
Examples
This .zip-file contains the Matlab c© .m-files for the examples used in Logist et al. (1).
The examples simulate the Buckley-Leverett equations for an oil well and a dispersive
jacketed tubular reactor. The methods employed are based on (i) a method of lines
approach (2) and (ii) an operator splitting approach (3).

These example codes are available free of charge and on an as is basis. The authors
cannot be held liable for any deficiency, fault or inconvenience resulting from their
use.

Installation
The examples.zip file containing the example codes (and the matmol.zip file
containing the MATMOL package) are available upon request (by emailing one of
the authors) or can be downloaded from the website of the Service d’Automatique of
the Faculté polytechnique de Mons1 under the section Research - Distributed
parameter systems. The installation is easy and proceeds in the following steps:

1. Install the MATMOL toolbox according to the instructions.

2. Unzip the examples.zip to the desired directory. Three subdirectories are un-
packed:

• DFR MatMOL, which contains the example files for the tubular reactor sim-
ulation based on a method of lines approach,

• DFR SeqMeth, which contains the example files for for the tubular reactor
simulation based on an operator splitting approach, i.e., the sequencing
method by (3), and

• Buckley Leverett MatMOL, which contains the example files for the
oil well simulation based on a method of lines approach.

3. Test the configuration. In each of the folders files have been added which contain
the function calls to all examples: (i) Auto Pe 1.m, Auto Pe 100.m, and
Auto Pe 10000.m, for the tubular reactor example, and (ii) Auto eps 01.m,
Auto eps 001.m, and Auto eps 0001.m for the oil well example.

1http://www.autom.fpms.ac.be/index english.html
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Contents
As indicated in the paper (1), all example codes have been programmed as Matlab c©

functions. This approach allows the user to directly choose between several options
and to readily experiment with the codes. Each of the available options is docu-
mented at the beginning of the .m-file. To maintain a clean overview over the different
example codes, all required subfunctions have each time been implemented in the
same file as nested functions. One exception, however, are the files BC DynGrid.m,
Flux DynGrid.m, and dFlux DynGrid dx.m which for the dynamic regridding
approach specify the boundary conditions, the fluxes, and their Jacobian, respectively.
In addition, one auxiliary file AddIntStats.m is added to enable the availability
of the integration statistics. Table 1 illustrates the available files and describes their
features.

Note on the calling of ODE/DAE solvers in Matlab c©

In most of the files the Matlab c© ODE/DAE integrators are called in order to return a
structure which apart from the solution trajectories also contain the integration statis-
tics (e.g., number of steps, number of function evaluations, . . .). This options has been
selected for illustrative reasons.

sol = solver(odefun,[t0 tf],y0...)
Stats = sol.stats;

However, in this formulation the evolution of the independent variables is stored at
each of the steps taken by the integrator in between the initial point t0 and the final
tf in the interval. Hence, whenever fine steps have to be taken for large ODE/DAE
systems (which originate, e.g., from a PDE discretisation) the amount of information
to be stored increases rapidly. When this amount of data approaches the size, or ex-
ceeds the amount of the available memory, parts of the data have to be stored in the
virtual memory (i.e., the hard disk). Access to this information requires each time read
and write operations which tremendously slow down the computation. Evaluating the
dependent variables at certain desired points tspan is finally done by employing the
function:

Y = deval(sol,tspan);

By consequence, when the number of points at which the dependent variables have to
be evaluated, is rather limited, it can be advantageous to call the integrator as follows:

[T,Y] = solver(odefun,tspan,y0);

which only stores the dependent variables at the points provided in tspan. However,
it should be noted that in this last case the integration statistics are not accessible.
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