the
state space into a function space where the evolution of a set of so-called
eigenfunctions, relate to the evolution of the original state space. The
availability of Koopman operator and the EDMD algorithm, and the
fact that under some assumptions on the amount of data and the size
of the extended space of functions, the EDMD converges to the point
spectrum of the Koopman operator, continuing with the line of research
of the possibilities that the combination of these two paradigms is also
a promising approach. Specifically concerning the Koopman operator, a
deeper characterization of the properties of the available eigenfunctions
and their relation to the analysis of nonlinear systems is an interesting
line of research.

An interesting property of the eigenfunctions of the discrete-time
Koopman operator is that their eigenvalues determine their evolution (1.1).
From this property a nontrivial eigenfunction that has a unitary eigen-
value must be invariant, its value must not change along the trajectories
of the states of the system. Matching this phenomena with the fact that
the analysis of attraction regions, or domains of attractions is based on
the ability to find invariant sets of these kind, shows that it is worth
pursuing the line of research that combines these two concepts for the
analysis of non-linear systems.

For the dual aspect of analysis in the subject of control systems the-
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ory, i.e., synthesis algorithms, the EDMD and the Koopman operator
are also an alluring approach. The world of linear systems control has
a plethora of techniques for driving systems into a desired state. These
techniques are available for driving non-linear systems in a vicinity of the
equilibrium points where the linearization of the system is valid. Then
again, it is clear the advantageous use of linearization techniques such
as the EDMD that provide linear approximations that are valid in the
portion of the state space from which the samples come from. Coupled
with the availability of the point spectrum of the Koopman operator,
it is reasonable that there is an opportunity to bring and adapt linear
systems techniques into the expanded linearization from the EDMD ap-
proximation of the Koopman operator.

Exploiting the linear predictor from the EDMD algorithm not only
comes from the possibility to adapt linear systems techniques, these ap-
proximations are versatile in the use of different forms of observables for
the state variables, and the inputs. Notably, in the context of inter-
connected systems, some inputs are not driven by a controller although
their action affects the dynamics of the system, for these inputs, there it
not necessary to have linear observables, instead, polynomial observables
have the possibility to provide more accurate approximations according
to this inputs, while keeping the linear effect on the driven inputs. These
paradigm is specially useful for synthesizing model predictive control al-
gorithms that require linear driven inputs. The combination of all these
methods has the potential of providing a tool for decentralized control of
interconnected systems.
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Chapter 3

Dynamical Systems, ROA &
EDMD

In order to present the methods based on the discrete time approxi-
mation of the Koopman operator via the EDMD algorithm, this section
will cover preliminary concepts of dynamical systems theory that are
necessary to understand the subsequent development. As any traditional
control systems analysis, this section starts with the definition of fixed
points and presents the concept of stability based on the classical Lya-
punov analysis. Along with these definitions, this chapter presents the
Hartman-Grobman theorem that defines what is a hyperbolic fixed point.
Finally, this chapter presents the multi-stability problem along with the
theoretical aspects that define the region of attraction.

Given that all of the theoretical preamble is developed for nonlinear
system with explicit knowledge of the differential model equations, the
next development of this theoretical chapter is the basic theory of the
Koopman operator and the EDMD algorithm. Besides the theoretical
foundation for the subsequent developments, this chapter also includes
the algorithmic improvements to the calculation of the EDMD. Those
improvements are the reduction methods by p-q-quasi norms and polyno-
mial accuracy, the expansion of the state of the system by trigonometric
embeddings and the production of bi-linear predictors with mixed affine
and non-affine inputs for handling interconnected systems. Furthermore,
this chapter presents the synthesis of controllers for these interconnected
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systems making use of these linear predictors.

To conclude the chapter, and in line with the general topic of this
work, the last section shows how to get polynomial models from reaction
networks that serve to illustrate the different developments of the thesis
due to their geometrical properties.

3.1 Discrete Nonlinear Systems

Consider the autonomous nonlinear discrete-time system (M;T (x); k),
with state variables x ∈ M where M ⊆ Rn is the nonempty compact
state space, k ∈ Z+

0 is the discrete time, and T : M →M is the differ-
entiable vector-valued evolution map, i.e.,

x(k + 1) = T (x(k)), x0 = x(0). (3.1)

The solution to (3.1) is the successive application of T from an initial
condition x0 ∈ M at k = 0, i.e., xk = T k(x0) ∈ M, which is an infinite
sequence called a trajectory of the system.

As an example, consider an arbitrary non-linear system in discrete-
time with two states [Chiang and Alberto, 2015], depicted in Figure 3.1
with evolution map

x1(k + 1) = x1(k)3 +
3

4
x1(k) (3.2)

x2(k + 1) = x2(k)3 +
3

4
x2(k) (3.3)

Suppose x∗ ∈M is a fixed point of (3.1); i.e.,

Definition 3.1.1 (Fixed Point). Let x∗ be a fixed point of the dynamical
system (M;T (x); k), then the flow map T k(x∗) maps into itself, i.e.,

T k(x∗) = x∗. (3.4)

To obtain the fixed points in the Example (3.2-3.3), it is necessary to
solve

x = x3 +
3

4
x, (3.5)
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Figure 3.1: Discrete-time system with an AS point at the origin, unstable
points at the corners and unstable-saddles at the edges.

whose solution is x = 0 or x = ±0.5, i.e., there are nine fixed points, one
at the origin, two at (0,±0.5), two at (±0.5, 0) and four at (±0.5,±0.5).

Definition 3.1.2 (Stability). The fixed point x∗ of x(k + 1) = T (x(k))
is

a. Stable if, for each ε(x∗) > 0, there is a δ = δ(ε) > 0 such that

‖x0 − x∗‖ < δ ⇒
∥∥T k(x)− x∗

∥∥ < ε. (3.6)

b. Unstable if it is not stable.

c. Asymptotically stable if, δ can be chosen such that

‖x0 − x∗‖ < δ ⇒ lim
k→∞

T k(x) = x∗ (3.7)

d. Globally asymptotically stable if, x∗ is unique and δ can be chosen
arbitrarily large.
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Returning to the example at hand, the origin satisfies condition a and
condition c of Definition 3.1.2 making it an asymptotically stable (AS)
point while other fixed points are unstable.

In order to determine the stability of an equilibrium point it is very
useful to understand the qualitative behavior near the equilibrium point.
The linearization principle around an equilibrium point states that the
analysis of eigenvalues of the linear state transition matrix gives the sta-
bility of the point. The analysis of eigenvalues and eigenvectors under
consideration comes from systems that satisfy the Hartman-Grobman
theorem [Khalil, 2002, Coayla-Teran et al., 2007, Giesl and Hafstein,
2015].

Theorem 3.1.1 (Hartman-Grobman). Consider system (3.1) with a
fixed point x∗ and consider the linear system x(k + 1) = Ax(k) where
A is the Jacobian DT (x∗)|x?. If the modulus of all the eigenvalues of A
are different from one (i.e., Hyperbolic), then there exists a homomor-
phism H, defined on a neighborhood of x∗such that, for all initial points
x0 along the flows of the system T k(x)

H ◦ T k(x0) = AkH(x0) (3.8)

is satisfied. This means that the homeomorphism preserves the sense of
the flows of the nonlinear system and is chosen to preserve parametriza-
tion by time.

A hyperbolic fixed point of a non-linear discrete time system is a
point where all the eigenvalues of the linearization at the point have a
modulus different from one. According to the Hartman-Grobman theo-
rem in discrete-time a hyperbolic fixed point accepts a local linearization
that preserves the behavior of the non-linear system. Evaluating this
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condition on the current example gives,

DT (x) =

[
3x2

1 + 3
4

0
0 3x2

2 + 3
4

]
DT (x)|(0,0) =

[
3
4

0
0 3

4

]
(3.9)

DT (x)|(0,±0.5) =

[
3
4

0
0 3

2

]
(3.10)

DT (x)|(±0.5,0) =

[
3
2

0
0 3

4

]
(3.11)

DT (x)|(±0.5,±0.5) =

[
3
2

0
0 3

2

]
, (3.12)

given that all the eigenvalues of the different fixed points are real and dif-
ferent from one, they are all hyperbolic. Furthermore, the modulus of the
eigenvalues of a particular hyperbolic fixed point give its corresponding
local stability.

Theorem 3.1.2 (Local stability). The local stability of an equilibrium
point x∗ of a linear discrete time system with respect to its eigenvalues
µi are:

a. The equilibrium point x∗ is asymptotically stable if |µi| < 1 for all
eigenvalues of its state transition matrix.

b. The equilibrium point x∗ is unstable if |µi| > 1 for one or more
eigenvalues of its state transition matrix.

c. The equilibrium point x∗ is a saddle point if some but not all |µi| <
1, which means that the equilibrium has some modal components
that converge to it.

The linearization principle, along with the local stability of fixed
points states that a fixed point x∗s is AS if the modulus of all the eigenval-
ues of the Jacobian matrix evaluated at the fixed point are less than one,
and unstable otherwise with an index k equal to the number of eigenval-
ues with modulus greater than one. A hyperbolic fixed point is of type-k
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if k eigenvalues of the Jacobian matrix have modulus greater than one. If
only one eigenvalue has modulus greater than one x∗ is a type-one fixed
point. When the index k of unstable fixed points is equal or greater than
one, and less than n, the fixed point is called a saddle; denoted by x̂∗.
The type-one saddle points play an important role in the approximation
of the ROA.

Returning to the discrete-time Example (3.2-3.3), and analyzing the
nine fixed points of the system based on Theorem 3.1.2 gives as a re-
sult that the origin is asymptotically stable, the edges of the “square”
are saddle points of type-one and the corners are unstable. Table 3.1
summarizes these results.

Table 3.1: Fixed points, stability and type-k for the arbitrary non-linear
system (3.2)

Equilibrium point Stability type-k

(0, 0) AS type-0
(0,±0.5) Saddle type-one
(±0.5, 0) Saddle type-one
(±0.5,±0.5) Unstable type-2

When the AS fixed point is not unique, the concept of attraction
regions of the AS fixed points defines the subset of the state space where
an arbitrary initial condition converges to any of them.

3.2 Regions of Attraction

The central question is: how far can an initial condition be from the
AS equilibrium point in order that the discrete-time nonlinear evolution
map (3.1) converges to it? Or, how big can a disturbance from an AS
be such that state converges to another AS point or diverges? These
questions are especially relevant for the case when the equilibrium point
is not unique, and there are several AS points. For that case the ROA is
the open set from which every initial condition converges to a particular
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AS point x∗s, defined as

RA(x∗s) ≡
{
x ∈ Rn : lim

k→∞
T k(x) = x∗s

}
. (3.13)

The least conservative approach is to characterize the stability bound-
ary of the attraction region, defined as the closure of the set (3.13) with-
out its interior

∂RA(x∗s) = RA(x∗s)\int(RA(x∗s)). (3.14)

For the particular case of dynamical systems, this boundary comes
from the analysis of saddle fixed points, which have modes that converge
to them, and modes that diverge from them. The method consists of
finding the stable manifolds of the saddle points, where the union of
the stable manifolds of saddle points in the stability boundary of an AS
gives the entire boundary. The objective is to approximate these stable
manifolds.

From the linearization principle it is known that eigenvalues λ with
modulus less than one are stable eigenvalues with stable eigenvectors
and generalized eigenspace Eλ that spans the stable eigenspace Es of
the fixed point; i.e., Es = ⊕E|λ|<1. Conversely, eigenvalues greater than
one are unstable eigenvalues with unstable eigenvectors and generalized
eigenspace that spans the unstable eigenspace Eu of the fixed point;
i.e., Eu = ⊕E|λ|>1. The type of the hyperbolic fixed point defines the
dimension of the corresponding eigenspaces, Eu ∈ Rk and Es ∈ Rn−k.
The space state Rn is the direct sum of the two invariant stable and
unstable eigenspaces Rn = Es ⊕ Eu.

As the Hartman-Grobman theorem establishes a one-to-one corre-
spondence between the nonlinear system and its linearization, locally,
the stable and unstable eigenspaces are tangent to the stable and un-
stable manifolds of the hyperbolic fixed point. The definitions of these
manifolds are

W s(x∗) = {x ∈ Rn : lim
k→∞

T k(x) = x∗}, (3.15)

W u(x∗) = {x ∈ Rn : lim
k→−∞

T k(x) = x∗}, (3.16)

for the stable and unstable manifold respectively, assuming there is an
inverse for T k(x).
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With these definitions, the theorem characterizing the ROA for asymp-
totically stable fixed points, with stability boundary ∂RA(x∗s), is taken
from [Chiang and Alberto, 2015, Th. 9-(10,11)], where the system satis-
fies the following assumptions:

Assumption 1. All the fixed points on the stability boundary are saddle
points.

Assumption 2. The stable and unstable manifolds of the fixed points on
the stability boundary satisfy the transversality condition1.

Assumption 3. Every trajectory on the stability boundary approaches
one of the saddle points as k →∞.

Theorem 3.2.1. Consider an autonomous nonlinear discrete-time dy-
namical system (3.1), satisfying Assumptions 1-3. Let {x̂∗i }Pi=1 be the P
saddle points on the stability boundary of an asymptotically stable fixed
point. Then,

a. x̂∗i ∈ ∂RA(xs) if and only if W u(x̂∗i ) ∩RA(x∗s) 6= ∅

b. ∂RA(x∗s) = ∪W s(x̂∗i ).

Hence, the stability boundary is the union of the stable manifolds of
the hyperbolic fixed points on the stability boundary.

To illustrate the role of the stable manifolds of saddle points in the
boundary, recall the non-linear example from Section 3.1 equation (3.2).
This system has four type-one saddle points at (0,±0.5) and (±0.5, 0),
where their corresponding stable and unstable eigenspaces are

Es(0, 0.5) = {x ∈ R2 : x2 = 0.5} (3.17)
Eu(0, 0.5) = {x ∈ R2 : x1 = 0} (3.18)

Es(0,−0.5) = {x ∈ R2 : x2 = −0.5} (3.19)
Eu(0,−0.5) = {x ∈ R2 : x1 = 0} (3.20)
Es(0.5, 0) = {x ∈ R2 : x1 = 0.5} (3.21)
Eu(0.5, 0) = {x ∈ R2 : x2 = 0} (3.22)

Es(−0.5, 0) = {x ∈ R2 : x1 = −0.5} (3.23)
Eu(−0.5, 0) = {x ∈ R2 : x2 = 0}. (3.24)

1For manifolds A and B inM, the transversality condition is satisfied if the tangent
spaces of the intersection between A and B span the tangent space ofM.
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Figure 3.2 depicts the stable eigenspaces of these type-one saddle points
with solid black lines, and highlights the ROA of the AS point in the
origin as the union of these sets.

Figure 3.2: Region of attraction as the union of the stable manifolds
(solid black lines) of the saddle fixed points.

Remark 1. Assumption 1 is a generic property of differentiable dynami-
cal systems, while Assumptions 2 and 3 must be verified. Figure 3.3 shows
the importance of Assumption 2, where a part of the stable manifold of x̂∗A
does not intercept with the stability boundary. For this particular case,
the transversality condition is not satisfied because part of the tangent
space of the unstable manifold of x̂∗A is equal to a part of the tangent
space of the stable manifold of x̂∗B.

3.3 The Koopman Operator

This section contains the basic theory of the Koopman operator for
systems that accept a discrete-time point spectrum. The main quality of
this operator, related to the underlying dynamical system is the linear
evolution of a set of observables (later defined as eigenfunctions) that
capture the nonlinear evolution of the system.
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x̂
∗

A x̂
∗

B

x
∗

s

Figure 3.3: Transversality condition violation by the stable and unstable
manifold of saddle points.

Consider the autonomous nonlinear discrete-time dynamical system (3.1),
and a set of observation functions

f(x) : M→ C

that belong to some function space, i.e., f(x) ∈ F . For these functions
there is a discrete operator Uk, where the action of this operator on ob-
servables defines their evolution. This is the Koopman operator, and its
relationship with the observables (i.e., arbitrary functions of the states)
and the states of the system is[

Ukf
]

(x) = f
(
T k(x)

)
. (3.25)

In other words, the time-evolution of observations is the observations
of the time-evolution of states. The trade-off with this approach con-
cerns linearity and dimensionality, a finite-dimensional nonlinear sys-
tem being described by an infinite-dimensional linear one. The linear-
ity of the operator allows it to have a spectral decomposition of tuples
{(µi, φi(x), vi)}∞i=1 of eigenvalues, eigenfunctions and modes that contain
information on the underlying dynamical system. The eigenvalues and
eigenfunctions satisfy the condition that the corresponding eigenvalue
determines the dynamics associated with a specific eigenfunction as

[Ukφi](x) = µki φi(x), (3.26)

and the Koopman modes serve to recover the observation functions f(x),
i.e., they map the linear evolution of eigenfunctions (3.26) into the orig-
inal observables by weighting the eigenfunctions as

f(x) =
∞∑
i=1

viφi(x). (3.27)
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The importance and advantages of the Koopman operator and the di-
agonalization provided by the spectral decomposition are highlighted
by (3.26) and (3.27), which show that the eigenvalue associated to an
eigenfunction defines its time evolution and that the modes recover the
value of the defined set of observables f(x). Therefore, the evolution of
observables with respect to the spectral decomposition of the Koopman
operator is

f
(
T k(x)

)
=
[
Ukf

]
(x) =

∞∑
i=1

viµ
k
i φi(x). (3.28)

3.3.1 Koopman Operator Example

The exact solution to the Koopman operator of a dynamical system is
available for a family of polynomial difference equations [Brunton et al.,
2016a]. This closed form solution is only possible for systems with a
unique fixed point. Therefore, there is no exact solution for the problem
of approximating the ROA. Consider the following autonomous nonlinear
discrete-time dynamical system

x1(k + 1) = γx1(k)

x2(k + 1) = δx2(k) + (γ2 − δ)x2
1(k). (3.29)

The solution of the system under the Koopman operator requires the
definition of a set of observable functions whose evolution is defined by
the operator as in (3.25). For this particular case (see [Brunton et al.,
2016a] for the deduction of the set of observables), the set of observables
and the Koopman system are

f(x) =

x1

x2

x2
1

 ⇒ f (x(k + 1)) =

γ 0 0
0 δ (γ2 − δ)
0 0 γ2

x1

x2

x2
1

 . (3.30)

The spectral decomposition of the operator gives the set of eigenvalues
µ1 = γ, µ2 = γ2 and µ3 = δ, and the sets of left and right eigenvectors,
defined as W ? and Ξ respectively and given by

W ? =

1 0 0
0 0 1
0 1 −1

 Ξ =

1 0 0
0 1 1
0 1 0

 . (3.31)
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From the left eigenvectors and the set of observables f(x), the definition
of the set of eigenfunctions Φ(x) of the Koopman operator is the observ-
ables weighted by the left eigenvector, i.e,. Φ(x) =

(
f(x)>W ?

)>, which
gives

Φ(x) =

φ1(x)
φ2(x)
φ3(x)

 =

[x1 x2 x2
1

] 1 0 0
0 0 1
0 1 −1

>

=

 x1

x2
1

x2 − x2
1

 . (3.32)

With the complete spectral decomposition of the Koopman operator
for system 3.29, with right eigenvectors Ξ, eigenvaluesM = diag(γ, γ2, δ),
and using (3.28), the evolution of observables in matrix form is

f (x(k + 1)) = ΞMΦ(x(k))

=

1 0 0
0 1 1
0 1 0

γ 0 0
0 γ2 0
0 0 δ

 x1(k)
x2

1(k)
x2(k)− x2

1(k)

 , (3.33)

and the evolution of states [x1, x2]> = B>f(x) is

x(k + 1) = B>ΞMΦ(x(k))

=

1 0
0 1
0 0

> 1 0 0
0 1 1
0 1 0

γ 0 0
0 γ2 0
0 0 δ

 x1(k)
x2

1(k)
x2(k)− x2

1(k)


=

[
γx1

δx2 + (γ2 − δ)x2
1

]
, (3.34)

where B ∈ R3×2 is a selection matrix with a unitary value per column in
the index of the observables that capture every one of the states. In this
particular case, the set of observables contains the functions that capture
every one of the states, i.e., f1(x) = x1 and f2(x) = x2. Note that (3.34)
circles back to the original dynamical system (3.29).

