
UMONS
Faculté des Sciences

Département d’Informatique

Certain Query Answering in
First-Order Languages

Alexandre Decan

A dissertation submitted in fulfillment of the requirements of
the degree of Docteur en Sciences

Advisor Jury
Prof. Dr. JEF WIJSEN Prof. Dr. VÉRONIQUE BRUYÈRE
Université de Mons, Belgique Université de Mons, Belgique

Dr. OLIVIER DELGRANGE
Université de Mons, Belgique

Dr. OLIVIER GAUWIN
Université Bordeaux 1, France
Prof. Dr. FLORIS GEERTS

Universiteit Antwerpen, Belgique
Prof. Dr. TOM MENS

Université de Mons, Belgique
Prof. Dr. SLAWOMIR STAWORKO

Université de Lille 3, France
Prof. Dr. JEF WIJSEN

Université de Mons, Belgique

July 2013

Acknowledgments

First and foremost, I would like to thank my advisor, Jef Wijsen, for giving me the
opportunity to experience research, for his guidance and his support. This dissertation
would not have been possible without his advice and discussions.

I would like to thank all the collaborators I’ve worked with, Olivier Gauwin, Olivier
Carton, Fabian Pijcke and especially Véronique Bruyère for her precious advice.

I also thank my friends and colleagues for their support and comments. Sylvain,
Térence, Mathieu, Stefan, the discussions we had were very valuable to me. I learned
a lot of things from you, related or not to our work. Thank you for your company and
interest.

Above all, I would like to thank my wife, Perrine. Thank you for your love, your
support and for our adorable son, Simon. Thank you both for being there.

iii

Abstract

Real-life databases often store uncertain, inconsistent or incomplete information. The
term certain query answering refers to methods for computing reliable answers to queries
on such databases. This thesis focuses on cases where this computation is expressible in
first-order logic (and hence in the low complexity class AC0).

The first part of the thesis deals with certain query answering on relational databases
that are allowed to violate primary key constraints, also called uncertain databases. A
repair of such an uncertain database is obtained by selecting a maximal number of tuples
of it without ever selecting two distinct tuples of the same relation that agree on their
primary key. We say that a Boolean query q is certain in an uncertain database db if
q evaluates to true on every repair of db. Given a Boolean query q, CERTAINTY(q) is
defined as the set of uncertain databases in which q is certain. It is known that there exist
conjunctive queries q for which CERTAINTY(q) is coNP-hard. This thesis focuses on the
case where CERTAINTY(q) is first-order definable, meaning that there exists a first-order
sentence ϕ to determine whether q is certain. Such sentence ϕ is also called a certain
first-order rewriting for q. Given an acyclic Boolean self-join-free conjunctive query q,
it is decidable whether CERTAINTY(q) is first-order definable. We provide algorithms
to construct first-order rewritings for such queries, both in first-order logic and in SQL.
We study the effect of syntactic simplifications on the execution time of certain SQL
rewritings on large databases.

In the second part of the thesis, motivated by a problem in temporal databases, we
consider uncertainty in the framework of first-order logic on words. In this setting, un-
certainty is captured by the concept of multiword, which is a finite sequence of nonempty
sets of possible symbols. Every word obtained by selecting one symbol from each set is
a possible word. Given a word w, CERTAIN(w) is the set of multiwords such that w is a
factor of every possible word of the multiword. We provide strong supporting evidence
for the conjecture that CERTAIN(w) is first-order definable for every word w. We also
study the deterministic finite automata recognizing CERTAIN(w).

v

Résumé

Les bases de données actuelles contiennent bien souvent des informations incertaines, in-
consistantes ou incomplètes. Le terme certain query answering (CQA) qualifie les méth-
odes utilisées pour calculer les réponses fiables à des requêtes sur ces bases de données.
Cette thèse se concentre sur les cas où un tel calcul est exprimable en logique du premier
ordre (et donc, dans la classe de faible complexité AC0).

La première partie de la thèse traite du CQA dans des bases de données relationnelles
qui peuvent ne pas satisfaire des contraintes de clés primaires. Ces bases de données sont
également appelées “incertaines”. Une réparation d’une telle base de données incertaine est
obtenue en sélectionnant un nombre maximum de tuples sans jamais sélectionner deux tu-
ples distincts d’une même relation, et qui partagent une même valeur de clé primaire. Une
requête booléenne q est dite “certaine” dans une base de données incertaine db si q s’évalue
à vrai sur chaque réparation de db. Étant donnée une requête booléenne q, CERTAINTY(q)
est défini comme l’ensemble des bases de données incertaines dans lesquelles q est certaine.
La littérature fait déjà mention de requêtes conjonctives q pour lesquelles CERTAINTY(q)
est coNP-dur. Cette thèse se focalise sur les cas où CERTAINTY(q) est définissable en
logique du premier ordre, c’est-à-dire qu’il existe une phrase ϕ en logique du premier ordre
qui détermine si q est certaine. Une telle phrase ϕ est également appelée une ré-écriture
certaine de q en logique du premier ordre. Si q est une requête booléenne, acyclique,
conjonctive et sans self-join, le problème de savoir si CERTAINTY(q) est définissable en
logique du premier ordre est décidable. Nous proposons des algorithmes qui construisent
des ré-écritures certaines pour de telles requêtes, à la fois en logique du premier ordre et
en SQL. Nous étudions ensuite les effets qu’ont plusieurs simplifications syntaxiques sur
les temps d’exécution des ré-écritures certaines en SQL sur de larges bases de données.

Dans la seconde partie de la thèse, poussés par une problématique dans les bases de
données temporelles, nous considérons les incertitudes dans le cadre de la logique du pre-
mier ordre sur les mots. Dans ce contexte, l’incertitude est retranscrite au sein du concept
de multimot. Un multimot est une séquence finie d’ensembles (non-vides) de symboles
possibles. Chaque mot pouvant être obtenu en choisissant un symbole dans chaque en-
semble de symboles possibles est un mot possible. Si w est un mot, alors CERTAIN(w)
est défini comme l’ensemble des multimots tels que w est facteur de chaque mot possi-
ble du multimot. Nous apportons des preuves solides qui soutiennent la conjecture que
CERTAIN(w) est définissable en logique du premier ordre, quelque soit le mot w. Nous
étudions également les automates déterministes finis reconnaissant CERTAIN(w).

vii

Table of Contents

1 Databases and Uncertainty 1
1.1 Databases Fundamentals . 2

1.1.1 The Relational Model . 2
1.1.2 First-Order as Query Language . 3

1.2 Inconsistency and Uncertainty in Databases 4
1.2.1 Integrity Constraints . 4
1.2.2 Inconsistency by Constraints Violations 5
1.2.3 Repairs and Consistent Answers . 6
1.2.4 Certain First-Order Rewriting . 9

I Certain Conjunctive Query Answering in SQL 13

2 The Problem of Certain Answers 15
2.1 The Problem CERTAINTY(q) . 16
2.2 Certain FO Rewriting for Acyclic SJFC Queries 17

2.2.1 Preliminaries . 18
2.2.2 The Attack Graph . 19
2.2.3 Deciding the First-Order Definability 21

2.3 Certain FO Rewriting for Some Cyclic SJFC Queries 22

3 Certain Conjunctive Query Answering in First-Order Logic 27
3.1 Computation of Certain First-Order Rewritings 28
3.2 Syntactic Simplifications . 33

3.2.1 Preliminaries . 34
3.2.2 Reduction of the Quantifier (Block) Rank 36
3.2.3 Reduction of the Number of Quantifier Blocks 40

4 Certain Conjunctive Query Answering in SQL 47
4.1 From First-Order to SQL . 48

4.1.1 Tuple Relational Calculus . 48
4.1.2 Encoding from TRC to SQL . 51

4.2 Experiments . 56
4.2.1 Performances on a Practical Database 57
4.2.2 Query and Data Complexities . 60

ix

Table of Contents

4.2.3 Conclusions . 64

5 Conclusions 69

II A Pattern Matching Problem for Multiwords 71

6 A Variant of the Pattern Matching Problem 73
6.1 Words with don’t-care Symbols . 74
6.2 Definitions and Preliminaries . 75
6.3 Application in Uncertain Database Histories 78

7 The Problem CERTAIN(w) 81
7.1 Problem Statement . 82
7.2 Deciding Membership of CERTAIN(w) . 84

8 Aperiodicity of CERTAIN(w) 89
8.1 The Case of CERTAIN3(w) . 90
8.2 Four Families of Words . 91
8.3 Comparisons of the Four Families . 94
8.4 Decomposition Lemma . 95
8.5 Family Frep.3 of Repeated (≥ 3) Words . 99
8.6 Family Fp.unb. of Powers of Unbordered Words 104
8.7 Family Fanch. of Anchored Words . 106
8.8 Family Funr. of Unrimmed Words . 107
8.9 Coverage of the Families of Words . 108

9 Automata Recognizing CERTAIN(w) 113
9.1 Preliminaries . 114
9.2 Automata Recognizing CERTAIN3(w) . 115
9.3 Automata Recognizing CERTAIN(w) . 117
9.4 Number of States of Amin(w) . 119

9.4.1 Families of words w minimizing |Amin(w)| 121
9.4.2 Families of words w maximizing |Amin(w)| 124

10 Conclusions 129

Bibliography 131

List of Figures 137

List of Tables 139

x

. .CHAPTER 1
Databases and Uncertainty

A database that does not satisfy all of its integrity constraints is an inconsistent
database. While inconsistency is generally an undesirable property of a database, this
does not mean that an inconsistent database is completely unreliable: tuples involved in
some integrity constraint violation may contain both consistent and inconsistent data.
In general, there exist many sensible ways to make an inconsistent database consistent.
Intuitively, the consistent part of the database contains information that is invariant
regardless of the way chosen to restore consistency.

This chapter is organized as follows: Section 1.1 presents the basics of database theory
needed in this thesis. We briefly recall the fundamentals of databases and of first-order
logic as a query language. Section 1.2 investigates what happens when the database
does not satisfy some constraints. Integrity constraints are introduced in Subsection 1.2.1
while Subsection 1.2.2 considers inconsistency by integrity constraint violations. Subsec-
tion 1.2.3 gives a characterization of the data that are consistent and states the general
problem of consistent query answering: given a query, what is the answer to this query
that is consistent? In particular, we focus on uncertain databases: databases that are
allowed to violate primary keys. In Subsection 1.2.4, we are interested in computing the
answer that is certain by means of a technique known as certain first-order rewriting.