It is often difficult to obtain a closed analytical form for the Koop-
man operator, and due to the fact that for the multiple stability problem
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at hand, there is no known closed analytical form of the discrete-time
Koopman operator it is necessary to use approximation techniques to
circumvent this difficulty. Algorithms such as the EDMD approximate a
truncated version of the Koopman operator with data from the dynam-
ical system [Korda and Mezić, 2018a]. Furthermore, complementing the
algorithm with order and dimension reduction methods, coupled with the
retention of order one polynomial elements in the basis, provides a way
to have accurate approximations of polynomial systems that provide all
the necessary components to perform the analysis.

3.4 Extended Dynamic Mode Decomposition

The objective of the EDMD algorithm [Williams et al., 2015] is to get
a truncated approximation of the discrete-time Koopman operator based
on sampled data of the underlying system [Klus et al., 2016, Korda and
Mezić, 2018a]. Consider the autonomous nonlinear discrete dynamical
system (3.1), the EDMD algorithm to approximate the Koopman oper-
ator in discrete-time requires N pairs of data snapshots, either from a
real system or a numerical simulation at a specific sampling ∆t. The
snapshot pairs, {(xi, yi)}Ni=1, where yi = T (xi), are organized in data sets

X =
[
x1 x2 . . . xN

]
, Y =

[
y1 y2 . . . yN

]
. (3.35)

The “extended” part of the EDMD algorithm consists in the approxi-
mation of the Koopman operator of a “lifted” space of the state vari-
ables, rather than approximating the state space as in the DMD al-
gorithm [Schmid, 2010]. The “lifting” procedure consists in evaluating
the state space of the system on a vector-valued function of observables
Ψ = [ψ1 · · ·ψd]T :M→ C1×d [Williams et al., 2015]. The approximation
of the Koopman operator will be of dimension d. This operator has to
satisfy the condition

Ψ(y) = UdΨ(x) + r(x), (3.36)

where r(x) ∈ F is the residual term to minimize in order to find Ud.
This problem is closely related to the least mean squares problem, poly-
nomial chaos expansion [Sudret, 2008], statistical estimation [Walter and
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Pronzato, 1997], and machine learning [Neumaier, 2003] problems. Con-
sidering that the best approximation is the solution that minimizes the
residual term, a solution of the objective function

‖r(x)‖2 =
1

N

N∑
i=1

1

2
‖Ψ(yi)− UdΨ(xi)‖2

2 , (3.37)

gives an accurate approximation of Ud. The solution corresponds with
the ordinary least-squares [Williams et al., 2015], which has a closed
analytical form given by,

Ud , AG+, (3.38)

with matrices G,A ∈ Cd×d defined by

G =
1

N

N∑
i=1

Ψ(xi)Ψ(xi)
>, (3.39)

A =
1

N

N∑
i=1

Ψ(xi)Ψ(yi)
>. (3.40)

Remark 2. A critical factor for the effectiveness of the solutions to (3.37)
is the choice of observables Ψ. Although there are several proposed pro-
cedures, the choice of the so-called dictionary elements is still an open
problem.

For a formal deduction of solution (3.38), consider the problem (3.37)
in matrix form.

min
Ud

J = min
Ud

1

2
‖Ψ(Y )− UdΨ(X)‖2

2. (3.41)
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The solution to the minimization problem is

J =
1

2
(Ψ(Y )− UdΨ(X))(Ψ(Y )− UdΨ(X))> (3.42)

=
1

2
(Ψ(Y )− UdΨ(X))(Ψ(Y )> −Ψ(X)>U>d ) (3.43)

=
1

2
(UdΨ(X)Ψ(X)>U>d −Ψ(Y )Ψ(X)>U>d + Ψ(Y )Ψ(Y )>)

(3.44)
d

dUd
J =

1

2
(2UdΨ(X)Ψ(X)> − 2Ψ(Y )Ψ(X)>) (3.45)

0 = UdΨ(X)Ψ(X)> −Ψ(Y )Ψ(X)> (3.46)
Ud = (Ψ(Y )Ψ(X)>)(Ψ(X)Ψ(X)>)+ (3.47)

= AG+. (3.48)

Solution (3.38) is suitable when matrix G is not ill-conditioned. Oth-
erwise, solutions based on the Moore-Penrose pseudoinverse or regu-
larized least-squares give a more accurate result. The former being
the most accurate, and the latter being computationally efficient and
able to provide sparse approximations of Ud. For the regularized least-
squares case, the objective is to find a set of d linear fitting functions
{hj(x) = UdjΨ(x)T}dj=1 of the ‘lifted” space, where j indexes the rows of
the operator that minimize the error function:

E(Udj) =
1

N

N∑
i=1

L(ψj(yi), hj(xi)) + αR(Udj), (3.49)

where L is the loss function that measures the model fit, R is the reg-
ularization term, and α ∈ R+ is a nonnegative parameter. The choice
of L gives different types of classifiers [Rosasco et al., 2004], while differ-
ent regularization terms R provide various solutions to the over fitting
problem that arises from ill-conditioned problems.

The common choices for the loss function are the Ridge regression,
absolute value loss, and support vector machines (epsilon-intensive) func-
tions [Rosasco et al., 2004]. For the regularization term, the common
choices are l1, l2, and a linear combination of the two (elastic net) norms.
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With the solution to (3.36), and the spectral decompositionM,Ξ,W ∗,
where M = diag(µ1, . . . , µd) is the diagonal matrix of eigenvalues, Ξ =
[ξ1, . . . , ξd] is the aforementioned matrix of right eigenvectors, and W ? =
Ξ−1 is the matrix of left eigenvectors. The definition of the eigenfunctions
of the Koopman operator according to EDMD algorithm (according to
Williams et al. [2015]) Φ = [φ1, . . . , φd]

> are

Φ>(x) = Ψ(x)>W ?, (3.50)

from (3.26) that describes the evolution of eigenfunctions according to
their eigenvalue, the evolution of eigenfunctions from the EDMD algo-
rithm is

Φ(x(k)) = MkΦ(x0), (3.51)

with the evolution of eigenfunctions, the right eigenvectors or modes serve
to recover the original set of observables

Ψ(x) = ΞΦ(x), (3.52)

and the time evolution of observables according to the spectrum of the
Koopman operator [Williams et al., 2015] is

Ψ(T k(x)) = ΞMkΦ(x). (3.53)

To recover the state, we define a matrix B ∈ R(d×n) with a unitary
value per column in the index of an injective observable-function and
zeros otherwise. This matrix selects the functions whose inverse gives
the value of the state. If we define this set of functions selected by B as
ΨB(x), then, with (3.53), the approximation of the state evolution map
T k(x) = xk from the initial condition x0 in terms of the approximation
of the Koopman decomposition {(µi, φi(x), vi)}di=1 is

x̄(k) = T̄ k(x0) = Ψ−1
B

(
B>ΞMkΦ(x0)

)
. (3.54)

Note that the Koopman representation of the system also allows for a
clean representation of the backward evolution of the states given by

x̄(−k) = Ψ−1
B

(
B>ΞM−kΦ(x0)

)
. (3.55)

Given that the approximation of the discrete-time Koopman operator
comes from a set of orbits of the system, the comparison between these
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theoretical orbits against the evolution map of the Koopman operator
gives a measure for the algorithms accuracy. The empirical error for a
number of Ns trajectories, where each has a number of Nk data points is

e =
1

Ns

Ns∑
i=1

1

Nk

Nk∑
k=1

|T k(xi)− T̄ k(xi)|
|T k(xi)|

. (3.56)

A low error over a set of test trajectories of the Koopman state evolu-
tion map, gives a Koopman operator approximation whose eigenfunctions
are accurate enough for the subsequent calculations related to them.

3.4.1 Observables

A critical part of the approximation via the EDMD algorithm is the
choice of observables. These functions of the state ψl(x) usually consists
of an orthogonal basis of polynomials [Koekoek et al., 2010], radial basis
functions, or an arbitrarily constructed set with polynomial elements,
and trigonometric functions, among others [Brunton et al., 2016b].

The choice of orthogonal polynomials for the approximation of the
Koopman operator has the advantage that the rank and dimension of
the vector-valued function of observables Ψ can be reduced [Konakli and
Sudret, 2016a,b], and the state can be recovered by the inverse of injective
observable-functions. A sequence of orthogonal polynomials {πα(x)}pα=0

where πα(x) is a univariate (i.e., x ∈ R) polynomial of degree α ∈ N+

up to order p. This sequence is defined over a range [a, b] where some
inner product between distinct elements is zero, i.e., 〈πi(x), πj(x)〉 = 0
for i 6= j, and satisfies a particular ordinary differential equation. For
example, the set of Laguerre polynomials, which is defined over the range
[0,∞] satisfies the ordinary differential equation

x
d2y(x)

dx2
+ (1− x1)

dy(x)

d
+ αy(x) = 0, α = 1, 2, . . . . (3.57)

Consider an autonomous nonlinear discrete-time dynamical system
such as (3.29), where the number of state variables n = 2, and the selected
polynomial basis consists of Laguerre polynomials. Table 3.2 shows the
set of univariate polynomials on the first component of the state space
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vector (i.e., j = 1) for a choice of maximum polynomial degree p = 3,
and a set of indices α1 = {0, 1, 2, 3}.

Table 3.2: Basis for the first state variable x1. Solution to the Laguerre
ODE: x1ÿ + (1− x1)ẏ + α1y = 0 where ẏ = dy

dx1
.

J(α1) ODE πα1(x1) = y(x1)
J(01) x1ÿ + (1− x1)ẏ = 0 1
J(11) x1ÿ + (1− x1)ẏ + y = 0 −x1 + 1
J(21) x1ÿ + (1− x1)ẏ + 2y = 0 1

2
x2

1 − 2x1 + 1
J(31) x1ÿ + (1− x1)ẏ + 3y = 0 −1

6
x3

1 + 3
2
x2

1 − 3x1 + 1

With these univariate polynomials, every element of the vector-valued
function of observables is the tensor product of n univariate polynomials,
that is,

ψl(x) =
n∏
j=1

παj
(xj), l = 1, . . . , d. (3.58)

If we consider a full degree p and full dimension vector-valued function
of observables, the order and dimension grows exponentially with the
number of state variables n. The maximum degree of the polynomials in
Ψ(x) is pn and the dimension of the whole set is

d = dimΨ(x) =

(
n+ p+ 1

p+ 1

)
=

(n+ p+ 1)!

(p+ 1)!n!
. (3.59)

The exponential growth of the order produces an over-fitting problem
in the discrete approximation of the Koopman operator via the EDMD
algorithm, and the growth in the dimension has the course of dimen-
sionality problem, especially in the definition of the discrete Koopman
matrix from (3.38) that needs the inverse of matrix G. To avoid these
problems it is necessary to restrict the maximum order of the polynomial
basis and its dimension.
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3.4.2 Reduction by p-q-quasi Norms

The proposed reduction of the order and dimension of the polynomial
basis is via a p-q-quasi norm2 reduction first introduced in the solution
of polynomial chaos problems [Konakli and Sudret, 2016a]. Define the
q-quasi norm as,

‖α‖q =

(
n∑
i=1

αqi

) 1
q

, (3.60)

for a polynomial element ψl(x) consider a maximum degree p ∈ N, a
quasi norm q ∈ R+ and define the set of indexes αl as

αl = {α ∈ Nn : ‖α‖q ≤ p}. (3.61)

Given that each element of the polynomial basis is the tensor prod-
uct of the univariate polynomials (3.58) in the retained indexes given
by (3.61), this approach reduces the maximum order, and the overall
dimension of the vector-valued function of observables.

Figure 3.4 shows the effect of the truncation scheme for the previous
example on Laguerre polynomials (3.57) for the case where the maximum
polynomial order is p = 3, and the number of state variables is n = 2.
Certainly, reducing the value of the quasi norm q, reduces the maximum
order and dimension of the vector valued function of observables.

Every element of the polynomial basis comes from the tensor product
in (3.58), and a full basis, i.e., with q = ∞, has 16 elements resulting
from all the available combinations of indices in two state variables with
a univariate order less or equal to p. The available combinations for this
example are

α =

{
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

}
. (3.62)

This selection gives the following set of orthogonal polynomials as
the vector-valued function of observables for the approximation of the

2The quantity ‖·‖q is not a norm because it does not satisfy the triangle inequality.
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Figure 3.4: Retained basis terms for the low-rank polynomial basis.

discrete-time Koopman operator.

Ψ(x) =



J(01)J(02)
J(11)J(02)
J(21)J(02)

...
J(01)J(12)
J(11)J(12)

...
J(31)J(32)


=



1
−x1 + 1

1
2x

2
1 − 2x1 + 1

...
−x2 + 1

(−x1 + 1)(−x2 + 1)
...

(−1
6x

3
1 + 3

2x
2
1 − 3x1 + 1)(−1

6x
3
2 + 3

2x
2
2 − 3x2 + 1)


(3.63)

If the selection of truncation scheme is a value q = 0.6, the set of retained
indices reduces the polynomial basis dimension from 16 elements to 8,
and the maximum order from 9 to 3. That is, the remaining indices to
perform the tensor product on univariate polynomials are,

α =

{
0 1 2 3 0 1 0 0
0 0 0 0 1 1 2 3

}
, (3.64)
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This new set of indices redefines the vector valued function of observables

Ψ(x) =



J(01)J(02)
J(11)J(02)
J(21)J(02)
J(31)J(02)
J(01)J(12)
J(11)J(12)
J(01)J(22)
J(01)J(32)


=



1
−x1 + 1

1
2
x2

1 − 2x1 + 1
−1

6
x3

1 + 3
2
x2

1 − 3x1 + 1
−x2 + 1

(−x1 + 1)(−x2 + 1)
1
2
x2

2 − 2x2 + 1
−1

6
x3

2 + 3
2
x2

2 − 3x2 + 1


(3.65)

Even though this reduction method eliminates most of the higher
order polynomial elements in the vector valued function of observables,
it does not guarantee that the remaining elements give an accurate ap-
proximation of the Koopman operator. Some polynomial elements in the
basis rather than reducing the error of the approximation, will increase
it. Therefore, a second reduction method based on the individual error of
each element of the basis reduces the dimension even further, and gives
a more accurate approximation.

3.4.3 Reduction by Polynomial Accuracy

The idea of the reduction is to calculate the error of the individ-
ual multivariate polynomials and eliminate the elements whose error is
greater than a specified threshold. The approximation of the Koopman
operator from the EDMD algorithm comes from a set of the system or-
bits. This set of orbits comes from one of two distinct sets, one for solving
the least-squares problem (9) and one for testing the accuracy of the so-
lution. Evaluating the posterior time event Y in every element of the
vector-valued function, and comparing it with the effect of the operator
on the evaluation of the anterior time event X, gives a metric of the con-
tribution of the individual multivariate elements to the accuracy of the
solution. Every element of this error criterion, ε = (ε1, · · · , εd) is

εl =
1

N

N∑
i=1

|ψl(yi)− Udlψl(xi)|
|ψl(yi)|

(3.66)

where Udl is the l-th row of the Koopman operator matrix.
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Recall that for the case of orthogonal polynomials, the way to recover
the state is by the inverse of n injective multivariate elements, if these
elements are the ones with index one in each of the state variables, the
recovery is a linear vector-valued function of the observed values. There-
fore, the threshold ε̄ for the elimination of elements is the maximum of
the errors with an index equal to one,

ε̄ = max(ε : ‖αl‖1 = 1) (3.67)

and the multivariate polynomial elements that stay as a part of the re-
duced vector-valued function of observables ΨR(x) are

ΨR(x) = {Ψ(x) : ε ≤ ε̄}. (3.68)

The application of the p-q-quasi norms and polynomial error reductions
allow for the approximation of the Koopman operator of the underlying
systems with significant fewer basis elements than the current methods
and increases the accuracy of the operator. This increase in accuracy
allows for the training of the operator with less training trajectories.

3.4.4 EDMD Example

The proposed method for obtaining the low-order polynomials based
on the p-q-quasi norms and the error of the multivariate elements is
by applying a greedy approach for the calculation of a suboptimal p-q
parametrization, and a second calculation of the operator based on the
elimination of the multivariate elements.

The greedy approach to find the suboptimal approximation of the
Koopman operator relies on the error from the comparison on the test
set of orbits, and the predicted orbits of the operator. Consider (3.36),
where the k-th application of the operator Ud gives the evolution of the
observables Ψ(x) up to that time. From this evolved state, consider a
matrix B ∈ Rd×n with a unitary value per column in the position where
an element of the vector-valued function has an index equal to one, i.e.,
every column of matrix B is defined as

Bl = {el : ‖αl‖1 = 1}. (3.69)
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Consider the set of indices from the reduced p-q-quasi norm reduction
of Laguerre polynomials with p = 3 and q = 0.6 in (3.64). The indices
that satisfy the condition ‖α‖ = 1 are the second and fifth polynomial
elements. Hence, the B matrix for that particular case is

B =

[
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0

]>
, (3.70)

These two polynomial elements are the vector valued function whose
inverse recovers the state from the values of Ψ(x). This selection gives
a state-observable-function ΨB(x) whose inverse recovers the state. For
this particular case of Hermite polynomials with the selected truncation
scheme

Ψ−1
B (x) =

[
−ψ2 + 1 −ψ5 + 1

]>
. (3.71)

This serves to define the state evolution map in terms of the discrete ap-
proximation of the Koopman decomposition {(µi, φi(x), vi)}di=1 (for the
aforementioned example, d = 8). The k-th application of the state evo-
lution map T k(x) = xk from the initial condition x0 is

x̂(k) = Ψ−1
(
B>Uk

dΨ(x(0))
)
. (3.72)

Remark 3. Note that this approximation of the evolution of states is
different from (3.54), that describes the evolution as a function of eigen-
functions and their corresponding eigenvalues, while for this case, the ap-
proximation is a function of observables evolution weighted by the Koop-
man matrix Ud. This is an important distinction because the evolution of
observables is less prone to error because it only depends on the inverse of
G. Conversely, the evolution of eigenfunctions not only depends on the
inverse of G, it also depends on the spectral decomposition of Ud, where
additional numerical calculation increments the empirical error (3.56).

The first step of the process is to select a set of training and test-
ing trajectories, and to generate the N pairs of data snapshots. All
throughout this thesis, these sets come from the integration of ordinary
differential equations from different initial conditions. For an accurate
approximation of the discrete-time Koopman operator, there are two im-
portant aspects to consider. First, if an orbit reaches steady state, the
integration must stop in order to avoid redundant data at steady state
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that causes the condition number of matrix G to increase making the
matrix ill-conditioned and very sensitive to approximation errors. This
is the reason why the solution (3.38) is in terms of the Moore-Penrose
pseudo inverse. If G has a condition number sufficiently small, the accu-
racy of the solution increases with the use of the inverse, i.e.,

Ud = AG−1. (3.73)

The second aspect to consider is that in the construction of the N
pairs of data snapshots, the last value of each trajectory must be dis-
carded. Given that the integration must stop at steady state, usually, the
last value of the trajectory is less than one ∆t away from the penultimate,
and this small difference decreases the accuracy of the approximation.

For an illustrative example, consider the Duffing equation, a bench-
mark case in the literature for analyzing the accuracy of Koopman-based
methods. The system has different types of behavior depending on the
parametrization. This example will consider the case with damping and
two basins of attraction.

ẋ1 = x2 (3.74)
ẋ2 = −δx2 − x1(β + αx2

1). (3.75)

The parametrization for this particular case is δ = 0.5, β = −1, α = 1.
This parametrization describes a system with two stable focus points at
(±1, 0) and a saddle point at (0, 0). The samples for the system come
from 4 uniformly distributed initial conditions over x1, x2 ∈

[
−2 2

]
and

are obtained by numerical integration with a ∆t = 0.1 until they reach
one of the steady states. This means that the number of points per
trajectory is not the same. Along with the samples, the training and test
sets are 50% of the total samples each. Figure 3.5 shows the testing and
training trajectories. Note that for each set, there is one trajectory that
converges to each of the asymptotically stable equilibrium points. For
the case depicted, the total amount of points in the training set is 404.

From the trajectories of the training set, the next step is to generate
the X and Y snapshots sets. Recall that excluding the last element
of the orbits increases the accuracy. Furthermore, given that an (x, y)
snapshot pair is the value at a time instant, and the value at the next
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Figure 3.5: Training and testing set for the approximation of the discrete-
time Koopman operator via the EDMD algorithm with reduced basis.

one, it is possible to concatenate all the available pairs in two sets for
the evaluation of the A and G matrices. Consider a set of Tnr training
trajectories, each with an Nk number of points, i.e., Tnr ∈ RNk×n. The
X and Y set are:

X =
[
Tn1(1 : Nk1 − 2)> Tn2(1 : Nk2 − 2)> · · · Tnr(1 : Nkr − 2)>

]>
(3.76)

Y =
[
Tn1(2 : Nk1 − 1)> Tn2(2 : Nk2 − 1)> · · · Tnr(2 : Nkr − 1)>

]>
(3.77)

The third step of the process is to select a set of q norms and a set of
maximum multivariate order p. For each p, sweep along the parameter q
calculating the error (3.56), then select the suboptimal parameters from
the approximation that gives the least one. For the Duffing equation
under consideration, the selection of orthogonal polynomials is the same
Laguerre basis as for the illustration of the p-q-quasi norm reduction
methods with a parameter sweep of p = 3 and q =

[
0.4 0.5 0.7 ∞

]
,

that includes the infinity norm for illustration purposes of the effect of
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the reduction. Figure 3.6 shows the polynomial elements for each of the
q values in the sweep, where it is clear that for the case where there is
no truncation, the error increases compared to q = 0.7. Additionally, it
is important to remark that the proposed algorithm makes an accurate
approximation of the system with just one trajectory that converges to
each of the asymptotically stable equilibrium points in the training set.
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Figure 3.6: Test orbits from the EDMD algorithm with different p-q
truncation schemes for a Laguerre Polynomial basis. Solid lines are the
theoretical trajectories and dashed lines are the approximation by the
Koopman operator

With the first approximation of the discrete-time Koopman operator,
the next step is to compute the error (3.66) for the individual multi-
variate elements and select the elements that will stay on the polynomial
basis according to (3.68). Figure 3.7 shows how the second reduction has
an effect on the polynomial basis for the different choices of q. The “best”
value q = 0.7 does not lead to a polynomial reduction, and to illustrate
the procedure, we will focus on q = 0.5 (which is the “worst” value). In
this case,

ε =
[
0.0000 0.0017 0.0019 0.0132 0.0165 1.1708 0.0192 0.0637

]
,

(3.78)
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where the error threshold is the maximum between the second and fifth
elements because these correspond to the order one single variable ob-
servables from (3.65). As the last three elements in the error vector are
larger than the fifth, they must be discarded from the basis where the
reduced polynomial basis has indices

α =

{
0 1 2 3 0
0 0 0 0 1

}
, (3.79)

as a consequence, this polynomial basis is of reduced dimension with an
error less than the previous approximation that only had a p-q-quasi
norm reduction.

Ψ(x) =


J(01)J(02)
J(11)J(02)
J(21)J(02)
J(31)J(02)
J(01)J(12)

 =


1

−x1 + 1
1
2
x2

1 − 2x1 + 1
−1

6
x3

1 + 3
2
x2

1 − 3x1 + 1
−x2 + 1

 (3.80)

Note that the polynomial reduction improves the error ε from 11 to
5.34, which is better but still not as good as the basis corresponding
to q = 0.7 with ε = 0.634. However, the second reduction does give
an accurate approximation of five elements that can be enough for con-
trol purposes reducing the computational complexity of any synthesis
algorithm that makes use of it. Along with this line of thought, and con-
tinuing with the example, the approximation of the dynamical system
evolution, from (3.38) and (3.72) is,

Ψ(k + 1) =


1.0000 0.0000 −0.0000 0.0000 0.0000
−0.0723 0.9171 0.0880 −0.0294 0.0967
−0.0448 −0.2259 1.2794 −0.1041 0.1129
0.0401 −0.4680 0.6016 0.7709 0.1009
0.5446 −1.6488 1.7501 −0.5846 0.9407

Ψ(k)

(3.81)

x̂ =

[
−ψ2 + 1
−ψ5 + 1

]
, (3.82)

giving a linear system of the observables Ψ and a nonlinear system ac-
cording to the state x.
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Figure 3.7: Test orbits from the EDMD algorithm with polynomial ac-
curacy truncation scheme for a Laguerre Polynomial basis. Solid lines
are the theoretical trajectories and dashed lines are the approximation
by the Koopman operator.

3.4.5 Approximating The Koopman Operator

Recall that from the solution of either (3.38) or (3.73) depending on
the condition number of G, the spectral decomposition of eigenvalues M
and the left eigenvectorsW ? give the set of eigenfunctions of the discrete-
time approximation of the Koopman operator according to (3.50). As
the left eigenvectors come from the inverse of the right ones, this extra
computational step hinder the accuracy of eigenfunctions for subsequent
analysis. Therefore, in practice, the algorithm calculates the transpose
of Ud as

U>d = G\A, (3.83)

and proceeds to calculate the spectral decomposition [W ?,M ] = eig(U>d ),
where both functions are presented in the Matlab® notation that gives
the best results. Applying this functions to the example of the Duffing
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equation gives a spectral decomposition,

M =


1.0 + 0.0i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0 + 0.0i 0.9565 + 0.1450i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0 + 0.0i 0.0000 + 0.0000i 0.9565− 0.1450i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0 + 0.0i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.9976 + 0.0087i 0.0000 + 0.0000i
0.0 + 0.0i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.9976− 0.0087i


(3.84)

W ? =


−1.0 + 0.0i 0.2066− 0.0519i 0.2066 + 0.0519i −0.1591 + 0.0241i −0.1591− 0.0241i
0.0 + 0.0i −0.6508− 0.0209i −0.6508 + 0.0209i 0.5732 + 0.0119i 0.5732− 0.0119i
−0.0 + 0.0i 0.6889 + 0.0000i 0.6889 + 0.0000i −0.7505 + 0.0000i −0.7505 + 0.0000i
−0.0 + 0.0i −0.2294 + 0.0064i −0.2294− 0.0064i 0.2865− 0.0120i 0.2865 + 0.0120i
−0.0 + 0.0i −0.0155 + 0.0559i −0.0155− 0.0559i −0.0064− 0.0002i −0.0064 + 0.0002i

 .
(3.85)

The application of (3.50) gives a set of five eigenfunctions of the
truncated approximation of the Koopman operator. Figure 3.8 shows the
respective real and imaginary parts of the evaluation of the eigenfunction
in the set from which the initial conditions come, i.e., x1, x2 ∈

[
−2 2

]
.

The surface colors show the different values of the evaluated function,
where the yellow (lighter) regions are the bigger values and the blue
(darker) regions the smaller. As previously stated, this representation
is not suitable for analysis, only for control, because the eigenvalues of
the eigenfunctions are near unitary and the surface should reflect an
approximation to the two basins of the original system.

Figure 3.8: Eigenfunction of the discrete-time approximation of the
Koopman operator for the Duffing equation with a reduced Laguerre
polynomial basis.
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3.5 EDMD for Control

This section presents a description of the traditional algorithm for
dealing with forced systems, along with its improvements via embedding
trigonometric functions into the state of the system. These embeddings
are an a priori expansion before the application of the EDMD. It also
shows via simulations and real experiments, the advantages of modeling
a pendulum on a cart over the current alternative methods. So far the
EDMD algorithm deals with unforced or autonomous systems, and given
that for synthesizing controllers there is a manipulation of the different
forces that inject energy into the system, the EDMD algorithm needs to
be modified such that it can capture the dynamics according to the in-
puts. The relation of the inputs and the algorithm is established by Korda
and Mezić [2018b], where they conclude for the synthesis of controllers,
especially in the model predictive control framework, the driven inputs
of the system must be affine. Although these approximations for control
come from modifying the EDMD algorithm, the relation that they have
with the Koopman operator is have not been established yet. Therefore,
the remaining of this sections will refer to these as linear predictor, and
not the approximation of the Koopman operator.

Consider the non-autonomous nonlinear system (M,U , T (x, u), k) in
discrete time, with state variables x ∈M whereM⊆ Rn is the nonempty
compact state space, forcing signals u ∈ U where U ⊆ Rr is the nonempty
compact input space, k ∈ Z+

0 is the discrete time, and T : M×U →M
is the differentiable vector-valued evolution map, i.e.,

x(k + 1) = T (x(k), u(k)), (3.86)

where a trajectory, or an orbit of the system is the sequence of states
(xi)

k
i=0 that come from the solution of (3.86), which is the successive

application of the non-linear mapping T from an initial condition x0 ∈M
at k = 0 and a specific sequence of forcing signals u , (ui)

k−1
i=0 .

For example, consider a pendulum and a moving cart attached by
a swivel that allows the pendulum to rotate freely. The cart wheels
rotate on a rail and a DC motor drives the whole system. The available
information from two encoders are the displacement of the cart and the
angular rotation of the pendulum. Figure 3.9 depicts the experimental
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set-up where x is the horizontal displacement of the cart and θ is the
angle of the pendulum with respect to the vertical axis. Mass and energy
balances give a set of ordinary differential equations that describe the
dynamics of the system.

Figure 3.9: Pendulum on a cart

The system equations, which depend on the masses of the cart (M)
and pendulum (m), the length of the pendulum rod (l), the linear damp-
ing (µx) of the cart wheels with the rails and the gravitational constant
(g), are given by

ẋ = v

v̇ =
Gu− µxv −mlθ2

v sin(θ)

M +m sin2(θ)

θ̇ = θv

θ̇v =
Gu− µxv −mlθ2

v sin(θ)) cos(θ) + (M +m)g sin(θ)

l −ml cos2(θ)
, (3.87)

where the states are the cart displacement x, the cart velocity v, the rod
angle θ and the angular velocity θv. The model also considers a gain
G between the voltage of the motor u and the resulting force on the
cart. The parameter values come either from the available data of the
manufacturer (Feedback Instruments Ltd) or from an identification of
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the parameters from a set of data collected in preliminary experiments
with the system. Table 3.3 lists the value of these parameters.

Table 3.3: Parameters of the inverted pendulum on a cart.
Description Value Units

M Cart Mass 1.12 [kg]
m Pendulum Mass 0.0905 [kg]
g Gravity 9.81 [m · s−2]
l Pendulum length 0.365 [m]
µx Cart Friction 6.65 [·]
G Tension-Force Gain 7.5 [·]

Let us now consider a set of seven orbits or trajectories obtained by
numerical integration of (3.87) with the assumption that all the state
variables of the system are available. For the accuracy of the algorithm,
it is necessary that the trajectory samples are collected at a constant rate,
which is chosen equal to 0.01 seconds, both in the numerical simulation
and the experimental study. This set of orbits sampled at a constant ∆t
correspond to the solution of the non-linear discrete-time mapping (3.86).

Figure 3.10 depicts the discrete-time evolution of some of these tra-
jectories with their respective forcing signals. These trajectories serve
as the available data to approximate the non-linear dynamics via the
EDMD algorithm.

As EDMD is a data-driven approach, the set of trajectories is divided
into training and testing sets for the approximation and validation of the
algorithm. In our case study, the selection is five orbits for training the
linear predictor, and two for testing (Figure 3.10). Finally, the snapshot
data is defined as a set of tuples {(xi, yi, ui)}, where yi = T (xi, ui). From
these tuples, the snapshot matrices are given by:

X =
[
x1 . . . xN

]
, Y =

[
y1 . . . yN

]
, U =

[
u1 . . . uN

]
, (3.88)

according to the traditional EDMD algorithm [Williams et al., 2015] and
the extension for including the inputs of the system [Korda and Mezić,
2018b]. The rationale behind the approach is to get linear predictors of
the state evaluated on a vector-valued function of observables Ψ(x) =
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Figure 3.10: Pendulum trajectories with sinusoidal input.

[ψ1(x), · · · , ψd]> : M → Cd×1 where d is the dimension of the set of
observables that must satisfy the condition

Ψ(y) = Ud,xΨ(x) + Ud,uu+ r(x, u) (3.89)

r(x, u) ∈ F is the residual term that has to be minimized in order to find
matrices Ud,x and Ud,u. This leads to the least squares problem

‖r(x, u)‖2 =
1

N

N∑
i=1

1

2
‖Ψ(yi)− Ud,xΨ(xi)− Ud,uu‖2

2 , (3.90)

which as a closed-form solution[
Ud,x Ud,u

]
= Ψ(Y )

[
Ψ(X)
U

]([
Ψ(X)
U

] [
Ψ(X)
U

]>)−1

. (3.91)

As the purpose of these predictors is the synthesis of controllers, it is
necessary to recover the state from the observable functions. Thus, an
additional least squares problem for the best projection matrix of x onto
the span of Ψ has to be solved. The projection must satisfy the condition

x̄ = Ud,cΨ(x) + rc(x), (3.92)

where rc(x) is the residual term to be minimized to find Ud,c, that accepts
a pseudo-inverse based least squares solution

Ud,c = XΨ(X)+. (3.93)
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Instead of solving (3.93) to recover the state, a common practice is
to include the state in the set of observables, so that matrix Ud,c =
[In, 0n×(d−n)] after reordering the observables such that the state vector
form the first n elements.

The EDMD formulation (3.91) and (3.93) can be used with a basis of
Jacobi type monomials for the approximation of the pendulum dynam-
ics (3.87), i.e., a sequence of orthogonal polynomials {πα(x)}pα=0 where
πα(x) is a univariate polynomial (i.e., a polynomial in only one of the
state variables xi, i = 1, ..., n) of degree α ∈ N+ up to order p according
to Equation (3.58).

For the approximation of the pendulum dynamics, the order p = 1
can be chosen, giving a set of observables of dimension d = 17 with
maximum order 4, i.e., the product of all the univariate monomials ψ17 =∏4

i=1 5xi + 1 for parameters a = 5 and b = 3 of a Jacobi type monomial
J(1, a, b, x) = a/2 − b/2 + x(a/2 + b/2 + 1). The five trajectories of the
training set sum 1110 data points, and the two trajectories of the testing
set sum 490 data points. Figure 3.11 shows the trajectories produced
by the EDMD, where the empirical error ε = 1/N

∑N
i |xi − x̄i| is 1.31.

While it is possible to perform the approximation with higher p values,
the results do not necesseraly improve. For p = 2 as the maximum
order of the univariate polynomials, the basis has dimension d = 81
with a maximum order of eight, which shows that these two numbers
grow exponentially with the maximum univariate order p. Moreover, the
empirical error increases to 1.77 in this particular case, which is also the
sign of numerical issues.

Indeed, there are some inherent numerical instabilities with the method.
First, the EDMD algorithm is a linear map on the function space that
the set of observables span, and the accuracy of the solution depends
on the characteristics of this set. Choosing an orthogonal basis with an
observable that corresponds to a constant generally improves the per-
formance of the approximation. In contrast, adding the state to the set
of observables is prone to break the orthogonality of the observables,
depending on their actual choice. As a consequence, the square matrix
[Ψ(X), U ]>[Ψ(X), U ] in (3.91) becomes singular or close to singular,
and while replacing the inverse by a Moore-Penrose pseudo inverse can
partly alleviate this issue, the result can still be inaccurate. Second, pre-
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Figure 3.11: Testing trajectories of the traditional computation of the
EDMD algorithm with a Jacobi orthogonal polynomial basis up to order
four. Solid lines are the orbits from the numerical integration of the ODE
and dashed lines the approximation by the EDMD algorithm.

serving an orthogonal basis, without explicitly including the states as
observables poses a similar matrix inversion problem, when there is no
solution to the projection of the state space onto the set of observables.

The way out of this dilemna is the selection of order-one, univariate,
injective, polynomial elements for the recovery of the state, which implies
that there is no need of breaking the orthogonality of the set while still
being able to recover the state as a linear function of the observables,
completely avoiding the burden of a matrix inversion as described in
Section 3.4.1. Besides, the exponential growth of the maximum order
and dimension of the set of observables based on orthogonal polynomial
has a solution via p-q-quasi norms and polynomial accuracy methods as
described in Section 3.4.3.

In our case study of the inverted pendulum, we can consider the same
orthogonal basis of Jacobi polynomials with a sweep of p-q parameters
corresponding to: p = [2, 3, 5, ] and q = [0.3, 0.5, 0.7, 0.9, 1.1, 1.3].
Although there are 18 possible combinations, some p-q parametrizations
produce equal basis. There are only 12 distinct sets of observables, rang-
ing from 6 elements of maximum order 2 to 173 elements of maximum
order 5. The result of the reduction gives a sub-optimal basis of 33 el-
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ements of maximum order 3 that achieves an empirical error of 0.62, as
compared to 1.31 for the traditional EDMD. Note that the reduction
provides the possibility to test higher-order polynomial basis than in the
traditional form, where a basis of maximum order 5 would count 625
elements. Figure 3.12 shows the performance of the sub-optimal basis of
the p-q-EDMD in comparison to the traditional EDMD.
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Figure 3.12: Testing trajectories of the traditional EDMD computation
against the p-q-EDMD of polynomial elements up to order two. Solid
lines are the orbits from the numerical integration of the ODE, dash-
dotted lines are the approximation of the EDMD algorithm, and dashes
lines are the approximation by the p-q-EDMD algorithm.

Although the use of reduced orthogonal polynomials for the p-q-
EDMD provides a method to improve the accuracy of the algorithm
while avoiding computationally heavy high-order and dimensional solu-
tions, the accuracy of the algorithm for systems that have trigonomet-
ric components or an arbitrary behavior like exponentials or logarithms
is not enough. Therefore, the next section introduces the concept of
trigonometric embeddings.
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3.5.1 Trigonometric Embeddings

In this section, we consider the problem of representing dynamic sys-
tems with oscillatory behavior by polynomial expansions and the possi-
bility to increase the parsimony of the approximation by the inclusion
of trigonometric functions as elementary units of the polynomial expan-
sion. Similar embeddings could be used for any particular behavior,
using associated functions. Similar to the idea that took the dynamic
mode decomposition algorithm to the extended version, where instead of
performing a regression on the states, the extended method considers a
set of functions of the state (the so-called observables), the trigonomet-
ric embeddings, or more generally function embeddings, provide specific
functions of the state conveying particular information.

Consider the discrete-time dynamical system (3.86) and assume that a
subset of the state xtg ⊆ x has trigonometric components in the difference
equation T (x, u). For each of these state variables an extension of the
state space is defined including a pair of sine and cosine:

xe =

 xe1
...

xe2m+1

 =



x1
...
xn

sinxtg1
cosxtg1

...
sinxtgm
cosxtgm


, (3.94)

where m ≤ n. Using this extended set of variables, the approximation of
the dynamics can be achieved via the p-q-EDMD.

Consider for example an arbitrary discrete-time dynamical system
(M,U , T (x, u), k), where n = 2, r = 2 and xtg = x2, i.e., the system
has two state variables where the second one has a trigonometric com-
ponent and two inputs within the non-linear mapping T (x, u). Moreover
a Hermite basis of orthogonal polynomials of univariate elements up to
order 2, i.e., πα=[0, 1, 2](x) = [1, 2x, 4x2 − 2], is used. For illustration
purposes, assume an arbitrary p-q parametrization p = 3 and q = 0.7.
The resulting basis of polynomials for the approximation of the dynamics
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is

Ψ(x) =



1
2x1

4x2
1 − 2
2x2

4x1x2

4x2
2 − 2

2 cos(x2)
4x1 cos(x2)
4x2 cos(x2)

4 cos2(x2)− 2
2 sin(x2)

4x1 sin(x2)
4x2 sin(x2)

4 cos(x2) sin(x2)
4 sin2(x2)− 2



. (3.95)

Note that the embeddings are not restricted to trigonometric func-
tions, but could for instance include logarithmic, exponential or hyper-
bolic functions, if the non-linear mapping T (x, u) has state variables
with such a behavior. However, the functional embeddings and par-
ticularly the trigonometric embeddings, that add two more variables for
each trigonometric state, increases exponentially the dimension of the
set of observables and it is necessary to resort to the previous p-q-quasi
norm reduction.