At the end of this chapter, we introduce two interesting problems in the field of
consistent query answering and give a general outline of this thesis.

1

Chapter 1. Databases and Uncertainty

1.1 Databases Fundamentals

This section is mainly based on [Abiteboul et al. 1995] and [Maier 1983].

1.1.1 The Relational Model

Emp Name WorksFor Age
Paul Microsoft 60
Bill Microsoft 57
Larry Google 40
Tim Apple 52

Comp Name Location
Microsoft Redmond
Google Mountain View
Apple Cupertino

Figure 1.1: Database db1 of Example 1.1.

The relational database model was introduced by Codd in 1969 [Codd 1969]. Although
the relational database model is unique, it has a variety of “implementations” and the term
is commonly used to refer to a broad class of database models that have relations as data
structures and languages to specify queries, updates, and integrity constraints.

Assume two disjoint sets dom and var of respectively constants and variables. Con-
stants and variables are symbols. Assume that a countably infinite set attr of attributes
is fixed.

Example 1.1 Figure 1.1 shows a conventional representation of a relational database.
Database db1 contains two tables, the relations Emp and Comp. The column headers in
each table are the attributes of the corresponding relations. Rows in each table are tuples.
Each value in a row is an element of dom, the domain of the database, and is called a
constant. /

A tuple over a (possibly empty) finite set U = {u1, . . . , un} of attributes is a total
mapping t that associates to each attribute x in U a value t(x) in dom. Commonly, a total
order is assumed on the set of attributes. In that case, a tuple t = {u1 : a1, . . . , un : an}
can be specified as a finite sequence 〈a1, . . . , an〉. If i is a position with 1 ≤ i ≤ n, then
we use t · i to access the i-th element of the tuple, that is, t · i = t(ui). If X is a subset of
U , t[X] denotes the tuple v over X such that v(u) = t(u) for each u ∈ X.

A relational database schema is a finite set of relation names, each with an associated
ordered finite set of attributes. Let R be a relation name and U the set of attributes of R.
We denote by sort(R) the set U of attributes. The arity of R, denoted by arity(R), is the
number of attributes in sort(R). Attributes do not need to have names: in this case, each
attribute is identified by its position, from 1 to arity(R). If R is a relation name whose
arity is n, then R(a1, . . . , an) is an R-atom (or simply an atom) where each ai (1 ≤ i ≤ n)
is a constant in dom or a variable in the set var of variables. If an atom has no variable,
then it is ground and it is called a fact.

A relation over U (or simply a relation if U is understood) is a finite set of tuples over
U . If S is a database schema, a database over S associates to each relation name R in S
a relation over sort(R). A database can also be viewed as a finite set of ground atoms
using only the relation names in S.

2

1.1. Databases Fundamentals

1.1.2 First-Order as Query Language

A database does not only provide a structure to store information but also provides ways
to specify queries. Querying a database is a common task that can be achieved in a
large variety of languages. Practically, people use languages like SQL (Structured Query
Language), but in the theoretical field, first-order logic and its variants are more common.

First-order logic is a logic allowing the use of quantified variables. The adjective
“first-order” distinguishes this logic from more expressive, higher-order logics which, for
example, allow quantifications over subsets of the domain. In first-order logic, the quan-
tification ranges over elements of the domain.

A formula in first-order logic is built from elements of a first-order language. If S is a
database schema, then S determines a first-order language L(S) where the n-ary predicate
symbols refer to the relation names in S, that is, the n-ary relation symbol R refers to
the relation name R with arity n.

Variables and their occurrences may be either bound or free in formulas. An occurrence
of variable x in a formula is bound if it occurs within the scope of ∃x or ∀x; otherwise the
occurrence is free. A free variable has at least one free occurrence. If a formula has no
free variable occurrence, it is called a first-order sentence. If a formula has no variable,
then it is called a ground formula.

Example 1.2 Here are examples of two well-formed first-order formulas. Let R be a
relation name whose arity is 2. x and y are variables while a, b and c denote three
constants.

ψ1 : ∃x
(
R(a, x) ∧R(x, b)

)

ψ2 : ∃x
(
x = c ∧R(x, y)

)

The variable x is bound in ψ1 and ψ2. The variable y is free in ψ2. The formula ψ1 is
a first-order sentence as it has no free occurrence of variables. /

In this document, we assume that the set of formulas and their interpretations over a
given first-order language are the usual ones [Libkin 2004]. It is notwithstanding impor-
tant to point out some particularities when considering first-order logic in the database
field [Reiter 1982]:

• Function symbols are not included.

• One makes no clear distinction between constant symbols in the vocabulary and
elements of the universe. Every constant symbol is interpreted by itself.

A query q over schema S is a first-order formula ψ in L(S). If q has no free variable
(i.e. ψ is a first-order sentence), q is called a Boolean query. If q is a Boolean query and
db an instance of S, then we say that db satisfies q, denoted db |= q, if q evaluates to true
on db.

The answer to a nonBoolean query is defined using the notion of valuation. A sub-
stitution is a mapping σ : var ∪ dom → var ∪ dom such that for every constant

3

Chapter 1. Databases and Uncertainty

a ∈ dom, σ(a) = a. A valuation θ over X ⊆ var is a substitution such that for ev-
ery variable x ∈ X, θ(x) ∈ dom ; if x is a constant or a variable not in X, then θ(x) = x.
If ~x = 〈x1, . . . , xn〉 and θ is a substitution, we write θ(~x) for 〈θ(x1), . . . , θ(xn)〉.

Let q be a query with free variables ~x = 〈x1, . . . , xn〉. The answer to q on a database
db, denoted by q(db), is the set:

q(db) = {θ(~x) | θ is a valuation over x1, . . . , xn such that db |= q
(
θ(~x)

)
}.

Assume some fixed total order on the set of variables var. This total order will only
serve to “serialize” sets of variables into sequences in a unique way. If ~x is a sequence
of variables and constants, then vars(~x) is the set of variables that occur in ~x. Let q
be a query, ~x = 〈x1, . . . , xn〉 a sequence of variables and ~c = 〈c1, . . . , cn〉 a sequence of
constants. We denote by q[~x7→~c] the query q in which, for 1 ≤ i ≤ n, every occurrence of
xi is substituted by ci.

We now introduce the subclass of conjunctive queries. A conjunctive query Q is a pair
Q = (q, V) where q = {R1(~x1), . . . , Rn(~xn)} is a finite set of atoms and where V is a
subset of the variables occurring in q. Every variable of V is free; the other variables are
bound. This query represents the first-order formula ∃u1 . . . ∃uk

(
R1(~x1) ∧ · · · ∧ Rn(~xn)

)
,

where u1, . . . , uk are all the variables of vars(~x1 . . . ~xn) \ V .

Example 1.3 Query ∃x(R(x, y)∧S(y, z)) is represented as ({R(x, y), S(y, z)}, {y, z}). /

Let Q = (q, V) be a conjunctive query and db a database instance. Let ~x be the
variables of V ordered according to the total order on the set of variables. The answer to
Q on db, denoted Q(db), is defined as follows:

Q(db) = {θ(~x) | θ is a valuation over vars(q) such that θ(q) ⊆ db}.

We say that a conjunctive query Q = (q, V) has a self-join if some relation name
occurs more than once in q; if Q has no self-join, then it is called self-join-free. The class
of self-join-free conjunctive queries is denoted by SJFC.

Finally, if V is empty, then Q is a Boolean conjunctive query and then either Q(db) =
{〈〉} (representing true) or Q(db) = {} (representing false). If it is clear from the context
that V is empty, we will sometimes write q to refer to Q = (q, V).

1.2 Inconsistency and Uncertainty in Databases

1.2.1 Integrity Constraints

Reducing redundancy and improving reliability of the data are part of the database ap-
proach. Attributes and relation names are often chosen in a way to reflect some restrictions
on the data. For example, one could expect that values used for attribute age are non
negative integers or that every company stored in relation Emp has a location in rela-
tion Comp. Those a priori knowledges of restrictions or constraints on the values are
essential in databases [Maier 1983]. Integrity constraints aim to formally integrate these
knowledges into databases.

4

1.2. Inconsistency and Uncertainty in Databases

An integrity constraint is a first-order sentence that the database has to satisfy. An
integrity constraint could encode several useful conditions and restrictions for the data.
In this thesis, we focus on functional dependencies, and in particular on primary key
constraints, a common class of integrity constraints. Other common integrity constraints
are described in Chapters 7 and 14 in [Maier 1983].

Definition 1.1 [Abiteboul et al. 1995] If U is a set of attributes, then a functional de-
pendency (FD) over U is an expression of the form X → Y , where X, Y ⊆ U . A relation
R over U satisfies X → Y , denoted R |= X → Y , if for all tuples p, q in R, p[X] = q[X]
implies p[Y] = q[Y]. /

Let S be a database schema. We associate with each relation name R in S a unique
primary key X ⊆ sort(R). Assume a fixed database and let R be the relation associated
with R. We say that relation R satisfies this primary key if R satisfies the functional
dependency X → sort(R).

A signature for R is a pair [n, k] with 1 ≤ k ≤ n where n is the arity of R and k defines
a primary key on the first k attributes of R: if U = {U1, . . . , Un} is the set of attributes
of R, then a relation R for R satisfies the primary key if R satisfies {U1, . . . , Uk} → U .
If R has signature [n, k], we write R(~x, ~y) for atom R(a1, . . . , an), with ~x = a1, . . . , ak
and ~y = ak+1, . . . , an, i.e. the primary key positions are underlined. If n = k, then R is
said to be all-key. Note that, in general, any attribute could be part of the primary key
constraint; the restriction to the first k attributes is only for convenience.

In the remainder, whenever the database is fixed, when we speak about relation R,
we mean the relation associated with relation name R.

Example 1.4 The relation Emp of db1 has signature [3, 2]. Relation Comp has signature
[2, 1]. The underlined attributes in Figure 1.1 indicate the primary key for each relation.
The primary key {Name,WorksFor} on Emp states every employee has a unique age while
the primary key {Name} on Comp states every company has a unique location. /

1.2.2 Inconsistency by Constraints Violations

A database is said to be consistent if it satisfies a given set of integrity constraints. It
is common to require databases to be consistent in data management. It is generally
desirable that an evolving database is kept consistent during its whole life.

Inconsistency is inherent in many database applications and is generally an undesir-
able property of a database. For several reasons, when some integrity constraints are not
satisfied, a database may be inconsistent and may contain inconsistent data. Inconsis-
tency is not always avoidable. For example, inconsistency arises as an inconvenient but
inescapable consequence of data integration and data exchange [Bertossi 2011].

Example 1.5 Let dbinc be the database of Figure 1.2. This database is inconsistent
because the primary key constraint {Name} is not satisfied for tuples involving Microsoft
in Comp. The relation Comp of this database could have been obtained by combining the
two data sources of Figure 1.3 containing CompA and CompB. Note that the primary key
is satisfied in both CompA and CompB.

/

5

Chapter 1. Databases and Uncertainty

Emp Name WorksFor Age
Paul Microsoft 60
Bill Microsoft 57
Larry Google 40
Tim Apple 52

Comp Name Location
Microsoft Redmond
Microsoft Cupertino
Google Mountain View
Apple Cupertino

Figure 1.2: An inconsistent database dbinc, the primary key is violated in Comp.

CompA Name Location
Microsoft Cupertino
Apple Cupertino

CompB Name Location
Microsoft Redmond
Google Mountain View
Apple Cupertino

Figure 1.3: Two potential data sources for relation Comp.

Inconsistency is sometimes voluntary and is not necessarily a bad thing. In planning
databases, for example, it seems natural to encode uncertainty using primary key viola-
tions. This way, one can represent different alternatives. Consider the planning database
of Figure 1.4. This database stores information about the preferences for the location of
world events. The exact location of Olympic Games 2020 is still uncertain, on the other
hand, we are sure it will occur in Europe, even though we do not know the exact country:
it can be in Germany or in Belgium.

1.2.3 Repairs and Consistent Answers

While it is sometimes possible to remove inconsistency by cleaning the database using
some data cleaning techniques or by adding or removing tuples in order to satisfy the
integrity constraints, this process is often complex and non-deterministic. Removing
tuples in which the primary key is violated can lead to the loss of some useful information
if the tuples consist of both correct and erroneous components.

A database that is inconsistent may still contain reliable information. For example,
not all the tuples are involved in some primary key violation and the tuples that are not
involved in primary key constraints may contain consistent data that can be used when
querying the database. Tuples involved in primary key violations may also contain useful
pieces of data.

Events Name Year Country
Olympic Games 2020 Germany
Olympic Games 2020 Belgium

Countries Name Continent
Germany Europe
France Europe
Belgium Europe

Figure 1.4: An events planning database dbplan.

6

1.2. Inconsistency and Uncertainty in Databases

Example 1.6 Consider database dbplan of Figure 1.4. The relation Countries satisfies its
primary key. Relation Events violates the primary key {Name,Year} but it is still reliable
that Olympic Games will be held in 2020. Moreover, it is certain that they will take place
in Europe. /

The existence of both consistent and inconsistent data leads us to characterize what is
consistency and what is the answer that is certain for a given query. Let us first introduce
the notion of repairs of an inconsistent database. The symmetric difference ∆ is used
to capture the distance between two databases. Let db and db′ be two databases, then
∆(db, db′) = (db \ db′) ∪ (db′ \ db).

Definition 1.2 [Arenas et al. 1999] Let IC be a set of integrity constraints. A repair
of a (possibly) inconsistent database db is a database rep over the same schema such
that rep satisfies IC and, for every database rep′ such that rep′ satisfies IC, ∆(db, rep) ⊆
∆(db, rep′). /

Intuitively, a repair of an inconsistent database is a (consistent) database that min-
imally differs from the inconsistent database. This notion of repair relies on the sym-
metric difference between two databases. Alternative notions of repair have also been
investigated in the literature. For example, [Arenas et al. 2003; Lopatenko and Bertossi
2006; Afrati and Kolaitis 2009] consider the cardinality of the symmetric difference while
[Chomicki and Marcinkowski 2005] considers repairs that only allow tuple deletions. Sev-
eral attribute-based repairs have also been considered by [Bertossi et al. 2008; Wijsen
2005] where the repairs are obtained by modifying the attribute values in the tuples.
[Lopatenko and Bertossi 2006] gives some comparisons of different repair semantics. In
this thesis however, we work with the notion of repair of [Arenas et al. 1999] of Defini-
tion 1.2 which is the most commonly considered in the literature [Staworko and Chomicki
2010].

Repairs are useful to characterize the answer that is consistent in a database: the
consistent answer to a query is the answer to this query that is invariant regardless of the
chosen repair.

Definition 1.3 [Arenas et al. 1999] The consistent answer of a query q over a (possibly)
inconsistent database db, denoted qsure(db), is the intersection of the answers to q on every
repair of db:

qsure(db) =
⋂
{q(rep) | rep is a repair of db}.

If q is a Boolean query, then we say that q is consistently true in db if and only if q
evaluates to true on every repair of db, denoted by db|=sure q. /

Example 1.7 The databases rep1 and rep2 in Figure 1.5 are the repairs of the uncertain
planning database dbplan of Figure 1.4. Consider the following Boolean conjunctive queries
q3 and q4 asking if the Olympic Games will be held some year in Europe (q3) or in Belgium
(q4).

q3 = ∃x∃y
(
Events(‘Olympic Games’, x, y) ∧ Countries(y, ‘Europe’)

)
.

q4 = ∃x∃y
(
Events(‘Olympic Games’, x, ‘Belgium’)

)
.

7

Chapter 1. Databases and Uncertainty

rep1 =

Events Name Year Country
Olympic Games 2020 Germany

Countries Name Continent
Germany Europe
France Europe

Belgium Europe

rep2 =

Events Name Year Country
Olympic Games 2020 Belgium

Countries Name Continent
Germany Europe
France Europe

Belgium Europe

Figure 1.5: The two repairs of dbplan.

The consistent answer to q3 is true on dbplan because rep1 and rep2 both satisfy q3

(using respectively ‘Germany’ and ‘Belgium’ for y). In contrast, the consistent answer to
q4 is not true on dbplan because q4 evaluates to false on rep1. Note that both q3 and q4

evaluate to true on dbplan.
/

Computing the consistent answer to a query on an inconsistent database is usually
referred to as the consistent query answering problem. Given a fixed query q and an input
database db, the problem of consistent query answering is the problem of computing the
consistent answer to q on db. Notice that q is not part of the input, so the complexity of
the problem is data complexity.

The complexity of consistent query answering has been studied for several classes of
integrity constraints, for example, for primary key constraints [Arenas et al. 1999; Fuxman
and Miller 2005; Wijsen 2012], for denial constraints [Chomicki et al. 2004], for binary
universal constraints [Celle and Bertossi 2000], and for inclusion dependencies [Calì 2005].
Elaborated surveys can be found in [Chomicki and Marcinkowski 2004; Bertossi 2006] and
in [Bertossi 2011].

In the remaining of this thesis, we consider that the set IC of integrity constraints is
only composed of primary key constraints. The terminology is slightly adapted to reflect
the focus on primary key constraints and uncertainty. In this context, we say that a
database is uncertain if the database contains two distinct tuples of the same relation
that share the same primary key value. An uncertain database db gives rise to a set of
repairs. Every repair of an uncertain database is then obtained by selecting a maximal
number of tuples without ever selecting two distinct tuples of the same relation that agree
on their primary key. We use the term certain answer to a query q on db to refer to the
consistent answer to q on db. If q is Boolean, then we say that q is certain in db if it
evaluates to true on every repair of db.

If the set of integrity constraints is restricted to primary key constraints, the problem of
computing the certain answer is known as the certain query answering problem. For every
fixed conjunctive query, the certain query answering problem is in coNP. Depending
on the query, however, the complexity may vary1: for instance, for the Boolean query

1The classes coNP and AC0 are covered, among others, in [Papadimitriou 1994].

8

1.2. Inconsistency and Uncertainty in Databases

∃x∃y∃z
(
R(x, z) ∧ S(y, z)

)
, the problem is coNP-complete [Chomicki and Marcinkowski

2005] while it is in P (and even in AC0) for the Boolean query ∃x∃y∃z
(
R(x, y)∧S(y, z)

)
.

1.2.4 Certain First-Order Rewriting

Let q be a Boolean query. To see if q is certain in some database db, it is not always
needed to compute the repairs of db and to evaluate q on each of them. One can compute
a first-order query ϕ such that ϕ is true in db if and only if q evaluates to true on every
repair of db. If ϕ exists, it is called a certain first-order rewriting for q.

The interest in certain first-order rewriting is evident: if there exists a first-order
sentence to compute the certain answer of a query q on an input database db, then the
problem of computing the certain answer of q can be solved in the low complexity class
AC0 and encoded in classical database technologies. Certain first-order rewriting avoids
the computation of the (possibly exponentially many [Chomicki and Marcinkowski 2005])
repairs and can be used directly on the uncertain database to compute the certain answer
to a query.

Example 1.8 There is no need to evaluate q3 on the repairs in Figure 1.5 to see that q3

is certain. It suffices to check if the following first-order sentence ψ3 evaluates to true on
the original database:

ψ3 = ∃x∃y
(

Events(‘Olympic Games’, x, y) ∧ ∀y′
(

Events(‘Olympic Games’, x, y′)

→
(
Countries(y′, ‘Europe’) ∧ ∀z(Countries(y′, z)→ z = ‘Europe’)

)))
.

/

Definition 1.4 A certain first-order rewriting for a query q(~x) is a first-order query ϕ(~x)
such that for every database db, for every ~a ∈ dom|~x|, we have

db |= ϕ(~a)⇐⇒ 〈~a〉 ∈ qsure(db).

/

In particular, if q is a Boolean query, a certain first-order rewriting for q is a first-
order query ϕ such that for every database db, ϕ evaluates to true on db if and only if q
evaluates to true on every repair of db.

Figure 1.6 illustrates the process of certain first-order rewriting. Uncertain database
db (top left) gives rise to a set of repairs (bottom left). Computing the certain answer
(top right) of a given query q can be done by computing the answer to q on every possible
repair of db (bottom right) and by taking the intersection of those answers. A first-order
query ϕ is a certain query rewriting for q if, given db, the certain answer to q can be
computed directly on db. The problem is the following: given a first-order query q, can
we decide if such a formula ϕ exists? And if it exists, can we compute ϕ?