The application of trigonometric embeddings to the orbits of the
pendulum problem, considering that only the angle θ has trigonomet-
ric components, reduces the empirical error of the approximation, from
the aforementioned value of 0.62 (provided by p-q-EDMD) to 0.17. To
achieve these results, we consider a p-q sweep where p = [2, 3, 4, 5],
q = [0.3, 0.5, 0.7, 0.9, 1.1, 1.3] and the available orthogonal polynomi-
als in Matlab. The sub-optimal solution is a Laguerre polynomial basis
with parameters p = 4 and q = 0.7. Although the approximation error
in the test set is reduced, the inclusion of the two extra trigonometric
variables, and the increased p value produces a basis of 65 elements.
Figure 3.13 depicts the result of the algorithm in comparison with the
benchmark EDMD.
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Figure 3.13: Testing Trajectories of the traditional EDMD against the p-
q-EDMD with trigonometric embeddings. Solid lines are the orbits from
the numerical integration of the ODE, dash-dotted lines are the approxi-
mation of the EDMD algorithm, and dashes lines are the approximation
by the p-q-Trigonometric EDMD algorithm.

3.5.2 Inverted Pendulum: Experimental Results

For illustration purposes, and to compare numerically various expan-
sions, we consider the real-life application provided by a Feedback Digital
Pendulum 33-005-PCI (Figure 3.14).

This pendulum is the same as described in the beginning of this Sec-
tion. A DC motor drives the cart along the rail to which a pendulum is
attached. The available experimental set-up provides, through two en-
coders, the noisy measurements of the cart position and the pendulum
angle every 0.01 [s]. Therefore, the output equation is given by:

y =

[
1 0 0 0
0 0 1 0

]
x
v
θ
θv

+ wn, (3.96)

where wn ∼ N (0, σ2).

However, the knowledge of the cart velocity and the angular velocity
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Figure 3.14: Feedback Digital Pendulum 33-005-PCI

are necessary to compute an approximation through the EDMD algo-
rithm. A simple differentiation of the displacements gives an ampli-
fication of the noise, impeding the possibility of getting accurate ap-
proximations of the dynamics. This can be alleviated by the design of
two Kalman filters based on simple kinematic expressions. The Kalman
filter [Paul Zarchan, 2009] is a model-based technique which allows re-
covering on-line estimations by blending the prediction of a mathemati-
cal model with the available on-line measurements. Here, the idea is to
avoid using a full differential equation model such as (3.87), as this would
be contradictory with the objective of developing a data-driven EDMD
model. Hence, the method relies on basic kinematic relations

xk+1 = xk + vk ·∆t+ ak · 0.5 ·∆t2

vk+1 = vk + ak ∗∆t

ak+1 = ak, (3.97)

where the acceleration is assumed constant. These expressions are used
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as predictor while the state update equation of the Kalman filter isx̂kv̂k
âk

 =

x̂k−1

v̂k−1

âk−1

+Kk

xk − x̂k−1
xk−x̂k−1

∆t
xk−x̂k−1

0.5∆t2

 , (3.98)

where ·̂ is the estimate of the corresponding variable, xk is the mea-
surement of the cart position or pendulum angle and Kk is the Kalman
gain that gets updated in every time-step of the algorithm according to
the estimation covariance matrix (solution to a Ricatti equation), and
the measurement uncertainty. Furthermore, each of the position-velocity
pairs has an independent filter with their corresponding parametrization.

For generating the experimental data, the pendulum starts at the
stable point θ(0) = π and is exited with a sinusoidal signal at various
frequencies and amplitudes, i.e.,

x0

v0

θ0

θv0

 =


0
0
π
0

 , u = A · sin(ωt+ φ), (3.99)

where the ranges of the different parameters of the forcing signal are:
A ∈ (0.1, 1), ω ∈ (π, 3π), φ ∈ (0, 2π). The selection of these param-
eters ensures that the cart movement does not exceed the track limits.
Figure 3.15 depicts the result of gathering and filtering the experimental
data.

The application of the p-q trigonometric EDMD on the experimental
data is a linear predictor suitable for controller synthesis. To this end, we
consider a p−q sweep where p = [2, 3, 4], q = [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3],
a trigonometric embedding over the third state θ and an evaluation of
all the available orthogonal polynomials in Matlab. Additionally, and for
the consistency of the results, the training and testing sets correspond
with the ones used in the simulation results. Table 3.4 shows empirical
errors of the best sub-optimal solution for each polynomial basis.

The sub-optimal solution is a Chebyshev polynomial of the first type
with parameters p = 4, q = 0.9 and 85 observables that gives an empirical
error of 0.57. Figure 3.16 shows the results of the approximation in the
test set.
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Figure 3.15: Data filtering of the test set for the p-q-Trigonometric
EDMD. Solid lines are the orbits from the experimental set-up and
dashed lines are the orbits from the Kalman filter.

3.6 Interconnected Dynamical Systems

An interconnected dynamical system is a collection of dynamical sys-
tems, and an interconnection topology that describes the energetic ex-
change between them, i.e., which output of system A injects energy into
which input of system B.

Consider a system Σ =
(
{Σi}Ni=1 , Gi,j

)
given as a collection of dy-

namical systems

Σi :

{
ẋi = fi(xi) + ui +Gi,j

yi = hi(xi)
, (3.100)

where xi ∈ Rni (i = 1, . . . ,M) is the state of the ith subsystem, M is
the number of subsystems, ui ∈ Rri is the input of the ith subsystem,
and yi ∈ Rmi is the output of the ith subsystem. The input ui can be
divided into external inputs ui, and internal inputs Gi,j, that come from
the neighboring subsystems of the network.

Figure 3.17 depicts this situation, where the first subsystem in the
network provides energy to its neighbors and vice-versa. This interaction
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Polynomial basis Empirical error

Hermite 0.8237
Legendre 0.8249
Laguerre 0.8816
ChebyshevT 0.5731
ChebyshevU 0.8245
Gegenbauer 0.8254
Jacobi 0.8231

Table 3.4: Empirical error for each polynomial basis used in the p-q
Trigonometric EDMD.

potentially changes the location and stability of the first subsystem fixed
points.

From a controller synthesis perspective, where the external inputs
must drive the system to a desired state, the controller must account for
the effect of the interconnection input. Figure 3.18 shows the topology
of the controller assuming that it has information of the interconnection
states.

The objective is to generate linear predictors that accurately describe
the local dynamics of a system without having the complete information
of the driving force given by the neighboring systems. Next section in-
troduces the concept of linear predictors with a combination of affine,
and non-affine input signals.

3.6.1 A Case Study: Two Duffing Oscillators

For illustration purposes, consider an interconnection of two Duff-
ing oscillators where the parameters yield a dynamic behavior with two
basins of attraction (see Figure 3.19). The differential equations that
describe this system are
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Figure 3.16: Testing trajectories of the experimental set-up with the
p-q-Trigonometric EDMD. Solid lines are the orbits from the filtered
experimental set-up, dash-dotted lines are the approximation of the
EDMD algorithm, and dashes lines are the approximation by the p-q-
Trigonometric EDMD algorithm.

ẋ1,1 = x1,2

ẋ1,2 = 0.5x1,2 + x1,1 − x3
1,1 + 2.2x2,1 + u1

ẋ2,1 = x2,2

ẋ2,2 = 0.5x2,2 + x2,1 − x3
2,1 + 2.2x1,2 + u2, (3.101)

where the first state variable of each system drives the second one of its
counterpart, e.g., Gi,j = 2.2xi,j. Figure 3.19 shows the behavior of the
two systems where the inputs are randomly selected step signals over
u1, u2 ∈ [−2 2]. The numerical integration with a time step ∆t = 0.05,
and six randomly selected initial conditions xi,j(0) ∈ [−2 2], gives a set
of orbits that can be exploited as dataset for the EDMD algorithm. The
training set consists of four trajectories, while two are kept for testing.
All the trajectories are of different lengths because the accuracy of the
algorithm decreases with the presence of redundant data at the asymp-
totically stable points, and the integration is stopped upon convergence.
As a consequence, the sample size for the approximation of the linear
predictors is 3.324 where 2.150 are available for training and 1.174 for
testing.
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ẋ1 = f1(x1)

ẋe1 = fe1(xe1)
...

ẋeN−1
= feN−1

(xeN−1
)

u1 y1

∑
j∈N G1,j(x1)

ue1...
ueN−1

∑
j∈N Gj,1(xej)

ye1...
yeN−1

Figure 3.17: Subsystem feedback interconnection with the network.

Recall that it is necessary to have an input-affine EDMD approxi-
mation to apply a model predictive control algorithm. Although this is
the case for the input space, it is not necessary to have that restriction
for the interconnection inputs. Therefore, the suitable approximation for
the synthesis algorithms is hybrid. In order to get such a behavior, first
consider an approximation where none of the input are affine and the
state of the system is expanded to include the inputs similarly to the
approach by Korda [Korda and Mezić, 2018b].

3.6.2 Development of the EDMD Algorithm

Consider first a non-affine approximation where the set of state vari-
ables is expanded to include the inputs as states, as proposed in [Korda
and Mezić, 2018b]. This means that the inputs are state variables of the
system with zero dynamics, i.e., u(k + 1)− u(k) = 0.

With the trajectories of the training and testing sets and the previ-
ous rationale for handling the inputs of the system, define the sets of
snapshots as
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ẋ1 = f1(x1)

ẋe1 = fe1(xe1)
...

ẋeN−1
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(xeN−1
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∑
j∈N Gj,1(xej)
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Local Controller

Figure 3.18: Subsystem local controller with measurement of the inter-
connection state.

XU =

 x1 x2 · · · xN
xΣ,1 xΣ,2 · · · xΣ,N

u1 u2 · · · uN

 Y U+ =

 y1 y2 · · · yN
yΣ,1 yΣ,2 · · · yΣ,N

u1+ u2+ · · · uN+


(3.102)

where the + subscript denotes the time shift of the input by one ∆t
and xΣ are the interconnection input variables. Generally, this shifted
value of the input is not available for the last time instance in the orbits,
however, given that numerical integration stops at convergence, the last
sample of the simulation is usually not a complete ∆t after the penul-
timate, and keeping this value decreases the accuracy of the algorithm.
Additionally, note that this representation includes any number of inputs
as state variables, and in turn, it is not limited to single-input systems.

The lifting process consists in evaluating the new state vector with a
vector valued function of observables Ψ = [ψ1 · · ·ψd]T :M×U → C1×d,
i.e.,
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Figure 3.19: Two interconnected Duffing oscillators: 4 trajectories con-
stitute the training set and 2 trajectories are kept for testing purposes.

Ψ(x, u) =

 Ψx(x)
Ψxu(x, u)

Ψu(u)

 =



ψ1(x)
...

ψdx(x)
ψdx+1(x, u)

...
ψdxu(x, u)
ψdxu+1(u)

...
ψdu(u)


. (3.103)
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For the selection of these functions, we will continue with orthogonal
polynomials that have the advantage of improving the accuracy of the
approximation. Additionally, benefiting from the aforementioned reduc-
tion methods for the dimension and maximum order of the basis achieve
an accurate approximation while avoiding computationally expensive ba-
sis [Garcia-Tenorio et al., 2020].

The conditions that these observables must satisfy to get the non-
affine predictor is

Ψx(y, u+) = UdΨ(x, u) + r(x, u), (3.104)

where r(x, u) ∈ F is the residual term to minimize in order to find the
regression or linear predictor matrix Ud. Considering that the best ap-
proximation minimizes the residual term, the following objective function

‖r(x, u)‖2 =
1

N

N∑
i=1

1

2
‖Ψ(yi, ui+)− UdΨ(xi, ui)‖2

2 , (3.105)

gives an accurate approximation of Ud, through the ordinary least-squares
solution [Williams et al., 2015], that has a closed analytical form given
by

G = Ψ(XU)Ψ(XU)> A = Ψ(Y U+)Ψ(XU)>, (3.106)

U>d = G\A. (3.107)

Even though this approximation is suitable for recovering the spec-
trum, the evolution of the input space is not important for controller
synthesis algorithms. Recall from (3.103) that there is a division of the
polynomial basis in subsets that depend on just the state, the input or
both. Assume that the dimension of these subsets is: dimΨx(x) ∈ Ndx,
dimΨx,u ∈ Ndxu and dimΨu ∈ Ndu. To get a linear predictor matrix L
from the sets of snapshots, define a AL matrix as

AL = Ψx(Y )Ψ(XU)>, (3.108)
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i.e., from the original definition of matrix A (3.106) slice out the last
dxu + du rows from matrix A to get this new matrix AL. Then, the
linear predictor that describes the evolution of state observables is

L = ALG
−1, (3.109)

or from the original definition of the EDMD matrix for the non-affine
forced approximator (3.107), this linear predictor matrix comes from slic-
ing the last dxu + du rows of Ud. Furthermore, slicing the columns of
the linear predictor matrix into the matrix bocks that weight each of the
observables sets gives the evolution of state observables as

Ψ(y) = LxΨx(x) + LxuΨxu(x, u) + LuΨu(u), (3.110)

where Lx = L(1 : dx), Lx,u = L(dx + 1 : dx + dxu) and Lu = L(dx +
dxu + 1 : end). The order one observables that capture each of the
state variables. Accordingly, the approximation of the state evolution
map T k(x, u) = xk for a known sequence of inputs and from the initial
condition x0 in terms of the state observables is

x̂(k + 1) = Ψ−1
B (B>Ψx(y(k))). (3.111)

Consider Jacobi orthogonal polynomials and a p-q parameter sweep
where p = [3 4 5] and q = [0.4 0.5 0.6]. The result of the non-affine
algorithm on each of the subsystems with their corresponding training
and testing sets is depicted in Figure 3.20, and the summary of the results
is in Table 3.5.

Table 3.5: p, q, dimension, and empirical error for the non-affine approx-
imation of the interconnected duffing equation.

p q dim ε
System 1 4 0.4 13 0.74
System 2 4 0.4 13 0.65

Even though this representation is not suitable for control, it illus-
trates the advantages of the choice of orthogonal polynomials with p-q-
quasi norm reduction. The linear predictors are able to approximate the
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Figure 3.20: Test orbits from the non-affine forced EDMD algorithm.
Solid lines are the theoretical trajectories and dashed lines are the ap-
proximation by the algorithm

dynamics of two systems, each with four state variables with the least
amount of data, and a substantial reduction in the amount of polyno-
mial elements. Additionally, this approximation is suitable for analysis
based on the spectral decomposition of the Koopman operator as shown
in Chapter 4. Likewise, the eigenfunctions of the Koopman operator
should be useful to analyze forced systems, not only in terms of equilib-
rium points, their stability and regions of attraction, but also in terms of
bifurcations and limit cycles. These extensions are still an open subject
for research.

Consider next the restriction of the observables on the input space to
be affine, i.e., the set of observables for this input signal is the constant
function, i.e., Ψu = u, while the interconnection inputs remain state
variables. This restriction modifies the set of observables that becomes,
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Ψ(x, xΣ, u) =

 Ψx(x)
Ψxu(x, xΣ)

u

 =



ψ1(x)
...

ψdx(x)
ψdx+1(x, xΣ)

...
ψdxu(x, xΣ)

u1
...
ud


. (3.112)

The same polynomial basis and p-q parameter sweep is used as in the
previous developments, and the result of the input-affine approximation
of each of the subsystems with their corresponding training and testing
sets is depicted in Figure 3.21, and the summary of the results is in
Table 3.6.
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Figure 3.21: Test orbits from the input-affine forced EDMD algorithm.
Solid lines are the theoretical trajectories and dashed lines are the ap-
proximation by the algorithm

Notice that the suboptimal q value for the input-affine approximation
is larger than in the non-affine case, and, as a consequence, the dimension
of the polynomial basis should be larger, which is not the case. Indeed,
all the polynomials on the input space are eliminated leaving only the
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Table 3.6: p, q, dimension, and empirical error for the input-affine ap-
proximation of the interconnected duffing equation.

p q dim ε
System 1 4 0.5 10 1.14
System 2 4 0.5 10 1.73

constant terms. As a consequence, the empirical error increases, but the
approximation is suitable for controller synthesis, and depending on the
case, the accuracy could be enough for control.

In addition, this approximation requires the value of the interconnec-
tion input, which is a drawback of the algorithm, which is not suitable
for decentralized controllers where the available information is the local
state. The solution to this issue goes along the line of the statistical,
geometric and observability properties of the interconnection inputs.

For illustrative purpose, consider the input-affine approximation with-
out the knowledge of the interconnection signal, i.e., this variable enters
the linear predictor as another state variable of the system where the
only information provided to the predictor is the initial condition. Fig-
ure 3.22 depicts how the linear predictors give an approximation of their
own state, and the interconnection input. For this particular case, all the
states, including the interconnection, converge to the vicinity of their cor-
responding asymptotically stable equilibrium point, and are accurate for
the first time steps of the trajectory, meaning that an MPC controller
synthesis with short control horizon should be suitable for driving the
system.

Although this contribution is a step further into the possibility of
controlling such systems, the algorithm still relies on the partial knowl-
edge of the energy injected by neighboring subsystems. Consequently,
the method is not suitable yet for decentralized control, where there is
only information of the local state.
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Figure 3.22: Test orbits from the input-affine forced EDMD algorithm,
where the interconnection input is unknown. Solid lines are the theoreti-
cal trajectories and dashed lines are the approximation by the algorithm.

3.6.3 Controlling the Interconnection

Coupled with the extensions to the formulation of the EDMD based
linear predictors for interconnected systems, the synthesis technique to
drive them will be the traditional multiple-input multiple-output model
predictive control (MPC) with integral action [Di Ruscio, 2013].

Consider a non-autonomous linear discrete time system

x(k + 1) = ALx(k) +BLu(k)

y(k) = CLx(k), (3.113)

with state variables x ∈ M ⊆ Rn, input space u(k) ∈ U ⊆ Rl, output

75



3.6. INTERCONNECTED CHAPTER 3. SYSTEMS-ROA-EDMD

space y ∈ My ⊆ Rm, discrete-time k ∈ N+
0 , and system matrices AL,

BL and CL, that describe the evolution of the system from an arbitrary
initial condition x0 = x(0) ∈M for a sequence of inputs u , (ui)

k
i=0.

The classical formulation of the MPC with integral action solves for
the rate of change of the input signal ∆uk = uk − uk−1 for each time
instance according to the evolution of the system on a prediction and
control horizon Npc. The control sequence that drives the system to the
desired output state comes from the solution of the cost function

Jk =
(
yk+1|Npc − rk+1|Npc

)>
Q
(
yk+1|Npc − rk+1|Npc

)
+ ∆u>k|Npc

P∆u>k|Npc
, (3.114)

where rk , (ri)
k+Npc

i=k is the reference signal on the prediction horizon, the
matrix Q ∈ RNpcm×Npcm is block diagonal with Npc symmetric positive
semi-definite matrices and P ∈ RNpcr×Npcr also a block diagonal matrix
of Npc symmetric positive semi-definite matrices.

The solution is equivalent to a quadratic problem with objective func-
tion (3.114) subject to (3.113) and accepts constraints on the maximum
and minimum values of the inputs or their rate of change.

With some matrix manipulations, and considering a smaller control
horizon than the prediction horizon for computational efficiency, the
problem in standard quadratic programming form is

min
u
u>Hu+ h>u

s.t. Lcu ≤ b, (3.115)

where H, h, are the constant matrix and vector of the problem, and Lc
and b are the matrix and vector for the linear inequality constraints.

The application of the controller to the input-affine and intercon-
nection non-affine predictor for the coupled Duffing equation problem,
where the prediction horizon is ten steps and the control horizon four
drives both systems to the origin. Figure 3.23 shows the result of apply-
ing the algorithm to all the initial conditions from the training and test
sets.

This result shows the potential of the algorithm to handle on bigger
networks, where the injection of energy comes from several neighboring
systems.
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Figure 3.23: MPC synthesis for the interconnected Duffing equation.

A potential improvement to the methodology is the achievement of a
decentralized controller. Given the fact that it is possible to approximate
the interconnection free response of each system, the difference between
these two models is a potential solution to the approximation of the
interconnection effect.