The remaining of this thesis is split in two parts:

9

Chapter 1. Databases and Uncertainty

db qsure(db) = ϕ(db)

{rep is a repair of db} {q(rep) | rep is a repair of db}

certain FO rew. ϕ

q

⋂

Figure 1.6: Query ϕ is a first-order rewriting for query q.

Part 1. Certain Conjunctive Query Answering in SQL

In the first part of this thesis, we will be interested in computing the certain answer to a
query in SQL and, as a first step, in first-order logic.

Chapter 2 presents the problem CERTAINTY(q) which, given a Boolean query q, is
the set of (possibly) uncertain databases such that q is certain in the database. Defining
CERTAINTY(q) in first-order logic is equivalent to saying that q has a certain first-order
rewriting. Recently, a syntactic characterization was obtained for the class of acyclic
self-join-free conjunctive queries for which the certain answer is definable by a first-order
formula [Wijsen 2012]. This characterization relies on a tool called the attack graph.

Based on these results, we propose in Chapter 3 a procedure that, given an acyclic
Boolean self-join-free conjunctive query q whose attack graph is acyclic, computes a certain
first-order rewriting ϕ of q. We show that, if we translate in SQL those certain first-order
rewritings computed using this procedure, the resulting queries often contain deeply nested
subqueries which can lead to poor performance on practical databases. We study the
nesting and alternation of quantifiers in certain first-order rewritings, and propose two
syntactic simplification techniques that aim to reduce these metrics. Such simplification
techniques impact the number of (nested) subqueries in the certain SQL rewritings and
could improve the performance when evaluating the queries.

In Chapter 4, we show how to use those results to compute “improved” certain SQL
rewritings. We then investigate whether these syntactic simplifications systematically
result in lower execution times on SQL databases. We also experimentally study what
happens when we increase the number of tuples involved in primary key violations, or the
number of tuples in the database, or the length of the query.

Chapter 5 concludes the first part.

Part 2. Certain Answers in Uncertain Database Histories

The second part of the thesis deals with uncertainty in the framework of first-order logic
on words. In this setting, uncertainty is captured by the concept of multiword, a finite
sequence of nonempty sets of possible symbols. Every word obtained by selecting one
symbol from each set of possible symbols is a possible word. We see that this context
leads us to consider a variant of a pattern matching problem: given a word w, is w a

10

1.2. Inconsistency and Uncertainty in Databases

factor of every possible word represented by a multiword.
In Chapter 6, we situate our variant of the pattern matching problem with multiwords

among several other variants. We define the concept of multiwords and the language
CERTAIN(w). Given a word w, CERTAIN(w) is the set of all multiwords such that w is a
factor of every possible word of the multiword. We see how a problem of certain query
answering in database histories can be viewed as an application of the pattern matching
problem with multiwords.

In Chapter 7, we are interested in the first-order definability of CERTAIN(w) and we
postulate the conjecture that CERTAIN(w) is first-order definable for every word w. This
conjecture has been experimentally checked for a very large set of words. We show that
CERTAIN(w) is regular and that its first-order definability is equivalent to its aperiodicity.

In Chapter 8, we provide strong supporting evidence for the conjecture that the lan-
guage CERTAIN(w) is first-order definable. We introduce several families of words w such
that CERTAIN(w) is aperiodic, and we study those large families of words.

In Chapter 9, we study deterministic finite automata for CERTAIN(w). We study the
minimal deterministic finite automata recognizing CERTAIN(w) and we focus on the size
of those minimal automata.

Chapter 10 concludes this second part.

11

Part I

Certain Conjunctive Query Answering
in SQL

13

. .CHAPTER 2
The Problem of Certain Answers

An uncertain database is defined as a database in which primary keys need not be satisfied.
The certain answer to a query q on an uncertain database db, denoted qsure(db), is defined
as the intersection of the answers to q on every repair rep of db.

We are interested in computing the certain answer to a first-order query q by means of
a technique known as certain first-order rewriting. This technique avoids the computation
of the repairs: to know whether q is true in every repair, it suffices to execute a certain
first-order rewriting for q once on the original database. Moreover, if there exists a first-
order sentence to compute the certain answer of a query q on an input database db, then
the problem of computing the certain answer of q can be solved in AC0 and encoded in
classical database technologies.

We define in Section 2.1 the set CERTAINTY(q), where q is a Boolean query, as the
set of databases in which q is certain, meaning q evaluates to true on every repair of the
database. The first-order definability of CERTAINTY(q) will be the focus of the first part
of the thesis.

If q is an acyclic Boolean self-join-free conjunctive query (SJFC), then the first-order
definability of CERTAINTY(q) is decidable [Wijsen 2010]. The decidability relies on a tool
called the attack graph. The attack graph of q is acyclic if and only if CERTAINTY(q) is
first-order definable. This result is explained in Section 2.2. In Section 2.3, we generalize
known results for the first-order definability of CERTAINTY(q) for a restricted class of
cyclic self-join-free conjunctive queries.

15

Chapter 2. The Problem of Certain Answers

2.1 The Problem CERTAINTY(q)

For a given Boolean query q, the decision problem CERTAINTY(q) is the problem that
takes as input an uncertain database db and asks whether the Boolean query q evaluates
to true on every repair.

Definition 2.1 Let q be a Boolean query. We define the following set:

CERTAINTY(q) = {db | q is true in every repair of database db}.

/

CERTAINTY(q) is first-order expressible if there exists a first-order sentence ϕ such
that, for every database db, db ∈ CERTAINTY(q) if and only if ϕ evaluates to true on
db. The formula ϕ, if it exists, is called a certain first-order rewriting for q. The inter-
est in certain first-order rewriting is evident. Since ϕ is first-order, it can be efficiently
evaluated using a database engine: one can encode ϕ in SQL and then execute the result-
ing SQL query in polynomial time data complexity using standard database technology.
Note that the restriction to Boolean queries simplifies the technical treatment, but is not
fundamental (see page 22).

Certain (or consistent) query answering was founded in the seminal work by Arenas,
Bertossi, and Chomicki [Arenas et al. 1999]. The current state of the art can be found
in [Bertossi 2011].

The non-existence of a certain first-order rewriting can be settled by complexity-
theoretic arguments: if CERTAINTY(q) is coNP-hard, then it is not first-order expressible
(see, for example, [Chomicki and Marcinkowski 2005; Fuxman and Miller 2007]). It is im-
portant to note that the decision problem CERTAINTY(q) is about the data complexity of
certain query answering: the query (and the schema, including the integrity constraints)
is fixed and the complexity of computing the certain answer depends only on the size of
the database.

It is already known that there exists a simple Boolean conjunctive query q with only
two atoms for which the problem CERTAINTY(q) is coNP-complete [Fuxman and Miller
2007]. The complexity of CERTAINTY(q) for conjunctive queries q has been widely stud-
ied, also outside the database community [Bienvenu 2012].

[Fuxman and Miller 2007] were the first ones to focus on the first-order definability
of CERTAINTY(q), with applications in the ConQuer system [Fuxman et al. 2005]. They
introduced a class of conjunctive queries without self-join, called Cforest . Every query
in this class has a certain first-order rewriting. However, it was shown that the query
q0 = ∃x∃y(R(x, y) ∧ S(x, y)) is not in Cforest but has a certain first-order rewriting.

Their results have been generalized by [Wijsen 2009a] who presented a larger class
of queries (including q0) that admit a certain first-order rewriting. In [Wijsen 2009b], a
semantic class called Crooted was defined. This class contains conjunctive queries q such
that CERTAINTY(q) is first-order expressible. Queries in this class can be cyclic and can
contain self-joins. Unfortunately, no membership test for Crooted was provided.

[Wijsen 2010, 2012] studied the class of self-join-free conjunctive (SJFC) queries that
are acyclic and presented a significant breakthrough by giving a characterization of the

16

2.2. Certain FO Rewriting for Acyclic SJFC Queries

queries in this class that have a certain first-order rewriting. We will recall those results
in the next section. It follows from [Wijsen 2012] that if an acyclic SJFC query has a
certain first-order rewriting, then it belongs to Crooted .

The class of acyclic SJFC queries which are rewritable and the class Cforest are incom-
parable under set inclusion: there exist acyclic first-order rewritable conjunctive queries
not in Cforest and the class Cforest contains some cyclic first-order rewritable queries. How-
ever, Theorem 2.3 on page 23 identifies a class C of SJFC queries such that (1) every
query in C has a certain first-order rewriting, (2) C contains Cforest , and (3) C contains all
acyclic SJFC queries with an acyclic attack graph.

The class of acyclic SJFC queries is a large class of practical interest. The restriction
to queries without self-join is quite usual in uncertain [Fuxman and Miller 2007] and
probabilistic databases [Dalvi and Suciu 2007]. It is important to note that relatively
little is known for queries that are cyclic and/or contain self-joins. [Wijsen 2009b] showed
that, for q = ∃x∃y

(
R(x, y) ∧ R(y, a)

)
(with self-join), CERTAINTY(q) is in P but not

first-order expressible.
It is an open conjecture that, for every conjunctive query q without self-join, either

CERTAINTY(q) is in P or coNP-complete. This dichotomy result has been recently shown
to be true for queries with exactly two atoms [Kolaitis and Pema 2012].

The counting variant of CERTAINTY(q), denoted \CERTAINTY(q) was recently studied
in [Maslowski and Wijsen 2011, 2013]. This variant takes as input an uncertain database
and asks to determine the exact number of repairs that satisfy some Boolean query q.
The authors showed that for every Boolean SJFC query q, \CERTAINTY(q) is in P or
\P-complete1. The problem \CERTAINTY(q) is closely related to query answering in
probabilistic data models (see, for example, [Dalvi et al. 2009]). From the probabilistic
database angle, the problem CERTAINTY(q) is solved if we can determine whether query
q evaluates to probability 1 on the probabilistic database obtained from db by assuming a
uniform probability distribution over the set of repairs of db. The uncertain databases can
be viewed as a restricted case of block-independent-disjoint probabilistic databases [Dalvi
et al. 2009, 2011]. A block in a database db is a maximal subset of key-equal atoms. If
{R(~a,~b1), . . . , R(~a,~bn)} is a block of size n, then every atom of the block has a probability
of 1/n to be selected in a repair of db. Every repair is a possible world, and all these
worlds have the same probability.

2.2 Certain FO Rewriting for Acyclic SJFC Queries

Given a first-order query q, we are interested in the first-order definability of the set
CERTAINTY(q) or, equivalently, in a certain first-order rewriting for q. We focus on a class
of queries for which it has been shown that the first-order definability of CERTAINTY(q)
is decidable. In [Wijsen 2012], it was shown that there exists a syntactic characterization
of the frontier between first-order expressibility and inexpressibility of CERTAINTY(q) if q
is a Boolean self-join-free conjunctive (SJFC) query that is acyclic (in the sense of [Beeri
et al. 1983]).

This syntactic characterization relies on a tool called the attack graph of q. This tool

1The class \P contains the counting variant of problems in NP.

17

Chapter 2. The Problem of Certain Answers

is useful to characterize the queries that have a certain first-order rewriting and can also
be used to compute such a certain first-order rewriting.

Subsection 2.2.1 introduces the notations and terminology. Subsection 2.2.2 details
the construction of the attack graph of a query. Subsection 2.2.3 gives the main result: a
sufficient and necessary condition to decide the existence of certain first-order rewritings
for acyclic SJFC queries. Those three subsections are based on [Wijsen 2012].

2.2.1 Preliminaries

We now introduce some terminology, notations and notational conventions. Letters
F,G,H, J will be used for atoms appearing in a query. For F = R(~x, ~y), we denote
by keyVars(F) the set of variables that occur in ~x, and by vars(F) the set of variables that
occur in F , that is, keyVars(F) = vars(~x) and vars(F) = vars(~x) ∪ vars(~y).

Definition 2.2 A join tree for a conjunctive query q is an undirected tree whose vertices
are the atoms of q such that the following condition is satisfied:

Connectedness Condition: whenever the same variable x occurs in two atoms
F and G, then x occurs in each atom on the unique path linking F and G.

An edge between atoms F and G is labelled by the set L = vars(F) ∩ vars(G) and is
denoted by F L

_G. /

The term Connectedness Condition appears in [Gottlob et al. 2002] and refers to the
fact that the set of vertices in which x occurs induces a connected subtree. A conjunctive
query q is acyclic if it has a join tree. Notice that a query can have several distinct join
trees. The notions of join tree and acyclicity are standard [Beeri et al. 1983].

Examples 2.1, 2.2 and 2.3 are borrowed from [Wijsen 2012].

Example 2.1 Let q1 = {R0(x, y), R1(y, x), R2(x, y), R3(x, z), R4(x, z)}. A join tree τ1 for
q1 is illustrated in Figure 2.1 (left). Consider query {S0(y, z, u), S1(x, y), S2(z, x, u)}. This
query is cyclic and thus has no join tree. /

Every atom F in a query q induces a set of functional dependencies among the variables
in F . As an example, R(x, y, z) induces the functional dependency {x, y} → {x, y, z}.
The set K(q) defined next contains every functional dependency that is induced by the
atoms of q.

Definition 2.3 Let q be a Boolean conjunctive query. K(q) is defined as the following
set of functional dependencies:

K(q) = {keyVars(F)→ vars(F) | F ∈ q}.

/

Example 2.2 Let q2 = {R0(x, y), R1(y, x), R2(a, x)} be the query whose join tree τ2

is shown in Figure 2.2 (left). Then, K(q2) contains {x} → {x, y}, {y} → {x, y}, and
{} → {x}. The latter functional dependency arises in the atom R2(a, x) whose primary
key position contains no variable. /

18

2.2. Certain FO Rewriting for Acyclic SJFC Queries

Recall from relational database theory [Ullman 1988, page 387] that if Σ is a set of
functional dependencies over a set U of attributes and X ⊆ U , then the attribute closure
of X (with respect to Σ) is the set {A ∈ U | Σ |= X → A}. If X is equal to the closure
of X, then X is said to be closed.

Definition 2.4 Let q be a Boolean conjunctive query. For every atom F in q, the set
F+,q is defined as follows:

F+,q = {x ∈ vars(q) | K(q \ {F}) |= keyVars(F)→ x}.

/

In words, F+,q is the attribute closure of the set keyVars(F) with respect to the set of
functional dependencies that are induced by the atoms of q \ {F}. Note that variables
play the role of attributes in this framework.

2.2.2 The Attack Graph

Let q be an acyclic Boolean conjunctive query. For each join tree τ , a new graph, called
the attack graph of τ , is computed. The vertices of a join tree and its attack graph are
the same, but unlike join trees, attack graphs are directed graphs.

Attack graphs turn out to be a key tool to decide the existence of certain first-order
rewritings for acyclic SJFC queries. The attack graph of a join tree τ for a query q
has a cycle if and only if CERTAINTY(q) is first-order definable [Wijsen 2012]. This is
Theorem 2.2.

Definition 2.5 Let q be an acyclic Boolean conjunctive query. Let τ be a join tree for
q. The attack graph of τ is a directed graph whose vertices are the atoms of q. There is
a directed edge from F to G if F,G are distinct atoms such that for every label L on the
unique path that links F and G in τ , we have L * F+,q. We write F τ

 G if the attack
graph of τ contains a directed edge from F to G. The directed edge F τ

 G is also called
an attack from F to G. If F τ

 G, we say that F attacks G (or that G is attacked by F).
/

Intuitively, the attack graph of a join tree for a query q represents an “incidence link”
between the atoms of q. These incidence links are induced by the dependencies that arise
between the variables occurring at a key position in the atoms and the variables in the
other atoms of q.

Example 2.3 Let τ2 be the join tree for q2 of Example 2.2. To simplify the notation, let
F = R0(x, y), G = R1(y, x), and H = R2(a, x), as indicated in Figure 2.2 (left).

The right part of Figure 2.2 shows the attack graph of τ2. We now explain how to
construct this attack graph. We first compute K(q2 \ {F}),K(q2 \ {G}) and K(q2 \ {H}):

K(q2 \ {F}) = {{y} → {x, y}, {} → {x}}
K(q2 \ {G}) = {{x} → {x, y}, {} → {x}}
K(q2 \ {H}) = {{x} → {x, y}, {y} → {x, y}}

19

Chapter 2. The Problem of Certain Answers

R1(y, x)

R0(x, y)

R2(x, y)
R3(x, z) R4(x, z)

{x, y}

{x, y}
{x} {x, z}

R1(y, x)

R0(x, y)

R2(x, y)
R3(x, z) R4(x, z)

Figure 2.1: Join tree (left) and attack graph (right) for Boolean query q1 of Example 2.1.

R0(x, y) = F

R1(y, x) = G R2(a, x) = H

{x, y} {x}

F

G H

Figure 2.2: Join tree (left) and attack graph (right) for Boolean query q2 of Example 2.2.

We have keyVars(F) = {x}, which is already closed with respect to K(q2 \ {F}). Thus,
F+,q2 = {x}. The path from F to G in the join tree is F

{x,y}
_ G. Since the label {x, y}

is not contained in F+,q2 , the attack graph contains a directed edge from F to G, i.e.
F

τ2 G. The path from F to H in the join tree is F
{x}
_H. Since the label {x} is contained

in F+,q2 , the attack graph contains no directed edge from F to H.
We have keyVars(G) = {y} and the closure of {y} with respect to K(q2 \ {G}) is {x, y}.

Thus, G+,q2 = {x, y}. The path from G to F in the join tree is G
{x,y}
_ F . Since the label

{x, y} is contained in G+,q2 , the attack graph contains no directed edge from G to F . For
that same reason, the attack graph contains no directed edge from G to H.

Finally, we have keyVars(H) = {}, which is already closed with respect to K(q2 \ {H}).
Thus, H+,q2 = {}. The path from H to G in the join tree is H

{x}
_F

{x,y}
_ G. Since no label

on that path is contained in H+,q2 , the attack graph contains a directed edge from H to
G, i.e. H τ2 G. It is then obvious that the attack graph must also contain a directed edge
from H to F , i.e. H τ2 F . /

Example 2.4 Let q1 be the query of Example 2.1. Figure 2.1 shows the attack graph
(right) of join tree τ1 (left). This attack graph contains a cycle. /

An acyclic conjunctive query can have more than one join tree. We show in the next
theorem that all these join trees have the same attack graph.

Theorem 2.1 Let q be an acyclic Boolean conjunctive query. Let τ1 and τ2 be two join
trees for q. The attack graphs of τ1 and τ2 are identical.

20

2.2. Certain FO Rewriting for Acyclic SJFC Queries

Proof. Let F,G be distinct atoms of q such that F τ1 G. We show F
τ2 G. The

proof runs by induction on the size of the path between F and G in τ1. The base case is
when this path is exactly F_G. Thus, the join tree τ1 contains an edge between F and
G. Since F τ1 G, we can assume a variable x ∈ vars(F)∩ vars(G) such that x /∈ F+,q. By
the Connectedness Condition, the variable x is an element of every label on the unique
path between F and G in τ2. It follows F τ2 G. For the induction step, assume the size
of the path between F and G in τ1 is k > 2. Let H be an element of this path such that
τ1 contains an edge between H and G. That is, H is the atom on the path between F
and G in τ1 such that H is incident with G.

• Since F τ1 G, we can assume a variable x ∈ vars(H) ∩ vars(G) such that x /∈ F+,q.
By the Connectedness Condition, the variable x is an element of every label on the
unique path between H and G in τ2.

• By Lemma 4.9 in [Wijsen 2012], we have F τ1 G implies F τ1 H. By the induction
hypothesis, F τ2 H. Thus, every label on the unique path between F and H in τ2

contains a variable that does not belong to F+,q.

So, every label on the unique path between F and G in τ2 contains a variable that does
not belong to F+,q. It follows F τ2 G. By symmetry, for all distinct atoms F,G of q,
F

τ2 G implies F τ1 G. Thus, the attack graphs of τ1 and τ2 contain the same directed
edges. 2

An important consequence of this theorem is that we can now unambiguously talk
about the attack graph of an acyclic Boolean conjunctive query. This motivates the
following definition:

Definition 2.6 Let q be an acyclic Boolean conjunctive query. The attack graph of q is
the attack graph of τ for any join tree τ for q. We write F q

 G (or simply F G if q
is clear from the context) to indicate that the attack graph of q contains a directed edge
from F to G. /

2.2.3 Deciding the First-Order Definability

The main result of [Wijsen 2012] follows.