3.7 Biochemical System Models

Reaction networks describe the dynamical behavior in chemical and
biochemical systems, and the most commonly used method to model

77



3.7. BIO-SYSTEMS CHAPTER 3. SYSTEMS-ROA-EDMD

their behavior are polynomial ordinary differential equations. These sets
of equations are mathematically well-established, and they have a broad
range of numerical solution techniques and solvers. Additionally, they
model the systems in a deterministic way, according to the average be-
havior of the state variables [Feinberg, 1987]. The advantages of using
these systems is their non-negativity and compartmental characteristics,
coupled with the fact that depending on the parametrization, the fixed
points of the system are hyperbolic [Chellaboina et al., 2009]. Meaning
that they satisfy the assumptions to perform the analysis present in this
thesis.

Each biochemical reaction network gives rise to a dynamical system,
which describes the evolution of the species concentrations in the network
over time. Each biochemical reaction has three sets associated to it, the
set of chemical species S, the set of complexes of the network C, and
the set of reactions in the network R. Reactions between complexes,
composed by species. The following set of reactions constitute a network
of 6 reactions between 5 complexes composed by 5 chemical species.

s1 2s2

s1+s3 s4

s2+s5

r1

r2
r3

r4

r5 r6

(3.116)

For a network such as (3.116), and for a number ofm chemical species,
a number of n complexes in the network, and a number of r reactions in
the network. We can write the set S = {s1, s2, s3, s4, s5}, which has an
associated composition vector x of nonnegative molar concentrations per
species, x ∈ Rn

+, the set of complexes, C = {s1, s2, s1 + s3, s4, s2 + s5},
the set,

R =



s1 → 2s2

2s2 → s1

s1 + s3 → s4

s4 → s1 + s3

s2 + s5 → s1 + s3

s4 → s2 + s5


, (3.117)

with the associated reactions rate vector function ρ : R → Rr
+ that
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associates a positive rate constant to each reaction. Having these sets,
the definition of a reaction kinetics network is:

Definition 3.7.1 (Reaction Network). A biochemical reaction network
consists in a quadruple {S, C,R, ρ} such that:

i. the finite set S is the set of species,

ii. the finite set C is the finite set of complexes, C ⊂ RS , where each
element of the set is the sum of species∑

s∈S

αsss (3.118)

where αs is the stoichiometric coefficient of the sth species.

iii. The finite set R is the set of reactions, R ⊂ C × C such that,

a. y → y 6∈ R, ∀y ∈ C.
b. For each y ∈ C there exists y′ ∈ C such that y′ → y ∈ R or

such that y → y′ ∈ R.

iv. And the vector function ρ that associates a positive rate constant
to each reaction.

Given an initial concentration x(0) ∈ Rn
+ of the interacting species, ki-

netic rates, and the topology of the biochemical network, such as (3.116),
These ODEs measure how the concentration x(t) of each species evolves
with time. They describe the velocity of the composition changes, the
velocity of a given reaction, its derivative with respect to time.

Definition 3.7.2 (Species ODE). For a reaction network {S, C,R, ρ}
the formation rate function fs(x) : Rn

+ → R is

fs(x) =
∑

y→y′∈R

(α′s − αs)ρy→y′
∏
s∈S

xαs
s . (3.119)

This formation rate function is the time derivative of species concentra-
tion, i.e., ẋ = f(x).
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Consider for example the first species of network (3.116), according
to the species differential equation ODE, its formation rate is

f1(x) = (0− 1)r1(x1
1x

0
2x

0
3x

0
4x

0
5)

+ (1− 0)r2(x0
1x

2
2x

0
3x

0
4x

0
5)

+ (0− 1)r3(x1
1x

0
2x

1
3x

0
4x

0
5)

+ (1− 0)r4(x0
1x

0
2x

0
3x

1
4x

0
5)

+ (1− 0)r5(x0
1x

1
2x

0
3x

0
4x

1
5)

= −r1x1 + r2x
2
2 − r3x1x3 + r4x4 + r5x2x5 (3.120)

To extend the per-species definition of the ODE to a matrix notation for
the complete differential equation. First, define the matrix exponentia-
tion of x ∈ Rn by matrix α = [αi,j] ∈ Rr×n as xα ∈ Rr such that its
i-th component is the product xαi,1

1 x
αi,2

2 · · · xαi,n
n . Then, define ◦ as the

element wise Hadamard product, and finally, the MAK ODE is

f(x) = (α′ − α)>(xα ◦ ρ) (3.121)

According to the previous definition, the ordinary differential equa-
tion of reaction network (3.116) comes from the matrices

α =


1 0 0 0 0
0 2 0 0 0
1 0 1 0 0
0 0 0 1 0
0 1 0 0 1
0 0 0 1 0

 α′ =


0 2 0 0 0
1 0 0 0 0
0 0 0 1 0
1 0 1 0 0
1 0 1 0 0
0 1 0 0 1

 , (3.122)

that are the stoichiometric coefficients for reactants and products respec-
tively for each reaction in the network, the vector of reaction rates, and
the species in the network. Coupled with (3.121), the ODE that repre-
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sents the dynamics of the average species concentration is

ẋ =


−1 1 −1 1 1 0
2 −2 0 0 −1 1
0 0 −1 1 1 0
0 0 1 −1 0 −1
0 0 0 0 −1 1






x1
x22

x1x3
x4
x2x5
x4

 ◦

r1

r2

r3

r4

r5

r6



 (3.123)

=

−r1x1 + r2x
2
2 − r3x1x3 + r4x4 + r5x2x5

2r1x1 − 2r2x
2
2 − r5x2x5 + r6x4

−r3x1x3 + r4x4 + r5x2x5

r3x1x3 − r4x4 − r6x4

−r5x2x5 + 5r6x4

(3.124)

3.8 Summary

This section presents the traditional theory regarding regions of at-
traction, the Koopman operator and the approximation of its discrete-
time truncation via the EDMD algorithm, where the contributions re-
garding the algorithm are: A basis reduction method based on p-q-quasi
norms that reduce the dimension and order of the approximation. As a
consequence, increasing the accuracy of the algorithm. On the subject
of dimension, a basis reduction method based on polynomial accuracy,
that combined with the p-q-quasi norm reduction gives lower dimensional
approximation suitable for subsequent analysis and synthesis algorithms
that benefit computationally from the use of smaller approximations.

Additionally, and contrary to traditional algorithms, using the inverse
of order-one polynomial elements to recover the state does not break the
orthogonality of the basis when the single state variable observables are
included in the vector valued function of observables. Additionally, there
is no need to include additional optimization algorithms in the process
to recover the state.

Further expanding the EDMD algorithm for the incorporation of a
priori knowledge such that the set of observables includes embeddings of
elementary functions that increase the accuracy of the approximation.
This method is a step further into the inclusion of information regarding
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the differential equation for the approximation of the linear predictors.
Further research will probably show how to include the knowledge from
a mass and energy balance modeling process or empirical knowledge re-
garding the dynamics to further improve the approximation.

Finally, this section presents linear and expanded approximations of
interconnected dynamical systems for control. From these approxima-
tions, it is possible to set-up linear MPC algorithms that rely on the
knowledge of the state and the partial knowledge of the interconnection
input.
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Chapter 4

Approximating the ROA via
Koopman

This section describes our main results for the characterization of the
asymptotically stable points region of attraction in the multi-stability
scenario with the Koopman operator. In order to achieve this goal in a
data-driven approach, we show how our method can find the fixed points
of the system, give their stability and finally, analyze the spectrum of
the operator to get the ROA. There are three assumptions that must
hold for the approximation of the Koopman operator and the application
of the algorithm. First, the EDMD algorithm has enough trajectories
from the dynamical system to have a proper estimate of the operator.
Second, Assumptions 1-3 from Section 3.2 hold. Third, the system is
ergodic [Eisner et al., 2015] or in terms of polynomial chaos, it has finite
variance [Marelli and Sudret, 2018]. For our particular case, this means
that every initial condition in the state space converges to a specific
asymptotically stable fixed point.

4.1 Fixed Points

The first step of the analysis consists of locating the fixed points to
asses their stability. Recall from Definition 3.1.1 in Section 3.1 that a
fixed point of the discrete time nonlinear system (3.1) is an invariant
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subspace that has the property that whenever the state starts in it, it
will remain in it for all future time.

Consider the forward and backward state evolution map of the system
given by the Koopman operator in (3.54) and (3.55). If the evolution of
these mappings is invariant then the system is at a hyperbolic fixed point.
The solution of the minimization of the squared norm of the difference
between the state and its evolution map from different initial conditions
in the state space gives the location of the fixed points [Garcia-Tenorio
et al., 2019].

Lemma 4.1.1 (Fixed points). Let (M;T (x); k) be a dynamical system
that accepts an operator representation (Fd;Ud; k) based on EDMD, and
x∗ is a fixed point of T (x). Then

x∗ = argmin
x

∥∥Ψ−1
B

(
B>ΞMkΦ(x0)

)
− x
∥∥2

2
. (4.1)

Proof. Let T k(x) = Ψ−1
B (B>ΞMkΦ(x0)) the flow map of (M;T (x); k),

assume k = K finite, and define b(x) = Ψ−1
B (B>ΞMΦ(x)), using Defini-

tion 3.1.1 and b(x), the least squares problem

J(x) =
1

2
‖b(x)− x‖2 , (4.2)

with solution
x∗ = argmin

x
(J(x)) , (4.3)

gives the location of the fixed points.

Remark 4. Note that this procedure is possible under the portion of the
state space from where the data snapshots lie, and corresponds to the
fixed points of the nonlinear underlying hyperbolic dynamical system. If
the system is not hyperbolic, this condition does not hold.

Remark 5. This lemma is only accountable for the location of the fixed
points in the state space; it does not give information about their stability.

Remark 6. Equation (3.54) is a nonlinear, discrete-time evolution map-
ping, and under the definition of fixed point, i.e., T̄ k(x∗) = x∗ it is pos-
sible to get the approximation of the hyperbolic fixed points by solving

x̄∗ ⊆ {x ∈ Rn : T̄ k(x)− x = 0}. (4.4)
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In practice, this procedure poses two problems, first, as the nonlinear
mapping (3.54) comes from a set of observables, the dimension and com-
plexity of these functions affect the possibility of getting a solution in
polynomial type. In high order polynomial expansions, even if it possible
to find a solution, the computational time is high. Second, when there
is a solution, it is not clear which elements of the subset represent an
actual fixed point of the system, i.e., not all the points of the subset are
fixed points of the system, while the converse is true. Considering the
data driven case, the fixed points of the system are not known a priori
and therefore using this definition to approximate the fixed points is not
feasible.

With the location of the fixed points, it is necessary to establish their
stability.

4.1.1 Fixed Points Example

For illustration purposes, consider the ongoing example of the Duffing
equation with damping and two basins of attraction. Recall that this sys-
tem has a saddle at the origin and two asymptotically stable equilibrium
points.

For the approximation of the equilibrium points in Lemma 4.1.1 the
initial conditions from the test set are not enough to identify all of the
fixed points from a multi-start algorithm. Consequently, a new set of
points in the original portion of the state space is generated to start the
optimization. Additionally, recall that the evolution of the system based
on eigenfunctions according to (3.54) has an additional computational
step than the system evolution based on observables in (3.72), which is
the spectral decomposition of the Koopman matrix. Therefore, the use of
the evolution based on observables improves the accuracy of the location
of the fixed points. Table 4.1 shows the numerical result and fig. 4.1
depicts the location of the initial conditions and the result of applying
the method.
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Table 4.1: Duffing equation fixed points location.
Theoretical Algorithmic

x∗A (-1,0) (-1.002,0.001)
x∗B (0,0) (0.003,0.001)
x∗C (1,0) (1.003,0)

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 4.1: Initial conditions and location of the fixed points for the
Duffing equation.

4.2 Stability of Fixed Points

The traditional way of establishing the local stability of a hyper-
bolic fixed point is through the analysis of the Jacobian matrix of the
system (3.1) evaluated at the fixed point. Our proposed approach is to
analyze the state evolution map from the approximation of the Koopman
operator in the same way.

Definition 4.2.1 (Stability Properties). Consider the discrete-time non-
linear system (3.1) that has a representation via the state evolution map
as stated in (3.26) from the EDMD algorithm. Define b(x) = Ψ−1

B (B>ΞMkΦ(x))
as the state evolution map of the system, then the system accepts a local
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linearization such as

x(k + 1) =

[
∂T (x)

∂x1

· · · ∂T (x)

∂xn

]∣∣∣∣
x∗
x(k)

=

[
∂b(x)

∂x1

· · · ∂b(x)

∂xn

]∣∣∣∣
x∗
x(k)

=Hx(k). (4.5)

The local stability of a fixed point x∗ with respect to the eigenvalues
{µi}ni=1 from the spectral decomposition of H are given by,

• if |µi| < 1 for all i = 1, . . . , n then x∗ is asymptotically stable.

• if |µi| > 1 for all i = 1, . . . , n then x∗ is unstable.

• if |µi| < 1 for some i = 1, . . . , ns and |µi| > 1 for some i =
ns + 1, . . . , n, then x∗ is also unstable but has modal components
that converge to it, making it a saddle point.

Remark 7. Note that the inequalities are strictly greater-than or less-
than, this is in accordance with the hyperbolicity assumption.

With the information about the location and stability of fixed points,
the main result of this paper is formulated, i.e., the approximation of the
boundary of the ROA via eigenfunctions of the Koopman operator.

4.2.1 Stability Example

Continuing the Duffing equation example, recall that the fixed pints of
the system are: asymptotically stable for x∗14, unstable saddle for the ori-
gin x∗2, and asymptotically stable for x∗3. The first step to get the stability
of fixed points is to calculate the Jacobian matrix of (3.54). However,
given that (3.72) is more accurate, the Jacobian matrix according to the
evolution of observables is

J =

[
−0.0147x2

1 + 1.32e− 4x1 + 1.0 0.0967
−0.292x2

1 + 3.81e− 3x1 + 0.0976 0.9407

]
(4.6)
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Notice that this matrix is only in function of x1 because all of the fixed
points are in x2 = 0. Next, the evaluation of the Jacobian matrix for the
three different values of x1 and their corresponding eigenvalues are:

J |x∗A =

[
0.9901 0.0967
−0.1986 0.9407

]
λA =

{
0.9654 + 0.1364i
0.9654− 0.1364i

}
(4.7)

J |x∗B =

[
1.0049 0.0967
0.0976 0.9407

]
λB =

{
0.8705 + 0.0000i
1.0751 + 0.0000i

}
(4.8)

J |x∗C =

[
0.9901 0.0967
−0.1986 0.9407

]
λC =

{
0.9655 + 0.1336i
0.9655− 0.1336i

}
(4.9)

Table 4.2 shows the norm of the respective eigenvalues for each case,
and the corresponding stability according to the classical linear theory
analysis.

Table 4.2: Fixed point stability for the Duffing equation.
|λ1| |λ2| Stability

x∗A 0.97 0.97 AS
x∗B 0.88 1.08 Saddle
x∗C 0.97 0.97 AS

4.3 Approximation of the ROA boundary

This section describes the results for the approximation of the ROA
for asymptotically stable fixed points in a data-driven approach using
the Koopman operator. The boundary of the ROA is formed by the
stable manifold of the saddle fixed points in it (see Figure 3.2). A set
of eigenfunctions built from the approximation of the Koopman operator
captures the stable manifold of saddle fixed points. Therefore, a set of
eigenfunctions captures the ROA of asymptotically stable fixed points.

The set of eigenfunctions that captures the ROA has the characteristic
that their associated eigenvalue is unitary. An eigenfunction with an
associated eigenvalue equal to one is invariant along the trajectories of
the system (if µi = 1 in (3.26), [Ukφi](x) = φi(x)). Therefore, the set of
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eigenfunctions that approximate the ROA are a set of eigenfunctions that
are invariant along the trajectories of the system. With this information
and the fact that a level set is the curve of a function that is invariant, it
follows that the level sets of eigenfunctions with an associated eigenvalue
equal to one characterize the ROA of asymptotically stable fixed points.
The following shows how these premises hold.

Theorem 4.3.1. Let (M;T (x); k) be a dynamical system that accepts
an operator representation (Fd;Ud; k) based on EDMD. If there exists an
eigenfunction with associated eigenvalue equal to one defined as φ+(x),
then the stable manifold of a saddle point W s(x̂∗) is the level set

Γ(φ+(x)) ⊆ {x ∈ Rn : φ+(x) = φ+(x̂∗)}. (4.10)

Proof. Let φ(x) ∈ Fd be an eigenfunction that satisfies the condition
[Udφ](x) = φ(T (x)). Let φ̄(x) = φk11 (x)φk22 (x) be a function constructed
upon the product of two arbitrary eigenfunctions with associated eigen-
values µ1 and µ2 respectively, for constants k1, k2 ∈ C. According to (3.25),
the relationship between these two eigenfunctions is:[

Udφ̄
]

(x) =
[
Ud(φ

k1
1 φ

k2
2 )
]

(x) (4.11)

= ([Udφ1](x))k1 ([Udφ2](x))k2 (4.12)

= µk11 φ
k1
1 (x)µk22 φ

k2
2 (x). (4.13)

This implies that φ̄(x) is an eigenfunction of the Koopman operator U
with associated eigenvalue µ̄ = µk11 µ

k2
2 . It is possible to find the complex

constants k1 and k2 for eigenvalues µ1 and µ2 such that µ̄ = 1. Mean-
ing that φ̄(x) = φ+(x). Evaluating the eigenfunction with associated
eigenvalue equal to one on the saddle point φ+(x̂∗) gives the constant
value along the trajectories that converge to it. These trajectories are
the stable manifold of this saddle point. From (3.15) this manifold is

W s(x̂∗) = {x ∈ Rn : lim
k→∞

T k(x) = x̂∗}, (4.14)

evaluating this manifold with an arbitrary eigenfunction φ(x), and using
the condition of the Koopman operator in (3.25) gives

φ(W s(x̂∗)) = {x ∈ Rn : lim
k→∞

[Uk
dφ](x) = φ(x̂∗)}. (4.15)
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Recall from (3.26) that the eigenvalue determines the dynamics of the
associated eigenfunction, meaning that for this arbitrary eigenfunction,
the associated eigenvalue must be unitary for the equality to hold, giving
an eigenfunction that is invariant under Ud, this means that the eigen-
function is constant along the trajectories of the system, therefore,

φ(W s(x̂∗)) = {x ∈ Rn : φ(x) = φ(x̂∗)}. (4.16)

Therefore, by the definition of level set we obtain,

Γφ+(x) = {x ∈ Rn : φ+(x) = φ+(x̂∗)}. (4.17)

Remark 8. The level set Γ in (4.10) is a subset and does not hold with
equality because the trivial eigenfunction, i.e., φµ=1 = 1 is an eigenfunc-
tion with unitary associated eigenvalue where (4.17) is the whole state
space Rn.

The level set (4.10) gives the ROA boundary, and therefore, it is pos-
sible to find a classification rule of the different initial conditions in the
state space that converge to any of the asymptotically stable equilibrium
points. A geometrical approach to the classification problem is identi-
fying the hyperplane that represents the boundary. This is a common
approach when using the backwards integration of the dynamical system
to find the set of points that compose the hyperplane. Although this is a
possible approach, classifying an initial condition based on the geometry
of the manifold is often difficult, especially when the hyperplane describ-
ing the boundary is not a function, or the system is of higher than three
dimensions.

The approximation of the discrete-time Koopman operator from the
EDMD algorithm using orthogonal polynomials as observables gives a set
of eigenfunctions whose eigenvalue is unitary or close to unitary. Consid-
ering the difficulties of classifying the initial conditions based on the ge-
ometry of the stable manifold of saddles points, we propose two different
methods based on this set of eigenfunctions to determine the convergence
of an arbitrary initial condition.

Definition 4.3.1 (Saddle classifier). Let {φi+ : µi = 1}∞i=1 be a set non-
trivial eigenfunctions of a dynamical system (M;T (x); k) that accepts an
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approximation of the discrete-time Koopman operator (Fd;Ud; k) based
on EDMD, and let x̂∗ be a type-one saddle point in the boundary of the
ROA separating the asymptotically stable points x∗A and x∗B. The conver-
gence of an arbitrary initial condition x0 to either asymptotically stable
equilibrium points x∗A or x∗B is

xA ⊆ {x0 ∈ Rn : <[φ+(x0) ≥ <[φ+(x̂∗)]}
xB ⊆ {x0 ∈ Rn : <[φ+(x0) < <[φ+(x̂∗)]} (4.18)

Remark 9. The points that converge to either asymptotically stable fixed
point is a subset and not an equality because not all eigenfunctions with
associated eigenvalue equal to one capture this phenomena. The particu-
lar characteristics that an eigenfunction must have to satisfy this criteria
is still open.