Theorem 2.2 Let q be an acyclic SJFC query. The following statements are equivalent:

1. The attack graph of q is acyclic.

2. CERTAINTY(q) is first-order expressible.

Moreover, if the attack graph of q is acyclic, we can effectively construct a first-order
formula capturing CERTAINTY(q). We provide in Chapter 3 functions that construct such
first-order formulas. The construction relies on the following definition [Wijsen 2012].

Definition 2.7 Let q be a Boolean conjunctive query without self-join. Let R(~x, ~y) be an
atom of q, and let ~y = 〈y1, y2, . . . , yn〉. Notice that ~y can contain constants and repeated
variables. Let ~z = 〈z1, z2, . . . , zn〉 be a sequence of distinct variables and let C be a
conjunction of equalities constructed as follows for 1 ≤ i ≤ n,

21

Chapter 2. The Problem of Certain Answers

1. If yi is a variable that does not occur in the sequence 〈~x, y1, y2, . . . , yi−1〉, then zi is
identical to yi;

2. otherwise, zi is a new variable and C contains zi = yi.

Let ~v be a sequence of variables that contains exactly once each variable that occurs in
R(~x, ~y). Let ϕ(~v) be a certain first-order rewriting for q′(~v), where q′(~v) is the nonBoolean
conjunctive query whose set of atoms is q \ {R(~x, ~y)} (and whose free variables are ~v).
Obviously, if q′ is empty, then ϕ = true. We define:

Rewrite(R(~x, ~y), q) = ∃~v
(
R(~x, ~y) ∧ ∀~z

(
R(~x, ~z)→ (C ∧ ϕ(~v))

))
.

If q′(~v) has no certain first-order rewriting, the value of Rewrite(R(~x, ~y), q) is undefined.
/

Using the Rewrite function, one can compute a certain first-order rewriting. In par-
ticular, Lemma 8.6 and Lemma 8.10 in [Wijsen 2012] imply that if F is a unattacked
atom in the attack graph of q, if Rewrite(F, q) is defined, then it is a certain first-order
rewriting for q. The need to have an acyclic attack graph is then evident. If q has an
attack graph which is acyclic, then there is some unattacked atom F in q. Let q′(~v) be
the nonBoolean conjunctive query whose set of atom is q \ {F} and whose free variables
are ~v. It was shown in [Wijsen 2012] that q′(~v) has an acyclic attack graph.

The construction of Rewrite can be roughly applied to compute a certain rewriting for
queries that are not Boolean. The treatment was already mentioned in [Wijsen 2012]. The
idea is to treat free variables as constants. Let Q = (q, V) be a nonBoolean conjunctive
query with V = {x1, . . . , xn}. Let c1, . . . , cn be n new constants. Let q′ be the query
obtained from q by replacing all occurrences of xi with ci (1 ≤ i ≤ n). Assume we
have a first-order rewriting ϕ for the Boolean conjunctive query q′. Then, a certain first-
order rewriting for Q can be obtained from ϕ by replacing all occurrences of ci with xi
(1 ≤ i ≤ n).

In Chapter 3, we will see how to use Definition 2.7 to effectively compute a certain
first-order rewriting for acyclic (Boolean or nonBoolean) conjunctive queries whose attack
graph is acyclic.

2.3 Certain FO Rewriting for Some Cyclic SJFC Queries

In the previous section, we showed that every acyclic SJFC query with an acyclic attack
graph has a certain first-order rewriting. Theorem 2.3 identifies a class C of SJFC queries
such that (1) every query in C has a certain first-order rewriting, (2) C contains Cforest ,
and (3) C contains all acyclic SJFC queries with an acyclic attack graph.

Definition 2.8 Let q be an acyclic Boolean conjunctive query without self-join. A vari-
able x ∈ vars(q) is called top-reifiable in q if for some unattacked atom F of q, we have
x ∈ keyVars(F). /

22

2.3. Certain FO Rewriting for Some Cyclic SJFC Queries

Theorem 2.3 Let q1, . . . , qn be acyclic Boolean conjunctive queries without self-join such
that:

1. for all i ∈ {1, . . . , n}, the attack graph of qi is acyclic;

2. for all i, j ∈ {1, . . . , n}, if i 6= j, then qi and qj have no relation name in common;
and

3. for all i, j ∈ {1, . . . , n} such that i 6= j, if x ∈ vars(qi)∩vars(qj), then x is top-reifiable
in both qi and qj.

Let q be the Boolean conjunctive query defined as q =
⋃n
i=1 qi. Then, q has no self-join

and CERTAINTY(q) is first-order definable.

Proof. Let ~x = 〈x1, . . . , xm〉 be a sequence of variables that contains exactly
once each variable that is shared among two distinct queries among q1, . . . , qn. Let
~c = 〈c1, . . . , cm〉 be a vector of distinct constants not occurring in q. It can be easily
seen that q[~x7→~c] is an acyclic Boolean conjunctive query with an acyclic attack graph
and thus CERTAINTY(q[~x7→~c]) is first-order definable. We can assume a certain first-order
rewriting ϕ for q[~x7→~c]. Moreover, since i 6= j implies that qi[~x7→~c] and qj [~x7→~c] have no vari-
ables or relation names in common, we can assume that ϕ =

∧n
i=1 ϕi where ϕi is a certain

first-order rewriting for qi[~x7→~c].
For 1 ≤ i ≤ n, let ϕ̂i(~x) be the formula obtained from ϕi by replacing each occurrence

of cj with xj for 1 ≤ j ≤ m. Let ϕ̂(~x) =
∧n
i=1 ϕ̂i(~x). Obviously, ϕ̂(~x) is a certain first-

order rewriting for q(~x), where it is understood that the variables x1, . . . , xm are free in
ϕ̂(~x) and in q(~x). That is, for every uncertain database db, for every ~a ∈ domm,

db |= ϕ̂(~a) ⇐⇒ db ∈ CERTAINTY(q(~a)).

Consequently, for every database db, if db |= ∃~xϕ̂(~x), then db ∈ CERTAINTY(q).
We show next that the converse also holds, that is, for every database db, if db ∈

CERTAINTY(q), then db |= ∃~xϕ̂(~x). To this extent, let db be an uncertain database such
that db ∈ CERTAINTY(q). For i ∈ {1, . . . , n}, let dbi be the subset of db containing the
facts whose relation name occurs in qi. Thus, db is the disjoint union db = db1]· · ·]dbn.
The following property holds by the construction in the proof of Corollary 8.11 in [Wijsen
2012].

For every i ∈ {1, . . . , n}, there exists a repair repi of dbi such that for every
~a ∈ domm, if repi satisfies qi[~x7→~a], then every repair of dbi satisfies qi[~x7→~a] (and
hence dbi |= ϕ̂i(~a)).

Let rep =
⋃n
i=1 repi. Clearly, rep is a repair of db. From db ∈ CERTAINTY(q), it follows

rep |= q. We can assume ~a such that rep |= q[~x7→~a]. For every i ∈ {1, . . . , n}, repi |= qi[~x7→~a],
and hence dbi |= ϕ̂i(~a) by the aforementioned property. Clearly, db |= ϕ̂(~a), hence
db |= ∃~xϕ̂(~x). This concludes the proof. 2

Notice that the query q in Theorem 2.3 can be cyclic. We show in Theorem 2.4 that
Theorem 2.3 generalizes the class Cforest , whose definition follows. For example, query
{R(x, y, u), S(x, y, u), T (x, z), U(y, z)} is covered by Theorem 2.3 but is not in Cforest .

23

Chapter 2. The Problem of Certain Answers

R1(x, y)

R2(v, z)

R3(z, w)

R4(y, a)

Figure 2.3: Fuxman-Miller join graph for Boolean query q3 of Example 2.5.

Definition 2.9 [Fuxman and Miller 2007] Let q be a SJFC query. A Fuxman-Miller
(FM) join graph G of q is a directed graph such that:

• the vertices of G are the atoms of q;

• there is a directed edge from F to G if F 6= G and there is some variable y such
that y occurs at the position of a nonkey attribute in F and y occurs in G.

We say that q ∈ Cforest if

1. for every pair of distinct atoms R, S in q, if a variable in keyVars(R) occurs at a
nonkey position of S, then all the variables in keyVars(R) must occur at a nonkey
position of S; and

2. the FM join graph of q is a directed forest.

/

Example 2.5 The following conjunctive query is in the class Cforest .

q3 = {R1(x, y), R2(y, z), R3(z, w), R4(y, a)}.

The FM join graph of q3 is shown in Figure 2.3. /

Theorem 2.4 Let q be a query in Cforest . There exist n ∈ {1, . . . , |q|} and queries
q1, . . . , qn with q =

⊎n
i=1 qi such that q1, . . . qn satisfy the hypothesis of Theorem 2.3.

Proof. Let q be a query in Cforest . Let τ be a FM join graph for q. Assume τ
has n connected components. Let τ1, . . . , τn be the n connected components of τ . Let
qi (1 ≤ i ≤ n) be the query composed of the atoms of τi. We show the three items of
Theorem 2.3.

1. Every connected component of τ is in Ctree . By Corollary 5 in [Wijsen 2009b], this
implies qi (1 ≤ i ≤ n) is acyclic and has an acyclic attack graph;

2. Obvious;

24

2.3. Certain FO Rewriting for Some Cyclic SJFC Queries

3. Assume 1 ≤ i < j ≤ n such that x ∈ vars(qi) ∩ vars(qj). We show that x is top-
reifiable both in qi and qj. Let Ri be the root of τi and Rj be the root of τj. By
Lemma 2 in [Fuxman and Miller 2007], x must occur in the key of Ri and Rj. We
show that Ri is unattacked in the attack graph of qi. The case Rj is similar.