This criterion is closely related to the geometric one, especially be-
cause there is the need for a clear separatrix given by the real part eigen-
function evaluation in the boundary saddle point. This implies that for
every pair of asymptotically stable fixed points to be classified there must
be a an eigenfunction that separates the two. When the dimension of the
problem starts to grow, especially in the amount of asymptotically stable
fixed points, the rule given by Definition 4.3.1 becomes a combination
of the evaluations of the initial condition, compared to the evaluation of
the different saddle points in the boundaries.

Because of the invariant nature of the eigenfunction with associated
eigenvalue equal to one along the trajectories of the system, we propose
a second criterion to classify the initial conditions that is independent on
the aforementioned boundary of the ROA given by the level set. Theo-
rem 3.2.1 states that the stable manifold of type-one saddle points can be
captured with an eigenfunction with associated eigenvalue equal to one.
Extrapolating this concept to the asymptotically stable fixed points, it is
possible to find a unitary eigenfunction that is invariant along its ROA.

Definition 4.3.2 (AS classifier). Let {φi+ : µi = 1}∞i=1 be a set nontrivial
eigenfunctions of a dynamical system (M;T (x); k) that accepts an ap-
proximation of the discrete-time Koopman operator (Fd;Ud; k) based on
EDMD, let {x∗I}LI=1 be a set of L asymptotically stable fixed points in the
space state, and define Cl(φ) : C → C as an arbitrary function of the
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observation. The set of points xI that converge from an arbitrary initial
condition x0 to the fixed points x∗I is

xI ⊆ {x ∈ Rn : Cl(φ+(x0)) = Cl(φ+(x∗I))} (4.19)

Remark 10. The ideal case is to have a real valued constant eigen-
function where Cl(φ(x)) = φ(x). Although this is theoretically possible,
i.e., to find an eigenfunction invariant along the ROA of the asymptot-
ically stable fixed point. The necessary conditions or the characteristics
for this to happen is still an open question. For Cl(φ(x)) = ∠(ψ(x)),
Cl(φ(x)) = |φ(x)| and Cl(φ(x)) = R(φ(x)) there is a chance of getting
an accurate classification based on the natural eigenfunction from the
EDMD approximation of by constructing the eigenfunction. Neverthe-
less, the current method to find an eigenfunction that accurately classifies
according to either of these functions of φ is by checking the necessary
conditions for the eigenfunction to be accurate under each rule. As well
as the constant case, the conditions that guarantee an accurate behavior
is still an open question.

Remark 11. Although this eigenfunction is suitable for the classification
of all the approximated state space into its respective point of convergence,
note that the equality is replaced by a subset because not all eigenfunctions
with an associated eigenvalue equal to one satisfy this criterion. To the
best of the author knowledge, the criteria to make it an equality are still
unknown.

Section 5.2 exemplifies the different results of performing the analysis
with the different classification schemes. In general, the available eigen-
functions with a unitary eigenvalue that come directly from the EDMD
algorithm or a constructed one from (4.13) give an accurate result by
using Definition 4.3.1. For the classification based on the asymptotically
stable equilibrium points from Definition 4.3.2, finding an eigenfunction
that satisfies this criterion is not trivial.

In summary, the approximation of the Koopman operator serves to
find the unitary eigenfunction that characterizes the ROA of asymptoti-
cally stable ones.
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4.3.1 ROA Example

For illustration purposes, consider the ongoing example of the Duffing
equation with damping and two asymptotically stable equilibrium points.
This system satisfies Assumptions 1-3 from section 3.2 because there is
only one fixed point in the stability boundary of the two asymptotically
stable ones, which is the saddle point at the origin. Given that it is
unique, it cannot violate the transversality condition.

Theorem 3.2.1 states that the stable manifold of the saddle point at
the origin is the boundary os the region of attraction of the two asymptot-
ically stable points. Furthermore, theorem 4.3.1 states that a nontrivial
eigenfunction with a unitary associated eigenvalue captures this stable
manifold. Consider the level plot of fig. 4.2 that shows a unitary eigen-
function of the discrete-time approximation of the Koopman operator.
Contrary to the previous cases, this eigenfunction does not come from
the approximation using only one trajectory for each of the asymptoti-
cally stable points. Instead, the set of eigenfunctions comes from a full
basis, i.e., q =∞ for a value of p = 4 that gives a set of 25 eigenfunctions.
The training and testing sets come from 400 uniformly distributed initial
conditions over x1, x2 ∈

[
−2 2

]
with a ∆t = 0.1 and contrary to the

previous cases, there are only 11 points per trajectory, not a full numeric
integration until convergence. Again, the division between the training
and testing set is 50− 50.

Notice that the amount of points for the accurate approximation of
eigenfunctions is five times greater than the necessary points for the ap-
proximation of the dynamics. Furthermore, the dimension and order of
the basis is greater, and given that for this case there are more initial
conditions and less points per trajectory, as a result, the available points
for the approximation cover uniformly the portion of the space state un-
der evaluation. The reason for this different approach is that the method
for building accurate unitary eigenfunctions is still an open question.

Evaluating the unitary eigenfunction at the identified saddle point
near the origin gives the constant value of the level set that describes
the stable manifold. Identifying this line and classifying according to it
is not the best numerical approach. As a consequence, notice that the
ROA of each of the points corresponds to a subset of the space state
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Figure 4.2: Level plot of the unitary eigenfunction of the discrete-time
approximation of the Koopman operator for the Duffing equation prob-
lem.

that is either above or below the stable manifold when evaluated by the
unitary eigenfunction. Therefore, the classification rule does not rely on
the interpolation of points in the manifold to check if a point in the state
space is above or below the line. The classification rule is according to
the evaluation of an individual point with the unitary eigenfunction and
the comparison of the real part of this value to the constant value of the
level set as in definition 4.3.1.

Figure 4.3 depicts the approximation of the stable manifold of the
saddle point, and the correct classification of the test set of initial condi-
tions, where the application of the classification criterion gives an error
of 2.5%. In this figure it is clear that the stable manifold cannot be
represented as a function and therefore, its geometry in not a convenient
classification rule. If the system under study has more than two state
variables, the problem of classifying according to the geometry of the
stable hyperplane is worse.

94



CHAPTER 4. KO-ROA 4.4. ALGORITHM

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 4.3: Stable manifold approximation and initial condition classifi-
cation based on the evaluation of the unitary eigenfunction in the saddle
point.

4.4 Algorithm

The approach presented in section 3.4 and ??-4.3 for obtaining the
attraction regions of asymptotically stable fixed points is summarized in
Algorithm 1, for which the following assumptions hold.

Assumption 4. The system under consideration has multiple hyperbolic
fixed points.

Assumption 5. At least one of the fixed points is asymptotically stable.

Assumption 6. There is enough snapshot data either from measure-
ments of the real system or a numerical simulation for constructing an
approximation of the Koopman operator.
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Algorithm 1: Approximation of the ROA boundary via the
eigenfunctions of the Koopman operator. A data-driven calcu-
lation that approximates the fixed points and their stability and
the eigenfunction of the Koopman operator, generates the uni-
tary eigenfunction, and analyzes the saddle points in the ROA
to get its boundary.
1 For a dynamical system that satisfies Assumptions 4-6;
Data: {xi, yi}Ni=1

Result: ∂RA(x∗s)
2 initialization;
3 [Φ(x),M ]←− EDMD

(
{xi, yi}Ni=1, q, p

)
;

4 b(x)←− Ψ−1
B (B>ΞMkΦ(x));

5 x∗ ←− argminx ‖b(x)− x‖2
2;

6 Eq ←− size(x∗);
7 for i← 1 to Eq do
8 Hi ←−

[
∂b(x)
∂x1
· · · ∂b(x)

∂xn

]∣∣∣
x∗i

;

9 {µi,j}nj=1 ←− eig(Hi);
10 if |µi,j| < 1 for all j = 1, . . . , n then
11 x∗i ← x∗s
12 else if |µi,j| < 1 for some j = 1, . . . , n then
13 x∗i ← x̂∗

14 else
15 x∗ ← x∗u
16 end
17 end
18 Êq ←− size(x̂∗);
19 Es ←− size(x∗s);
20 φ+(x)←− {φk11 (x)φk22 (x) : µk11 µ

k2
2 = 1};

21 for i← 1 to Es do
22 for j ← 1 to Êq do
23 W s

j (x̂∗j)←− {x ∈ Rn : φ+(x) = φ+(x̂∗j)};
24 end
25 ∂RA(x∗i ) = ∪W s(x̂∗j)

26 end

96



CHAPTER 4. KO-ROA 4.5. SUMMARY

4.5 Summary

This Section presents the theoretical and algorithmic contributions
that allow the approximation of regions of attraction for asymptotically
stable fixed points. Regarding the analysis, it is restricted to hyperbolic
systems because of the impossibility to determine the location of limit
cycles based only on snapshot data of the system. The main component
of the method is an accurate calculation of the systems’ EDMD, from
this decomposition it is possible to locate the hyperbolic fixed points of
the system and give their stability along with their type. Additionally,
an accurate decomposition with a suitable set of observables gives an ac-
curate approximation of the Koopman operator. Which in turn, provides
the basis for producing a non-trivial eigenfunction with eigenvalue equal
to one. By combining these two results from the EDMD, it is possible
to analyze the type-one fixed points in order to get an approximation of
the ROA for the asymptotically stable fixed points.

4.6 Additional Examples

This thesis has proposed a method to find the ROA of asymptoti-
cally stable fixed points based on the analysis of the eigenfunctions of
the approximation of the Koopman operator. To test the reliability of
the results, we first apply the method to a model of competitive exclusion
with two state variables to graphically show the effect of the eigenfunc-
tion with unitary eigenvalue. Then, a five-state variable mass action
kinetics (MAK) model that allows displaying the effectiveness of the al-
gorithm for higher dimensional systems. The Lotka-Volterra and the
MAK systems are suitable for the analysis because of their geometrical
properties. They are nonnegative compartmental systems that, depend-
ing on the parameterization, have hyperbolic fixed points that satisfy the
Hartman-Grobman theorem [Chellaboina et al., 2009]. The hyperbolic-
ity of the fixed points implies that their stable and unstable manifolds
intersect transversely at the saddle points. Therefore, Assumptions 1-3
are satisfied in this kind of systems under the right parameterization.

The numerical integration of the systems from a random set of initial
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conditions gives the dataset of trajectories for the algorithm. A sub-
set is used to calculate the Koopman operator’s approximation via the
EDMD algorithm, and another subset is used for testing the algorithm’s
accuracy according to the empirical error (3.56), where this error serves
to determine the best p − q parameters from a sweep over the different
values.

4.6.1 Lotka-Volterra Model

Consider a Lotka-Volterra model where two species compete for the
same resource described by the following network:

s1 2s1

s2 2s2

s1+s2 s1

s1+s2 s2

r1

r2
r3

r4
r5

r6

(4.20)

where s1 and s2 are the competing species, r1 and r3 describe the growth
rates of the species respectively, r2 and r4 are the constants that describe
competition between members of the same species, and the constants r5

and r6 describe the competition between species. The values of these
constants predicts the potential outcome of the competition, depending
on the parameterization there can be a co-existence or an exclusion of
one of the species against the other. The case of interest is the exclusion
one, and the objective is to find the set of initial conditions within the
state space that lead the model to one of the stable points where one
species completely takes over the other.

The ordinary differential equation that describes the dynamics of the
model comes from the matrices

α =


1 0
2 0
0 1
0 2
1 1
1 1

 α′ =


2 0
1 0
0 2
0 1
0 1
1 0

 , (4.21)
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The differential equation that describes the network (4.20) according
to the matrices (4.21) and (3.121) is

ẋ1 = r1x1 − r2x
2
1 − r5x1x2 (4.22)

ẋ2 = r3x2 − r4x
2
2 − r6x1x2, (4.23)

where the parameterization for the species to have two particular asymp-
totically stable fixed points is r = [2 1 2 1 3 3]>. With this choice, the
system has four fixed points; an unstable point at the origin defined as
x∗A, a saddle point at (0.5, 0.5) defined as x∗D and two asymptotically sta-
ble at (0, 2) and (2, 0) defined as x∗B and x∗C respectively. The geometry
of this problem provides a simple representation of the stable manifold
of the saddle point which is the line x1 = x2, therefore, giving a closed
formulation for the comparison with the stable manifold provided by
the operator by the construction of the eigenfunction with an associated
eigenvalue equal to one.

The integration of the system from 200 uniformly distributed random
initial conditions over x1, x2 ∈ [0 2] give the datasets for approximating
the operator via the EDMD algorithm and the dataset to test the accu-
racy of the algorithm; both sets, the training and test ones are 50% of
the trajectories from the original set. We apply the EDMD algorithm
for the training set with a Laguerre polynomial basis where a sweep over
the p− q values gives the best performance when q = 1.1 and p = 3 for
the truncation scheme. This selection produces a polynomial basis with
13 elements of an order less than 3 and a Koopman operator of order 13.
Figure 4.4 shows the retained indices after implementing the truncation
scheme.

The identification of the fixed points via Lemma (4.1.1) gives an ab-
solute error of 0.15%, and the linearization of the state evolution map
from (3.54) evaluated at the fixed points accurately provides their sta-
bility according to the norm of the eigenvalues λ; these are the eigen-
values of the linearization of the state evolution map (where Ψ−1

B (x) =
[1−x1, 1−x2]> for this particular case) evaluated at the identified fixed
points. Table 4.3 summarizes these results.

Figure 4.5 depicts the comparison between the theoretical trajecto-
ries given by the integration of the differential equations and the state
evolution map (3.54) from the same initial conditions. It also depicts the
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Figure 4.4: Retained indices for the approximation of the Koopman op-
erator for the Lotka-Volterra model with a choice of q = 1.1 and p = 3.

Table 4.3: Lotka-Volterra equation fixed points, location and stability.
Theoretical Algorithmic |λ1| |λ2| Stability

x∗A (0,0) (-0.006,-0.006) 1.21 1.22 Unstable
x∗B (0,2) (0,2) 0.66 0.82 AS
x∗C (2,0) (2,0) 0.82 0.66 AS
x∗D (0.5,0.5) (0.5,0.5) 0.81 1.10 Saddle

comparison between the theoretical boundary of the attraction regions
x1 = x2 and the boundary given by the level set of the constructed eigen-
function with unitary associated eigenvalue from (4.10). The error in the
classification of the initial conditions is of 2%, while the mean absolute
error between the boundaries of the regions of attraction is 3%.

Figure 4.6 depicts four eigenfunctions of the Koopman operator, where
the problem of the determination of the invariant unitary eigenfunction
is apparent. The approximation methods such as the EDMD can yield
φµ=1 = 1, which is a trivial eigenfunction that does not provide infor-
mation about the system. Therefore, it is necessary to get a nontrivial
invariant eigenfunction. Recall from (4.13) the relationship that the set
of eigenfunctions satisfy, where φ+(x) = φk11 (x)φk22 (x) is an eigenfunction
of the Koopman operator with associated eigenvalue µ+ = µk11 µ

k2
2 for a

set of complex constants k1 and k2. Therefore, setting µk11 µ
k2
2 = 1 and

computing a solution for k1 and k2 gives the desired invariant eigenfunc-
tion.

Figure 4.6 also depicts the resulting invariant eigenfunction that cap-
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Figure 4.5: Trajectories and boundary of the asymptotically stable points
of: a) The system differential equation, and b) The Koopman operator
and the eigenfunction with unitary associated eigenvalue.

tures the stable manifold of the saddle point, and the two eigenfunctions
with real-valued eigenvalues close to one used for the construction. The
eigenvalues of these eigenfunctions are µ1 = 1.07 and µ2 = 0.83. It is still
not clear how to properly select these eigenfunctions, and although the
algorithm gives accurate results when the selected eigenfunctions for the
construction of the invariant eigenfunction do not have real-valued eigen-
values, i.e., the complex part of the eigenvalue is different from zero, not
having real-valued eigenfunctions for the construction does hinder the
accuracy.

4.6.2 Mass Action Kinetics

Consider the simple network of an auto-catalytic replicator on a con-
tinuous flow stirred tank reactor described by the network

s1+2s3 s2+3s3

s2+2s4 3s4

s3 s5

s4 s5

r1

r2

r3

r4

(4.24)
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Figure 4.6: Eigenfunctions of the Koopman operator. a) Trivial eigen-
function with µ = 1, b) Constructed eigenfunction φ+, c) First eigenfunc-
tion for constructing φ+, and d) Second eigenfunction for constructing
φ+.

where s1 is the resource the species s3 consumes to replicate and produce
substrate s2, which is consumed by species s4 to replicate, and s5 is
the dead species from both groups. r1 > r3, and r2 > r4 are the pairs of
replication rate constants and the species death constants. The dynamics
of the network (4.24) come from matrices

α =


1 0 2 0 0
0 1 0 2 0
0 0 1 0 0
0 0 0 1 0

 α′ =


0 1 3 0 0
0 0 0 3 0
0 0 0 0 1
0 0 0 0 1

 , (4.25)

The differential equation that describes the network (4.24) according to
the matrices (4.25) and (3.121), and considering the material exchange
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with the environment is

ẋ1 = −r1x1x
2
3 + d− dx1

ẋ2 = +r1x1x
2
3 − r2x2x

2
4 − dx2

ẋ3 = +r1x1x
2
3 − r3x3 − dx3

ẋ4 = +r2x2x
2
4 − r4x4 − dx4

ẋ5 = +r3x3 + r4x4 − dx5, (4.26)

where d is the in/out-flow (dilution rate) of the system, and the sub-
strate s1 is the only component in the input flow. The value for the
reaction rates vector k = [7 5 0.3 0.05]>, yielding five fixed points: three
asymptotically stable, i.e., the working point defined as x∗A, a point where
species s3 thrives and species s4 washes-out defined as x∗C , and a wash-
out point where the concentration of both species is zero defined as x∗E,
and two saddle points defined as x∗B and x∗D. The objective is to find
the attraction region of the working point using the eigenfunctions with
unitary associated eigenvalue. For this particular case, as the system is
not a two-dimensional one and the geometry of the stable manifold is
not evident. Therefore, the criteria for classifying the test set of initial
conditions is not trivial.

A set of 360 random initial conditions is generated to integrate the
system with a ∆t = 0.1 and get the snapshot data for the approximation
of the Koopman operator via the EDMD algorithm. From this set of
snapshots, 50% is used to approximate the operator, and the other 50% to
test the accuracy of the state evolution map, the eigenfunctions, and the
results of the classification scheme based on the unitary eigenfunction. A
sweep over the p− q values gives the best performance for the truncation
scheme when q = 0.8 and p = 4 which leads to an order of 163 by
163 elements of the approximation of the Koopman operator, and thus,
a set of 163 eigenfunctions, eigenvalues and modes. From the set of
eigenfunctions, the two eigenfunctions with real eigenvalue closest to one
are µ1 = 1.00008, and µ2 = 0.99983 are selected to analyze the system.
The eigenvalue associated with these eigenfunctions is close enough to
one to provide an accurate analysis.

The identification of the fixed points via Lemma 4.1.1 gives an ab-
solute error of 0.15%, and the linearization of the state evolution map
from (3.54) evaluated at the fixed points provides an accurate description
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of their stability according to the norm of the eigenvalues λ. Table 4.4
shows the results from the theoretical and algorithmic location of the
fixed points, Table 4.5 shows the results of taking the norm of the eigen-
values λ of the linearization of the state evolution map (3.54), evaluated
at each of the fixed points.