By contradiction, assume there exists an atom G in qi such that G attacks Ri. Let
H 6= G be the last atom on the path from Ri to G in τi. By Corollary 5 in [Wijsen
2009b], the FM join graph τi is a directed join tree for q and by Lemma 4.9 in [Wijsen
2012], if G attacks Ri in τi then G attacks every atom on the path between G and Ri

in τi, including H. Let L = vars(G)∩ vars(H). As G attacks H, we have L 6⊆ G+,qi .
As the FM join graph τi is acyclic, we know that the FM join graph τi contains
no directed edge from G to H. This implies that there is no variable in a nonkey
position of G that is in vars(H) and thus, the only shared variables between G and
H must be in keyVars(G), this is L ⊆ keyVars(G). As keyVars(G) ⊆ G+,qi , it must
be the case that L is a subset of G+,qi , a contradiction. We conclude that x is
top-reifiable in Ri.

2

25

. .CHAPTER 3
Certain Conjunctive Query

Answering in First-Order Logic

The attack graph of an acyclic Boolean SJFC query q turns out to be a key tool to decide
the first-order definability of CERTAINTY(q). The attack graph of q is acyclic if and only
if CERTAINTY(q) is definable in first-order logic. In this chapter, we show how to define
CERTAINTY(q) in first-order logic if the attack graph of q is acyclic or, equivalently, how
to provide a certain first-order rewriting for q.

In Section 3.1, we introduce a function that, given a (Boolean or nonBoolean) query
q, computes a certain first-order rewriting ϕ of q. We show that a direct translation of
such rewriting ϕ in SQL generally results in deeply nested SQL queries. This can lead to
poor performance in database management systems.

We investigate in Section 3.2 how to syntactically simplify those SQL queries. We
study the nesting and the number of quantifier blocks in certain first-order rewritings,
and propose syntactic simplification techniques that aim to reduce these metrics. Such
simplification techniques have an impact on the number of (nested) subqueries in the SQL
queries and may decrease execution times.

This chapter is an extended version of the following scientific publication:

“Certain Conjunctive Query Answering in SQL” in Scalable Uncertainty Manage-
ment, volume 7530 of Lecture Notes in Computer Science, Springer Berlin Heidel-
berg [Decan et al. 2012].

27

Chapter 3. Certain Conjunctive Query Answering in First-Order Logic

3.1 Computation of Certain First-Order Rewritings

We provide on page 30 a function called NaiveFo that computes certain first-order rewrit-
ings. This function takes as input an acyclic self-join-free conjunctive query Q = (q, V)
whose attack graph is acyclic. The function implements Definition 2.7 and returns a cer-
tain first-order rewriting for q. Function NaiveFo handles both Boolean and nonBoolean
queries. Importantly, NaiveFo makes use of function AttackGraph which, given an acyclic
SJFC query Q, computes the attack graph of Q. The computation is effective and runs
in quadratic time in the length of Q [Wijsen 2012].

Notice that, although the construction of the attack graph is defined for Boolean
queries, it is sufficient to treat free variables as constants to deal with nonBoolean queries.
Let Q = (q, V) be a nonBoolean conjunctive query and let ~x = 〈x1, . . . , xn〉 be a sequence
of all the variables in V . Let c1, . . . , cn be n new constants. The attack graph of Q is
obtained from the attack graph of q[~x7→~c] by replacing all occurrences of each ci with xi.

The following example illustrates a run of NaiveFo.

Example 3.1 Consider the Boolean singleton query q = {R(x, x, y, y, a)}. A call to
NaiveFo(q, {}) eventually returns:

ϕ =

∃x∃yR(x, x, y, y, a)∧
∀z1∀y∀z3∀z4

[
R(x, z1, y, z3, z4)→

[
z1 = x ∧ z3 = y ∧ z4 = a
∧ true

]]

There are two foreach loops in NaiveFo. The first foreach loop handles the variable
that occurs in the primary key position of R(x, x, y, y, a) while the second foreach loop
handles the nonkey positions. The set NEW is used to store the nonkey positions where a
constant or a free variable occurs. Each position in the atom is considered once, and the
first time a variable is treated by one of the loops, it is added to the set of free variables
V ′.

The call to NaiveFo(q, {}) chooses F = R(x, x, y, y, a). The first foreach loop ranges
over the key positions of R (since k = 1, the only value for i is 1). The set X is populated
with the nonfree variable x and x is added to the set V ′ of free variables. Sets X and Y are
used to store the variables that will be existentially quantified in the resulting formula.
Set X stands for the variables occurring at key positions, while Y stands for the variables
occurring at nonkey positions.

The second foreach loop ranges over the nonkey positions of R. It first considers x,
then y twice, and finally the constant a:

1. As x is in the set V ′, we create a new variable z1 and we store in NEW the position
1. This new variable and this position are used together when computing ϕ: the
expression

∧
i∈NEW zi = yi will thus yield z1 = x;

2. The first time y is considered, y is nonfree. The else statement is thus executed.
We let z2 be identical to y. This means that in the code that follows, one has to
read y whenever z2 is used. Variable y is then added to the set of free variables V ′
and to the set Y of existentially quantified variables;

28

3.1. Computation of Certain First-Order Rewritings

3. The second time y is considered, it is now free. The if statement applies: z3 is
created and 3 is added to NEW. This will result in the equality z3 = y;

4. Finally, constant a is considered. The if part is executed: variable z4 is created and
4 is added to NEW. This will add the equality z4 = a.

After the second foreach loop, the function computes the resulting formula. The three
lines after the loop are used to prepare the recursive call to NaiveFo. They compute a
new query q′ = q \ {F} and restrict the set V ′ of free variables to the variables that occur
in q′.

A certain first-order rewriting ϕ is then computed:

1. For each variable in X and Y, an existential quantifier is used. In our example, this
leads to ∃x∃y R(x, x, y, y, a);

2. For each variable zi, a universal quantifier is used. As there is no need to introduce
a new variable z2, we reuse y instead (see second item above).

This gives ∀z1∀y∀z3∀z4 R(x, z1, y, z3, z4).

3. The right part of the implication is composed of two parts: the first part is a
conjunction of equalities: each position stored in NEW is used to associate the new
variables zi to some variable or constant in the atom. In this example, the generated
equalities are z1 = x, z3 = y and z4 = a. The second part consists of the recursive
call. In our case, this call will return true as q′ = {}.

/

This function is called “naive” because it just implements Definition 2.7. As each call
to NaiveFo produces a block of existential quantifiers and a block of universal quantifiers,
the output of this function may lead to a high quantifier rank or to a high number of
quantifier alternations. This may be problematic when considering the execution of such
queries in a database management system. A direct translation of such rewriting in SQL
generally results in several subqueries and in deeply nested SQL queries. Subqueries and
nested subqueries in SQL queries can lead to poor performance in database management
systems. The SQL query of Example 3.2 contains only two nested subqueries and already
has poor performance.

Example 3.2 Consider schema S with 2 relations, P and D, each of signature [2, 2]. Fact
P (p, s) means that patient p has symptom s. Fact D(d, s) means that s is a symptom of
disease d. The following query gets pairs (p, d) such that patient p has all symptoms of
disease d.

ψdis(p, d) = ∃s
(
P (p, s) ∧D(d, s) ∧ ∀s′

(
D(d, s′)→ P (p, s′)

))
.

An SQL translation of ψdis(p, d) follows. This SQL query contains two nested NOT
EXISTS subqueries which are related to the universal quantifier in ψdis(p, d).

29

Chapter 3. Certain Conjunctive Query Answering in First-Order Logic

Function NaiveFo(q,V) constructs certain first-order rewriting.
Input: Q = (q, V) is an acyclic SJFC query whose attack graph is acyclic and

where V is the set of free variables of q.
Result: certain first-order rewriting ϕ for Q.
begin

if q = ∅ then
ϕ← true;

else
E ← AttackGraph((q, V));
choose F = R(x1, . . . , xk, y1, . . . , y`) in q such that ∀G ∈ q : (G,F) 6∈ E;
V ′ ← V ;
X← ∅;
foreach i← 1 to k do

if xi is a variable and xi 6∈ V ′ then
V ′ ← V ′ ∪ {xi};
X← X ∪ {xi};

Y ← ∅;
NEW← ∅;
foreach i← 1 to ` do

if yi is a constant or yi ∈ V ′ then
let zi be a new variable;
NEW← NEW ∪ {i};

else /* yi is a variable not in V ′ */
let zi be the same variable as yi;
V ′ ← V ′ ∪ {yi};
Y ← Y ∪ {yi};

q′ ← q \ {F};
V ′ ← V ′ ∩ vars(q′);

ϕ←

∃X ∃YR(x1, . . . , xk, y1, . . . , y`)∧
∀z1 . . . ∀z`

[
R(x1, . . . , xk, z1, . . . , z`)→

[∧
i∈NEW zi = yi
∧ NaiveFo(q′, V ′)

]]

;

return ϕ;

30

3.1. Computation of Certain First-Order Rewritings

PSI_DIS = SELECT p1.PAT, d1.DIS
FROM P AS p1, D AS d1
WHERE NOT EXISTS (SELECT *

FROM D AS d2
WHERE d2.DIS = d1.DIS
AND NOT EXISTS (SELECT *

FROM P AS p2
WHERE p2.PAT = p1.PAT
AND p2.SYM = d2.SYM))

Although PSI_DIS only contains two nested subqueries, it already has poor perfor-
mance: it takes more than 30 seconds to get the answer to this query on a consistent
database of 10, 000 tuples1. /

As NaiveFo produces certain first-order rewritings ϕ with several alternation of (blocks
of) ∃ and ∀, the translations in SQL of ϕ can contain several nested NOT EXISTS subqueries
and can have high execution times, even for conjunctive queries with few atoms. We
will show in the next two sections how to syntactically simplify the certain first-order
rewritings in order to reduce the number of (nested) subqueries in their SQL translations.

Example 3.3 Let q be the query {R1(x1, x2), R2(x2, x3), R3(x3, a)}. A certain first-order
rewriting of q is given by the following formula ϕ.

ϕ = ∃x1∃x2R1(x1, x2) ∧ ∀x′2R1(x1, x
′
2)→(

∃x3R2(x′2, x3) ∧ ∀x′3R2(x′2, x
′
3)→

(
R3(x′3, a) ∧ ∀zR3(x′3, z)→ z = a

))

Assume the attributes ofRi are 〈A,B〉 (1 ≤ i ≤ 3). The following query is a translation
of ϕ in SQL.