Table 4.4: Location of fixed points.
Theoretical Algorithmic Error %

x∗A (0.23,0.09,0.30,0.54,0.59) (0.23,0.09,0.30,0.54,0.59) 0.08
x∗B (0.21,0.67,0.30,0.07,0.47) (0.23,0.62,0.30,0.11,0.49) 0.00
x∗C (0.23,0.76,0.30,0.00,0.46) (0.23,0.76,0.30,0.00,0.46) 0.00
x∗D (0.76,0.23,0.09,0.00,0.14) (0.70,0.3,0.11,0.00,0.17) 0.54
x∗E (1.00,0.00,0.00,0.00,0.00) (1.00,0.00,0.00,0.00,0.00) 0.00

Table 4.5: Stability of fixed points.
|λ1| |λ2| |λ3| |λ4| |λ5| Stability

x∗A 0.89 0.98 0.98 0.97 0.98 AS Working Point
x∗B 1.04 0.98 0.98 0.98 0.98 Saddle
x∗C 0.98 0.98 0.93 0.98 0.98 AS x4 Wash-out
x∗D 1.05 0.96 0.98 0.98 0.97 Saddle
x∗E 0.90 0.98 0.98 0.97 0.97 AS Wash-out

Figure 4.7 depicts the results of evaluating the initial conditions of the
test set on the eigenfunctions with an associated eigenvalue equal to one.
The evaluation of the selected eigenfunction with µ = 1.00008 (denoted
φ+1) at the initial conditions of the test set and the saddle fixed points
xB and xD shows that the evaluation at the former gives an accurate
classification of the initial conditions that converge to the asymptotically
stable fixed point xA. The evaluation of the selected eigenfunction with
µ = 0.99983 (denoted φ+2) at the initial conditions of the test set and
the saddle fixed points xB and xD shows that the evaluation at the lat-
ter gives an accurate classification of the initial conditions that converge
to the asymptotically stable fixed point xE. The combination of these
two conditions specifies the criteria to classify the initial conditions that
converge to the different asymptotically stable fixed points. Figure 4.8
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shows the result of the classification criteria, where the correct classifi-
cation surrounds the miss-classified initial conditions, with an error of
12%.
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Figure 4.7: Eigenfunctions with unitary associated eigenvalue a) Trivial
b) µ > 1 c) µ < 1.

4.7 Discussion

Even if we had the tools for extracting all kinds of information re-
garding the system, there are limitations for the deduction of the eigen-
functions. The right choice of the polynomial basis based on the known
structure of the differential equation, the optimal truncation scheme,
the choice of eigenfunctions to construct the one with unitary associ-
ated eigenvalue are open questions for improving the algorithm and the
analysis.
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Figure 4.8: Classification of the initial conditions with respect to the
evaluation of the eigenfunctions on the saddle points.

Also, there is the problem of the required data to train the Koopman
operator properly. For the two exemplified cases, the amount of data
is sufficient to produce an accurate nonlinear model of the systems. To
consider the proposed method over traditional identification techniques
would be necessary to develop experimental design techniques specifically
for the calculation of the Koopman operator to reduce the necessary data.

Furthermore, the relation between the eigenfunctions and their asso-
ciated eigenvalues is still open. There are other dynamical characteristics
to be analyzed from this association, as the dynamic behavior of eigen-
functions whose associated eigenvalue matches the local spectra of the
fixed points is a potential source of information of the underlying dynam-
ical system.

A possible improvement would be for the choice or construction of
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eigenfunctions. All eigenfunctions capture different information and prop-
erties (relevant or not, accurate or not), and the analysis is limited to the
invariant sets of these eigenfunctions. An analysis based on the spectral
and geometric characteristics of real-valued and complex-valued eigen-
functions could give more information about the system for control pur-
poses.
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Chapter 5

Anaerobic Digestion Process

The biological process through which multiple organisms break down
organic matter in the absence of oxygen is called Anaerobic Digestion
(AD). The benefits of the AD process include both the production of
energy and the production of low sludge. What motivates the use of
the AD process on an industrial scale is its capacity of degrading strong
and resilient substrates, the low sludge production, and the possibility of
making a profit out of the production of methane gas [Mailleret et al.,
2003].

5.1 Problem Statement

The model of the anaerobic digestion system under study considers
two reactions: acidogenesis and methanogenesis. The following reaction
network describes the biological transformations:

aξ1
r1(ξ)−−→ cξ2 + ξ3,

dξ2
r2(ξ)−−→ CH4 + ξ4. (5.1)

In the first reaction, the acidogenic bacteria ξ3 consumes the organic
substrate ξ1 for growth and produces volatile fatty acids ξ2. In the second
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reaction, the methanogenic bacteria ξ4 uses the volatile fatty acids as a
substrate for growth and produces methane. It is necessary to maintain
the balance between the acidogenesis and the methanogenesis states in
the operation of the AD process to avoid acidification, which is the state
of accumulation of volatile fatty acids in the reactor that produces the
washout of methanogenic bacteria.

For an ideal continuously stirred tank reactor, the following differen-
tial equations describe the system dynamics of the reaction network (5.1):

ξ̇1 = u(ξin1 − ξ1)− ar1(ξ),

ξ̇2 = u(ξin2 − ξ2) + cr1(ξ)− dr2(ξ),

ξ̇3 = −uξ3 + r1(ξ),

ξ̇4 = −uξ4 + r2(ξ), (5.2)

with a methane outflow rate

Q(ξ) = qr2(ξ), (5.3)

where ξ = [ξ1 ξ2 ξ3 ξ4]T ∈ R4
+ is the state vector, u ∈ R+ is the dilu-

tion rate, ξin1 , ξin2 ∈ R+ are the concentrations of organic substrate and
volatile fatty acids in the influent, a, b, c ∈ R+ are the stoichiometric co-
efficients, q > 0 is the yield for the methane production, and r1(ξ), r2(ξ)
are the reaction rates defined as

r1(ξ) = f1(ξ1)ξ3, (5.4)
r2(ξ) = f2(ξ2)ξ4, (5.5)

where the growth functions, f1(ξ1) and f2(ξ2) are based on Monod and
Haldane kinetics respectively as

f1(ξ1) = µm1

ξ1

Ks1 + ξ1

,

f2(ξ2) = µm2

ξ2

Ks2 + ξ2 +
ξ22
Ki2

. (5.6)

A canonical state space transformation of the AD system can be ob-
tained by considering the partition ξ = [ξa ξb]

T , where ξa = [ξ3 ξ4]T
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and ξb = [ξ1 ξ2]T , and a linear transformation of the states xa = ξa and
xb = ξb − CbC

−1
a ξa [Bastin and Dochain, 1990, Bastin and Van Impe,

1995] as

ẋa = u(wa − xa) + Caρ(x),

ẋb = u(wb − xb), (5.7)

where xa , [x3 x4]> are the state variables that represent the acidogenic
and methanogenic bacteria respectively, xb , [x1 x2]>, are the estate
variables that represent a linear combination of the four state variables,
Ca = I2, ρ(x) , [ρ1(x) ρ2(x)] are the reaction rates, wa , [w3 w4]> =
[0 0]> are the concentration of species in the input flow, wb , [w1 w2]> =
[ξin1 ξin2 ] are the concentration of substrates in the input flow,

Cb =

[
−a 0
c −d

]
,

is the stoichiometric matrix, and the reaction rates in the canonical state
space are

ρi(x) = ri(ξ)|ξa=xa; ξb=xb+CbC
−1
a xa

, i = 1, 2.

Unlike the four-state representation (5.2), the canonical state repre-
sentation is a two-state variable nonlinear differential equation system in
the bacterial populations xa and a two-state linear differential equation
where the state is a linear combination of species and substrates. This
linear part is assumed to be fast in comparison with the nonlinear part
and therefore its dynamics can be neglected for the analysis of the be-
havior of the system in the species concentration. As a consequence the
problem reduces to a two-state system for which the analysis is easier
and can be illustrated in 2D figures of the bacterial concentrations.

In general, the species measurements are not available. They often
come from computer sensors from models such as [Bernard et al., 2001]
whose identification comes from the available data such as gas flow-rate
(sum of all gas compounds), the content of volatile suspended solids,
volatile fatty acids, total organic carbon or chemical oxygen demand
among others.
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Table 5.1: Model parameters
a 42.14 Ks1 7.1 g/l
c 116.15 mmol/g Ks2 9.28 mmol/g
d 268 mmol/g Ki2 256 mmol/g
µm1 1.2 day-1 ξin1 [60 - 90] g/l
µm2 0.74 day-1 ξin2 [160 - 245] mmol/l
q 453 u [0.42 - 0.5] day-1

Depending on the magnitude of the dilution rate and substrate con-
centration at the inflow, the system may possess up to six equilibrium
points. In [Sbarciog et al., 2010a] and [Shen et al., 2007], the authors
present the regions in the input space for which various numbers of equi-
libria occur, and their stability. This analysis example will consider the
multi-stability case, where there are two asymptotically stable equilib-
rium points, one representing the desired working point of the system,
where the acidogenic and methanogenic bacteria coexist, and the other,
the acidification point.

Consider the benchmark presented in [Sbarciog et al., 2010b] with
system parameters as in Table 5.1, where the authors present the sta-
bility boundaries for the problem using backward integration. For the
analysis, the value of the dilution rate is fixed at u = 0.45 [day-1], and
the concentration of substrates at the input are set in a grid, where
40 ≤ w1 ≤ 70 [g/l] and 170 ≤ w2 ≤ 225 [mmol/l]. This paper will not
consider a unique dilution rate, instead, it considers a three dimensional
grid of dilution rate, and input concentrations to perform the analysis.

Figure 5.1 depicts the phase plane orbits of bacteria population for
different values of the inlet for the dilution rate and substrate concentra-
tion. The system has six equilibrium points; two asymptotically stable,
the working point x∗A in which the species coexist and the acidification
point x∗B of methanogenic wash-off. Additionally, the unstable saddle
points are: the point that separates the two asymptotically stable x∗C ,
the two acidogenic wash-off points x∗D, x∗E, and the total wash-out of the
system x∗F . Each of these points if of type-k, where k is the number of
unstable modes of the equilibrium point.

The objective is to get the separation of the state space for the dif-
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Figure 5.1: Phase plane three different realizations of the anaerobic di-
gestion process.

ferent parameterizations that specifies if an initial condition converges
to either one of the asymptotically stable equilibrium points. Depending
on the magnitude of the dilution rate and substrate concentration at the
inflow, the system may possess up to six equilibrium points. In [Sbarciog
et al., 2010a], the authors present the regions in the input space for which
various numbers of equilibria occur and their stability.

5.2 Anaerobic Digestion Analysis

The previous sections present the necessary tools to perform the anal-
ysis, a methodology to get an approximation of the discrete-time Koop-
man operator based on orthogonal polynomials, and a couple of degree
and dimension reduction methods. This representation gives the pos-
sibility to approximate the location of the fixed points of the system,
provides their stability, and use the set of eigenfunctions with an asso-
ciated eigenvalue equal to one in conjunction with the type-one saddle
points in the boundary of the ROA to determine the convergence of an
arbitrary point in the state space. In summary, the required steps to
perform the analysis are:

1 From a set of system trajectories, and with the EDMD algorithm of
Section 3.4, calculate the discrete-time approximation of the Koop-
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man operator.

2 From the discrete-time representation, use (4.1) to find the fixed
points of the system.

3 Calculate the Jacobian of (3.54), and evaluate it on the fixed points
to get their local stability according to the spectral decomposition
of the matrix. It is important to remark that these eigenvalues
come from the classical stability analysis of linear systems, and are
not related to the eigenvalues from the Koopman operator.

4 Analyze the ROA of the system, this includes finding an eigenfunc-
tion with associated eigenvalue equal to one for the case where the
EDMD algorithm fails to provide an accurate one. This eigenfunc-
tion comes from (4.13).

Given that the anaerobic digestion system in its reduced form (5.2) is
bistable under some operating conditions, where the separatrix between
the stability regions is the stable manifold of a unique type-one saddle
point, we can show the accuracy of the method analyzing this system.

Consider 100 different operating conditions of system (5.2) in a 3D
grid of four different dilution rates u, five different values for the organic
substrate ξin1 and five different values for the volatile fatty acids ξin2 with
values given in Table 5.2.

5.2.1 Training and Testing Data

The EDMD algorithm captures the dynamics of the portion of the
state space where the data for the calculation lies. For the case of the
eigenfunctions that approximate the ROA of the process, it is especially
important to have an even distribution of data on the portion of the state
space subject to evaluation.

There are some geometrical properties that hold for the reduced
Anaerobic Digestion System [Sbarciog et al., 2010a]. Specifically, it is
important to note that the reduced system (5.2) is nonnegative by defini-
tion; concentrations cannot be negative, and the canonical representation
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Table 5.2: Algorithm Parameters.
u [0.42, 0.44, 0.44, 0.5]
ξin1 [60 67.5 75 82.5 90]
ξin2 [160.0 181.25 202.5 223.75 245.0]

Polynomials

Hermite
Legendre
Laguerre

Chebyshev first
Chebyshev second

Jacobi (1, 1)
Jacobi (0.5, 1)

p [8 9 10 11]
q [0.6 0.7 0.8 0.9 1.0 1.1]

Min Max Average
Train points 2,943 5,237 3,811
Test points 3,253 5,877 4,199
∆t 0.1 [s]

is also compartmental, where all the trajectories lie inside an invariant
set Sx given by

Sx =

x ∈ R4 :

ξ1 = x1 − ax3 ≥ 0
ξ2 = x2 + cx3 ≥ 0

ξ3 = x3 ≥ 0
ξ4 = x4 ≥ 0

 . (5.8)

From the boundary given by this subspace of R4 we define a set of
initial conditions for every one of the cases. Figure 5.2 depicts the selec-
tion of such initial conditions and their respective orbits for an arbitrary
realization, specifically, for u = 0.44, ξin1 = 90, and ξin2 = 245. The
uniform distribution of these initial conditions on the boundary gives
enough snapshot data for the approximation and testing of the discrete-
time Koopman operator.

Given that these trajectories come from the numerical integration
of (5.7), an important consideration is the final integration time. The
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Figure 5.2: Training and testing sets of snapshots for the approximation
of the discrete-time Koopman operator. Initial conditions are uniformly
distributed in the boundary of Sx

integration algorithm1 stops when a specific orbit reaches steady state
because repeated data in the asymptotically stable fixed points affects
the condition number of G in (3.39), and as a consequence it affects
the accuracy of the approximation of the Koopman operator from (3.38).
When the integration stops, the final ∆t of the integration is inconsistent
with the fixed time-step of the integration, therefore, affecting also the
accuracy of the approximation. The solution to this problem is to discard
the last value of every trajectory.

1MATLAB(R) ode23s
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5.2.2 Approximating the Koopman operator

The first step to approximate the discrete-time Koopman operator is
to define a set of orthogonal polynomials that act as observables for the
system. Consider for example a set of Jacobi polynomials π(η,ν)

α (x) of
degree α with parameters η and ν that satisfy the differential equation

0 =(1− x2)
d2

dx2
y(x)

+ (η − ν − (η + ν + 2)x)
d

dx
y(x)

+ α(α + η + ν + 1)y(x). (5.9)

The solution of this differential equation for a set of nonnegative integers
α1 = {0, 1, 2, 3}, and parameters η = 0.5 and ν = 1 is summarized in
Table 5.3, where the subscript on α indicates that this are the univariate
solutions for the first component of the state vector.

Table 5.3: Basis for the first state variable x1. Solution to the Jacobi
ODE with parameters η = 0.5 and ν = 1.

J(α1) π0.5,1
α1

(x1) = y(x1)
J(01) 1
J(11) 7x1/4− 1/4
J(21) 99x2

1/32− 9x1/16− 21/32
J(31) 715x3

1/128− 143x2
1/128− 319x1/128 + 27/128

Every element of the polynomial basis comes from (3.58), which gives
a total of 16 polynomial elements for the full basis without truncation
that correspond to all the available combinations of the products between
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two univariate polynomials. i.e., the whole basis is

Ψ(x) =



J(01)J(02)
J(11)J(02)
J(21)J(02)

...
J(01)J(12)
J(11)J(12)

...
J(31)J(32)


=



1
7x1/4− 1/4

99x2
1/32− 9x1/16− 21/32

...
7x2/4− 1/4

(7x1/4− 1/4)(7x2/4− 1/4)
...

(715x3
1/128 + · · ·+ 27/128)(715x3

2/128 + · · ·+ 27/128)


(5.10)

The first reduction method is to apply a truncation scheme on this
basis. From the definition of the q-quasi norm in (3.60), and the p-q-quasi
norm truncation scheme in (3.61), take for examthe the values of p = 3
and q = 0.5 to reduce the degree and dimension of the basis. Figure 5.3
depicts the result of applying the truncation scheme, where the resulting
number of polynomial elements is 8, effectively reducing the maximum
degree from 6 to 3 and the dimension by half. The redefined basis for
the observables is

Ψ(x) =



J(01)J(02)
J(11)J(02)
J(21)J(02)
J(31)J(02)
J(01)J(12)
J(11)J(12)
J(01)J(22)
J(01)J(32)


=



1
7x1/4− 1/4

99x2
1/32− 9x1/16− 21/32

715x3
1/128− 143x2

1/128− 319x1/128 + 27/128
7x2/4− 1/4

(7x1/4− 1/4)(7x2/4− 1/4)
99x2

2/32− 9x2/16− 21/32
715x3

2/128− 143x2
2/128− 319x2/128 + 27/128


(5.11)

With the definition of the train, test and observables set, the discrete-
time approximation of the Koopman operator comes from the calculation
of matrices A from (3.40), G from (3.39), and finally Ud from (3.38).

Recall that for the state evolution map of the approximation of the
Koopman operator (3.54), and the error threshold (3.67) for the second
reduction method, an elemental matrix B with l number of rows, and n
number of columns where there is a single unitary element per column
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Figure 5.3: Full basis vs. truncated basis

in the index of an injective observable needs to be defined to recover
the state and set the error threshold for the elimination of polynomial
elements. A simple solution to this problem is to select the univariate
polynomial elements of degree one as stated in (3.69) from the basis. This
type of selection also gives the advantage that the inverse of the selected
function by B is linear. By applying this criterion, for this particular
case,

B =

[
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0

]>
, (5.12)

that selects the second and fifth element of the polynomial basis which
are the univariate, order-one, and injective linear functions of the set
of observables that define the set ΨB(x) = [ψ2(x), ψ5(x)], and whose
inverse gives the linear function of observations that recover the state as

Ψ−1
B =

[
1
7
(4x1 + 1) 1

7
(4x2 + 1)

]
. (5.13)

With the definition of B, the approximation is further reduced via the
second method, where the threshold for the elimination of polynomial
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elements from the basis comes from (3.66), and (3.67) as

ε̄ = max

(
N∑
i=1

‖ψ2(yi)− Ud2Ψ(xi)‖2
2, (5.14)

N∑
i=1

‖ψ5(yi)− Ud5Ψ(xi)‖2
2

)
, (5.15)

giving a lower degree, and reduced order approximation of the discrete-
time Koopman operator that accurately satisfies condition (3.36) for the
set of observables.

With the reduced discrete-time Koopman operator matrix Ud, the set
of observables Ψ(x), the set ΨB(x), and its corresponding inverse, the
linear predictor that approximates the dynamics of the system from an
arbitrary initial condition comes from (3.54). Although it is useful to
have this linear approximation of the evolution of the states according
to the spectral decomposition of the discrete-time approximation of the
Koopman operator, in practice, it is enough to use a linear predictor
based on the original set of observables as in (3.36). Considering again
that y = T k(x),

ΨB(xk) =(Uk
dΨ(x0))>B (5.16)

y =Ψ−1
B (ΨB(xk)). (5.17)

Equation (5.16) is linear, and describes the linear evolution of ob-
servations of the state space. Along with matrix B, it only describes
the linear evolution of a set of injective functions whose inverse recov-
ers the state. Given that B selects the order-one observables, (5.17) is
also a linear function. The benefit of having the evolution according
to the polynomial basis of observables instead of the eigenfunctions of
the discrete-time approximation of the Koopman operator is in terms of
accuracy. Equation (3.54) needs the left eigenvectors W ∗ of matrix Ud
to get the eigenfunctions as in (3.50), and the right eigenvectors Ξ to
recover the value of the evolved observations. To have this full repre-
sentation it is necessary to calculate the inverse of Ξ, adding additional
error because of the numerical approximation of the higher order inverse.
As a consequence, the set of eigenfunctions also suffer accuracy issues.
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For eliminating this induced numerical error, the solution is to get ma-
trix W ∗ as the right eigenvectors of U>d , and apply (3.50) to get the
eigenfunctions.

Using the linear evolution of observables (5.16) and (5.17) instead
of eigenfunctions, the linear predictor for the case of Jacobi polynomi-
als (5.11) is

ΨB(xk) =(Uk
dΨ(x0))>B

=
[
Ud2Ψ(x0) Ud5Ψ(x0)

]
(5.18)

y =
[

1
7
(4Ud2Ψ(x0) + 1) 1

7
(4Ud5Ψ(x0) + 1)

]
. (5.19)

In conclusion, these changes in the computation of the approximation
give a linear predictor and a set of eigenfunctions that do not have an
additional inverse numerical error.

There are still some open problems to solve in the approximation of
the discrete-time Koopman operator. For our particular case, in which we
select a type of orthogonal polynomial and then apply a p-q-quasi norm
truncation scheme, there is no current solution to determine the type of
polynomial, and the values of the p-q parameters the give the best per-
formance. Therefore, we perform the approximation of the discrete-time
Koopman operator for different types of polynomials with different values
for the p-q parameters and evaluate their performance using the empiri-
cal error (3.56) to select the suboptimal polynomial type and parameter
values. Table 5.2 shows the different type of polynomials, the values
for the p-q sweep, and the minimum, maximum, and average number of
training and testing points.

Table 5.4 shows the result of averaging the empirical error given by
every one of the polynomials, and the total time required to perform the
calculation2. Despite the fact that a Legendre polynomial has the lowest
average empirical error within the set, there are some cases where the
accuracy of the Legendre polynomial basis does not hold well enough to
determine an accurate classifier.

Figure 5.4 shows the empirical error for each of the parameterizations
in the grid, where the Legendre polynomial error in case 44 is 1.65 for
this case, u = 0.44, ξin1 = 82.5, and ξin2 = 223.75 that is high enough

2Intel(R) Core(TM) i7-7567U CPU @ 3.50GHz, 16GB DDR4 RAM @ 2400MHz
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Table 5.4: Grid optimization results for different types of polynomials.
Polynomial Av. error Time [m]
Hermite 0.89 31
Legendre 0.64 31
Laguerre 2.75 44
Chebyshev first 0.77 29
Chebyshev second 0.76 30
Jacobi (1, 1) 0.71 31
Jacobi (0.5, 1) 0.67 42
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Figure 5.4: Empirical error for every test of the 3D grid of parameteri-
zations.

for the EDMD algorithm not to give an accurate approximation of the
discrete-time Koopman operator. Therefore, the selection of the type of
basis for the whole analysis is Jacobi with parameters η = 0.5, and ν = 1.
Note that some of the cases have a greater empirical error in which the
approximation is not ideal. The reason to have these inconsistencies in
the results will be covered in the next section.
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5.2.3 Discrete-Time Approximation Result

Recall from Theorem 3.2.1, and Definitions 4.3.1 and 4.3.2 that it is
necessary to have an accurate location and stability of the fixed points
of the system. Either to determine the stable manifold of the type-one
saddle points in the boundary of the ROA for the classification criterion
4.3.1, or to apply the classification criterion 4.3.2 on the asymptotically
stable ones.

For either of the classification criteria to perform correctly it is only
necessary to get the location and stability of the working point x∗A, the
acidification point x∗B, and the point that separates the these two x∗C .
Recall from ?? that the fixed points are given by the solution of (4.1), and
in practice, the solution to this equation from different start points gives
the whole set of fixed points according to the discrete-time approximation
of the Koopman operator. The start points for the identification of the
fixed points comes from the trajectories of the test set, where the initial
condition of every trajectory is a starting point for the solution. In
addition to these points, and for this particular case it was necessary to
select a random point along these trajectories because counting only with
the initial conditions, there was no available starting point that gave an
identification of the acidification wash-out point.

Table 5.5: Anaerobic digestion fixed points for u = 0.47, xin1 = 75, and
xin2 = 160.

Theoretical Algorithmic
x∗A (1.67, 1.25) (1.67, 1.25) Working point
x∗B (1.67, 0.00) (1.67, 0.00) Acidification
x∗C (1.67, 0.86) (1.67, 0.86) Separation saddle
x∗D (0.00, 0.13) (0.00, 0.19) Acidogenic wash-off
x∗E (0.00, 0.53) (0.00, 0.53) Acidogenic wash-off
x∗F (0.00, 0.00) (0.00, 0.02) Wash-off

For the stability of the fixed points, consider the linear evolution of ob-
servations (5.19) and definition 4.2.1. The application of (4.5) on (5.19),
and with Ud = (Ui,j), the Jacobian matrix J = (Ji,j) for the nonlinear
evolution operator on the states is
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Evaluating the identified fixed points in the Jacobian matrix and get-
ting the respective eigenvalues give their local stability. Table 5.6 shows
the result of this process for the same arbitrary case of the anaerobic di-
gestion system. These result comes from a Jacobi polynomial basis with
η = 0.5, ν = 1, p = 9, and q = 0.7.

Table 5.6: Anaerobic digestion fixed points for u = 0.47, xin1 = 75, and
xin2 = 160.

|λ1| |λ2| Stability
x∗A 0.6448 0.8210 AS
x∗B 0.6444 0.9834 AS
x∗C 0.6443 1.0212 Saddle
x∗D 1.0160 1.0596 Unstable
x∗E 0.9318 1.0597 Saddle
x∗F 0.9554 1.0589 Saddle

Figure 5.5 shows the theoretical, and approximated fixed points of an
arbitrary realization of the anaerobic digestion system from the solution
of (5.5) from 24 initial conditions. These come from the orbits of the
train set, one for every starting point of the train set, and one from an
arbitrary point along those trajectories. The error of the working point,
the separating saddle and the acidification point is low enough for every
realization of the system for an accurate analysis of the ROA.

The results of approximating the discrete-time Koopman operator are
summarized in Figure 5.6 that shows in the first row the most accurate
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Figure 5.5: Location of fixed points in the state space from the solution
of the minimization problem (4.1) from different initial conditions.

realizations of the anaerobic digestion system, and in the second row, the
realizations with the highest empirical error. Although the trajectories
for the training set of each of the cases come from the same parameteriza-
tion for the process with a different value for the dilution rate and input
concentrations, not all of the orbits for the training set give the same
amount of information. The reduced, nonlinear canonical model for the
anaerobic digestion system (5.7) has a movement and bifurcation phe-
nomena for the fixed points depending on the input parameters [Sbarciog
et al., 2010a]. For the bi-stability case, the displacement of the separating
saddle x∗C is directly proportional to the values of input concentrations,
specially for the volatile fatty acids concentration ξin2 (see Figure 5.1),
as a consequence, the size of the ROA for the asymptotically stable fixed
points changes. The fact that the selection of initial conditions for all the
realizations is uniform along the boundary of the state space, makes the
available data for the acidification ROA scarce, and reduces the accuracy
of the algorithm. A solution to this problem is to generate the data with
an experimental design that gives enough information on both regions.
The reason to avoid that approach is because for our particular case, it
defeats the purpose of analyzing the system without prior knowledge of
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the system, otherwise we would have to know the ROA to find the ROA.
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Figure 5.6: Training orbits, testing orbits, and fixed points with their
respective approximations based on Koopman linear predictor and anal-
ysis algorithms.

5.2.4 Approximating the ROA

The spectral decomposition of the discrete-time approximation of the
Koopman operator gives a set of eigenvalues with their respective eigen-
functions. In the approximation from a Jacobi type of polynomial basis,
and under the selected p-q sweep each of the system gets a subset of the
eigenfunctions with a unitary or near unitary eigenvalue. For the reduced
order anaerobic digestion system, and under the selected set of orbits for
the approximation of the Koopman operator the set of eigenfunctions is
rich enough so that it contains at least one unitary eigenfunction that
characterizes the stable manifold of the separating saddle point for the
classification of an arbitrary initial condition. If that was not the case,
the eigenfunction with unitary associated eigenvalue comes from (4.13).
Several test over the construction of unitary eigenfunctions suggest that
selecting the eigenfunctions with a real valued eigenvalue closest to one
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improves the performance of the algorithm. Also note that (4.13) has in-
finite solutions, and as a consequence not all eigenfunctions constructed
this way give an accurate result. The selection of the base eigenfunctions
and the solutions to the construction to guarantee an accurate approxi-
mation for either of the selection criteria is still an open question.

Also, it is important to note that the constant eigenfunction is also
part of the unitary eigenfunctions set, i.e., φ+(x) = 1. In particular,
because of the presence of the constant observable when approximating
the discrete-time Koopman operator, this trivial eigenfunction is often
present in the approximation. As a result, the eigenfunction that gives
an accurate classification is a near unitary, or a constructed one.

In this case, and for the 100 different parameterizations, the approx-
imation of the discrete-time Koopman operator gives a set of eigenfunc-
tions whose unitary or near unitary eigenvalue give an accurate clas-
sification by the saddle selection rule (4.3.1). This result is depicted in
Figure 5.7, where the associated eigenvalue is real, exactly one, and whose
associated eigenfunction is nontrivial. The accuracy of this eigenfunction
and the application of the saddle classification rule is the comparison of
an additional test set of 900 initial conditions of the state space against
the algorithm. for the realization under consideration, the error is 3
misclassified initial conditions out of the 900.

Figure 5.7: Theoretical, saddle based classification of initial conditions,
and eigenfunction with the corresponding saddle point and stable mani-
fold.

Consider next a realization where the approximation of the discrete-
time Koopman operator gives a real valued nontrivial eigenfunction whose
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associate eigenvalue is near unitary, i.e., µ = 1.0078. Although the ac-
curacy decreases, where the number of misclassified initial conditions is
seven out of 900, it is till a good approximation of the stable manifold
and the convergence of an arbitrary initial condition in the state space.

Figure 5.8: Theoretical, saddle based classification of initial conditions,
and eigenfunction with the corresponding saddle point and stable mani-
fold.

For illustration purposes, consider now a case where the associated
eigenvalue is not real valued or unitary, where µ = 1.003 + 0.0101i. The
eigenfunction along with the saddle classification algorithm gives an error
of 35 misclassified initial conditions out of 900 where the result is given in
Figure 5.9, it shows that the eigenfunction is not monotonic with respect
to x4, and although the approximation of the stable manifold is accurate,
and the non-monotonic portion is completely below the threshold given
by the real part of the eigenfunction evaluated at the saddle point. If
that was not the case the eigenfunction would give a classification error
in the ROA of x∗A.

Recall from Section 5.1 that the driving forces in the reduced anaer-
obic digestion process are the dilution rate, which is the controlled input
of the process, and the uncontrolled fluctuations of inlet organic mat-
ter and volatile fatty acids concentration. These driving forces produce
a displacement of the fixed points, and consequently a displacement of
the stable manifold of the separating saddle point in the boundary of
the ROA [Shen et al., 2007]. Additionally, consider that the canonical
system representation is present because it allows for graphical represen-
tations of the bacterial dynamics in a 2D plane. As a consequence the
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Figure 5.9: Theoretical, saddle based classification of initial conditions,
and eigenfunction with the corresponding saddle point and stable mani-
fold.

movement of the separating saddle stability boundary can be illustrated
in x3− x4− xi 3D plots where xi = {u, ξin1 , ξin2} that sweep over one of
the parameters while the other two are constant.

Figure 5.10 illustrates two different cases for the x3 − x4 − u case,
varying the dilution rate between 0.42 ≤ u ≤ 0.54 as shown in Table 5.2
and keeping constant values of ξin1 = {90, 82.5}, and ξin2 = {160, 224}.
The plot shows the displacement of the fixed points, specially how the
stable manifold and the working point x∗A move toward each other in the
x4 axis, decreasing the methane production rate according to (5.3), and
reducing the portion of the state space that converges to the working
point.

Consider now the x3 − x4 − ξin1 that describes an increase in the
organic matter input concentration as 60 ≤ ξin1 ≤ 90 for the values given
in Table 5.2 for two different constant values of dilution rate and volatile
fatty acid concentration of u = {0.447, 0.473}, and ξin2 = {160, 224},
using the same fixed values for the input concentration as the previous
case. Figure 5.11 depicts the approximation of the stable manifold of the
dividing saddle, and shows that for this case, the relation between the
organic matter and the dividing saddle is directly proportional in both
axis. As a consequence, an increase in the organic matter concentration
at the input has the potential of increasing the methane production with
the drawback of having a reduction of the working point ROA.

The final case considers the same constant values for the organic
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Figure 5.10: Intersection of the stable manifold different realization s
with different u, and constant concentrations at the input.

matter concentration at the input feed of ξin1 = {90, 82.5} as in the
firs case, and evaluates for two different values of the dilution rate of
u = {0.447, 0.5} while varying for the different values of volatile fatty
acids concentration in the input feed given by Table 5.2, i.e., 160 ≤ ξin2 ≤
245. Figure 5.12 shows the approximation of the dividing saddle stable
manifold that gives the boundary of the ROA for the asymptotically
stable fixed points. In tis case, the movement of the stable manifold
and the working point are on the x4 axis is directly proportional to the
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Figure 5.11: Intersection of the stable manifold different realization s
with different u, and constant concentrations at the input.

volatile fatty acids concentration at the input. As a consequence, there
is an increase in the methane production and a reduction of the effective
state space that converges to the working point.
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Figure 5.12: Intersection of the stable manifold for different realizations
with different xin2 , and constant dulition rate, and xin1 concentration at
the input.

5.3 Discussion

In general, not only for the case of the anaerobic digestion system,
the analysis of the ROA is static, that is, it comes from a fixed value of
the input. For the process at hand these are the input concentrations
of substrates and the dilution rate. The rationale behind this approach
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is the movement and bifurcation phenomena present in the equilibrium
points of nonlinear systems, for example, consider the movement of the
fixed points with respect to the input concentrations and dilution rate
as depicted in Figures 5.10 to 5.12. The working point ROA size is
inversely proportional to all of the variations in the input, while the
converse applies for the movement of the working point. Meaning that
a transient and steady state optimization of biogas production benefits
from a dynamical analysis instead of a static one, which can reduce the
computational burden for this type of optimizations, and can improve
the current heuristic approach [Sbarciog et al., 2011].

Under the Koopman operator approach and the discrete-time approx-
imation given by the EDMD algorithm, it is possible to formulate an ex-
pansion of the state space defined as the product of the original space and
the input space, which is equivalent to setting the inputs as state variables
without specific dynamics. Using a polynomial expansion on the input
space rather than considering the approximation given by Korda [Korda
and Mezić, 2018b] as an input affine system gives the possibility to han-
dle it as a closed one, and as a consequence, analyze the movement of
the equilibrium points and the stability boundary in a dynamic way.

The approximation of the discrete-time Koopman operator, either in
static or dynamic ways via the EDMD algorithm still has some important
problems to be resolved. The first one is the amount of necessary data to
have an accurate representation. For the anaerobic digestion process at
hand, the type of analysis is possible for an identified system that can be
numerically integrated from a set of initial conditions. Even though the
reduction methods and the possibility to test with different polynomials
gives an accurate representation with a small amount of data, the neces-
sary amount at the moment, makes the analysis unfeasible if the solely
available trajectories come from a real digester.

Additionally, the type of data available also poses a problem for the
analysis given that the species concentration is not commonly available
for the process, while the biogas outflow is. Meaning that the algorithm
needs to be extended so that the eigenfunctions from an approximation
with partial information are still able to capture the dynamic behavior
of the system to approximate all the necessary information: fixed points,
stability, unitary eigenfunctions, and classification criteria. Furthermore,
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for the dynamical analysis, it is necessary to get a classification criteria
that not only depends on the current state but also depends on the input
concentrations and dilution rate of the system.

The analysis provides a clear criterion that does not depend on the
specific geometry of a manifold or the ability to calculate level sets and
interpolate between data-points for the classification of an arbitrary point
in the state space. As a result, the analysis can be extended to models
with more than two reactions and state variables while preserving a clear
and simple criterion for the classification.

Given that it is difficult and costly to acquire data from a reactor, this
approach also opens up the possibility of developing an analysis based on
the commonly available measurements such as the flow of biogas at the
output. To make that possible, it is necessary that the approximation and
reduction techniques presented here are extended so that they achieve
an accurate approximation of the discrete-time Koopman operator for a
reduced set of forced system trajectories.
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Conclusions

The development of the thesis began with an exploratory process
of the available literature for analyzing and controlling interconnected
dynamical systems. Part of this inquiry where the traditional model-
based techniques or input-output techniques such as dissipativity, passiv-
ity, population dynamics and Lyapunov based techniques for the former.
Regarding the latter, techniques from the solution of the Lur’e problem,
from the circle criterion up to integral quadratic constraints. In addi-
tion to this model based techniques, and in the search for a data-driven
alternative able to provide analysis tools for the non-linear dynamical
systems, this exploration led to the finding of the Koopman operator
and its approximation via the EDMD algorithm.

Upon further research, and considering the potential that the Koop-
man operator has to analyze the associated spectrum of the discrete-time
operator, its eigenvalues and eigenfunctions, the thesis took upon this
path as the selected method to achieve the objectives.

The theory regarding the Koopman operator is a powerful tool that
is still in its infancy with a lot of potential to tackle on the plethora
of problems regarding the subject matter of control systems analysis
and synthesis. However, the closed and analytical Koopman operator
representation is only available for a small family of polynomial systems,
making it a must, the development of tools to accurately approximate it.

Currently, the best tool for the task of approximating the Koopman
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operator is the EDMD algorithm, that certainly is at a similar stage
of development as the operator, i.e., in its early stages. There are still
several problems to solve within the method, where the main, is the
selection of observables. Also within these problems is the numerical
stability of the algorithm, where more often than not, the problem is in
the inverse of matrix G, arguably, the foundation of the algorithm. As a
consequence, the inversion of this matrix has to rely on a Moore-Penrose
pseudo inverse, instead of an inverse. The reason for this phenomena
is the poor condition number that the matrix has after the selection of
the observables and the evaluation of the available data for training the
algorithm.

Continuing with the assessment of the EDMD algorithm and its rela-
tion to the Koopman operator, having an accurate approximation of the
dynamics of the system via the former does not guarantee an accurate
approximation of the eigenfunctions of the latter. As a consequence of
this discrepancy, and given the fact that in the dimensional limit of the
set of observables there is a better approximation of the eigenfunctions,
there is a compromise between these two concepts.

Given all of the aforementioned drawbacks, the focus of the thesis
turned into the improvement of the EDMD algorithm to circumvent
them. Giving rise to the use of p-q-quasi norms, the reduction by poly-
nomial accuracy, the inverse of order one univariate polynomial elements
to recover the state, and the trigonometric embeddings. With these im-
provements the accuracy of the predictors and the approximation of the
Koopman operator had a significant improvement, not only in the error
metrics that determine their effectiveness, they also reduce the necessary
amount of trajectories, and therefore the amount of data-points for the
approximations. Without the improvements proposed by the thesis, the
method for approximating the boundary of the ROA in the problem of
the multi-stability analysis would be just a theoretical possibility, instead
of a thoroughly tested algorithm. Among the most important achieve-
ments of the process for approximating the ROA is the fact that it can
handle complex systems with more than a couple of state variables and
with several asymptotically stable fixed points. Additionally, it shows
potential for the solution of real problems as with the static analysis of
the anaerobic digestion process.
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In conclusion, there is still a long way to consider the EDMD al-
gorithm and the theoretical concepts of the Koopman operator mature
tools. Although the recent contributions for the analysis of dynami-
cal systems are growing and becoming widespread, the forecast of these
tools, that are expected to bring some of the numerous methods of linear
systems into these linear transformations is still not fulfilled. Moreover,
synthesis tools are limited to MPC, while the availability of the point
spectrum of the Koopman operator transformation is not yet exploited,
in contrast with the linear systems tools that heavily rely on the spec-
tral decomposition of the state transition matrix. As a consequence, the
research for closing this gap offers endless possibilities. In that regard,
and hopefully, the main contribution of this thesis is grounding the algo-
rithmic methods such that they become more widespread in the control
systems community and get more attention for their development.
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