SELECT ’true’ FROM R1 as r1 WHERE NOT EXISTS
(SELECT * FROM R1 as r1p WHERE r1p.A = r1.A AND NOT EXISTS

(SELECT * FROM R2 as r2 WHERE r2.A = r1p.B AND NOT EXISTS
(SELECT * FROM R2 as r2p WHERE r2p.A = r2.A AND NOT EXISTS

(SELECT * FROM R3 as r3 WHERE r3.A = r2p.B AND r3.B = ’a’ AND NOT EXISTS
(SELECT * FROM R3 as r3p WHERE r3p.A = r3.A AND r3p.B <> ’a’)))))

Although q is composed of only 3 atoms and 3 variables, the SQL translation of ϕ already
contains 5 nested NOT EXISTS. /

In the following example, we give a query and three certain first-order rewritings for
this query. Those rewritings are syntactically very different and also result in very different
SQL queries.

1The experimental setup will be explained in Section 4.2.

31

Chapter 3. Certain Conjunctive Query Answering in First-Order Logic

Q3 = SELECT ’TRUE’ FROM R1 r11, R2 r21, R3 r31
WHERE r11.B = ’b’ AND r21.B = ’b’ AND r31.B = ’b’;

N3 = SELECT ’TRUE’ FROM R1 r11
WHERE r11.B = ’b’ AND NOT EXISTS (

SELECT * FROM R1 r12
WHERE r12.A = r11.A AND (r12.B <> ’b’ OR NOT EXISTS (

SELECT * FROM R2 r21
WHERE r21.B = ’b’ AND NOT EXISTS (

SELECT * FROM R2 r22
WHERE r22.A = r21.A AND (r22.B <> ’b’ OR NOT EXISTS (

SELECT * FROM R3 r31
WHERE r31.B = ’b’ AND NOT EXISTS (

SELECT * FROM R3 r32
WHERE r32.A = r31.A AND r32.B <> ’b’)))))));

R3 = SELECT ’TRUE’ FROM R1 r11 WHERE r11.B = ’b’ AND NOT EXISTS
(SELECT * FROM R1 r12 WHERE r12.A = r11.A AND r12.B <> ’b’)

INTERSECT SELECT ’TRUE’ FROM R2 r21 WHERE r21.B = ’b’ AND NOT EXISTS
(SELECT * FROM R2 r22 WHERE r22.A = r21.A AND r22.B <> ’b’)

INTERSECT SELECT ’TRUE’ FROM R3 r31 WHERE r31.B = ’b’ AND NOT EXISTS
(SELECT * FROM R3 r32 WHERE r32.A = r31.A AND r32.B <> ’b’);

B3 = SELECT ’TRUE’ FROM R1 r11, R2 r21, R3 r31
WHERE r11.B = ’b’ AND r21.B = ’b’ AND r31.B = ’b’ AND NOT EXISTS (

SELECT * FROM R1 r12, R2 r22, R3 r32
WHERE r11.A = r12.A AND r21.A = r22.A AND r32.A = r31.A AND

(r12.B <> ’b’ OR r22.B <> ’b’ OR r32.B <> ’b’));

Figure 3.1: SQL translations Q3, N3, R3 and B3 of Examples 3.4, 3.11 and 3.14.

32

3.2. Syntactic Simplifications

Example 3.4 For each m ≥ 1, assume relation name Ri with signature [2, 1], and let
bmc = {R1(x1, b), . . . , Rm(xm, b)}, where b is a constant. For m ≥ 1, let TmU = (bmc, ∅).
Thus TmU represents the first-order sentence ∃x1 . . . ∃xm

(
R1(x1, b) ∧ · · · ∧ Rm(xm, b)

)
,

a Boolean query whose attack graph has no edge. Formulas ψ1, ψ2, and ψ3 are three
possible certain first-order rewritings for TmU. The formula ψ1 is returned by function
NaiveFo, while ψ2 and ψ3 result from some syntactic simplification techniques described
in Subsections 3.2.2 and 3.2.3. In particular, ψ2 minimizes the nesting depth of quantifier
blocks, and ψ3 minimizes the number of quantifier blocks.

ψ1 = ∃x1

(
R1(x1, b) ∧ ∀z1

(
R1(x1, z1)→ z1 = b∧

∃x2

(
R2(x2, b) ∧ ∀z2

(
R2(x2, z2)→ z2 = b∧

. . .

∃xm
(
Rm(xm, b) ∧ ∀zm

(
Rm(xm, zm)→ zm = b

))
. . .
))))

ψ2 =
m∧

i=1

∃xi
(
Ri(xi, b) ∧ ∀zi

(
Ri(xi, zi)→ zi = b

))

ψ3 = ∃x1 . . . ∃xm
(m∧

i=1

Ri(xi, b) ∧ ∀z1 . . . ∀zm
(m∧

i=1

Ri(xi, zi)→
m∧

i=1

zi = b
))

Notice that ψ1, ψ2, and ψ3 are semantically equivalent and each contain m existential
and m universal quantifiers. The differences in syntactic complexity persist in SQL.
Assume that, for each i ∈ {1, . . . ,m}, the first and the second attribute of each relation
Ri are respectively named A and B. Thus, A is the primary key attribute.

For m = 3, the resulting SQL queries are shown in Figure 3.1. Q3 is the conjunctive
query while N3, R3 and B3 are direct translations into SQL of ψ1, ψ2, and ψ3.

The fact that ψ3 only has one ∀ quantifier block results in B3 having only one NOT
EXISTS. Notice further that B3 requires m tables in each FROM clause, whereas R3 takes
the intersection of m SQL queries, each with a single table in the FROM clause. /

This example illustrates the possibility to consider syntactic optimizations in order to
reduce the number of (nested) subqueries in the SQL translations of the certain first-order
rewritings.

3.2 Syntactic Simplifications

We introduce three metrics for first-order queries: the quantifier rank, the quantifier block
rank and the number of quantifier blocks. We see how those metrics are related to the
number of (nested) subqueries in the SQL translations and we propose two syntactic
optimizations that aim to reduce those metrics in certain first-order rewritings. After
that, we will tackle an important practical question: do these optimizations result in
faster SQL queries on real-life databases? We answer this question in Chapter 4.

33

Chapter 3. Certain Conjunctive Query Answering in First-Order Logic

3.2.1 Preliminaries

The quantifier rank of a first-order formula ϕ, denoted by qr(ϕ), is the depth of the
quantifier nesting in ϕ and is defined as usual (see, for example, [Libkin 2004, page 32]):

• If ϕ is quantifier-free, then qr(ϕ) = 0.

• qr(ϕ1 ∧ ϕ2) = qr(ϕ1 ∨ ϕ2) = max
(
qr(ϕ1), qr(ϕ2)

)
;

• qr(¬ϕ) = qr(ϕ);

• qr(∃xϕ) = qr(∀xϕ) = 1 + qr(ϕ).

The quantifier rank of certain first-order queries was studied in [Decan et al. 2012].
The quantifier rank may reflect the depth of nested subqueries in SQL. However, it is not
true that every quantifier leads to an additional subquery in SQL. Quantifiers of the same
type that are regrouped usually result in only one additional subquery in SQL. This is
illustrated in the next example.

Example 3.5 Consider the following conjunctive queries q1 and q2.

q1 = ∃x
(
R(x, b) ∧ ∀y

(
R(x, y)→ y = b

))

q2 = ∃x∃u∃v∃w
(
S(x, b, u, v, w) ∧ ∀y∀u′∀v′∀w′

(
S(x, y, u′, v′, w′)→ y = b

))

The quantifier rank of q1 is 2 while the quantifier rank of q2 is 8. Their respective SQL
translations follow. Despite having different quantifier ranks, the two first-order queries
result in SQL translations having the same number of subqueries. The additional quan-
tifiers in q2 do not lead to additional subqueries in its SQL translation.

Q1 = SELECT ’true’ FROM R as r1 WHERE r1.B = ’b’ AND NOT EXISTS
(SELECT * FROM R as r2 WHERE r2.A = r1.A AND r2.B <> ’b’)

Q2 = SELECT ’true’ FROM S as s1 WHERE s1.B = ’b’ and NOT EXISTS
(SELECT * FROM S as s2 WHERE s2.A = s1.A AND s2.B <> ’b’)

/

We now define the quantifier block rank of a query as a new metric based on the
quantifier rank. In contrast with the quantifier rank, the quantifier block rank does not
take into account successive quantifiers of the same type.

A first-order formula ϕ is said to be in prenex normal form if it is of the form
Q1x1 . . . Qnxnψ, where Qi’s are either ∃ or ∀ and ψ is quantifier-free. We say that ϕ
has a quantifier block rank m if Q1x1 . . . Qnxn can be divided into m blocks such that all
quantifiers in a block are of the same type and quantifiers in two consecutive blocks are
different. For queries that are not in prenex normal form, the quantifier block rank is
computed as follows.

Definition 3.1 A universally quantified formula is a formula whose top-most connective
in the syntax tree is ∀. An existentially quantified formula is a formula whose top-most
connective in the syntax tree is ∃. The quantifier block rank of a first-order formula ϕ,
denoted qbr(ϕ), is defined as follows.

34

3.2. Syntactic Simplifications

• If ϕ is quantifier-free, then qbr(ϕ) = 0.

• qbr(ϕ1 ∧ ϕ2) = qbr(ϕ1 ∨ ϕ2) = max
(
qbr(ϕ1), qbr(ϕ2)

)
;

• qbr(¬ϕ) = qbr(ϕ);

• if ϕ is not universally quantified and n ≥ 1, then qbr(∀x1 . . . ∀xnϕ) = 1 + qbr(ϕ);

• if ϕ is not existentially quantified and n ≥ 1, then qbr(∃x1 . . . ∃xnϕ) = 1 + qbr(ϕ).

/

Consider the queries q1 and q2 of Example 3.5. Those queries have a quantifier block
rank equal to 2. We will see in other examples that the quantifier block rank reflects the
depth of nested subqueries in SQL.

We introduce the quantifier block number of a formula ϕ, denoted qbn(ϕ), as the total
number of quantifier blocks in ϕ.

Example 3.6 Let ϕ be ∃x∃y(∃uϕ1 ∧ ∃vϕ2) where ϕ1, ϕ2 are both quantifier-free, then
qbn(ϕ) = 3 and qbr(ϕ) = 2. Notice that ∃uϕ1 ∧ ∃vϕ2 is not an existentially quantified
formula, because its top-most connective in the syntax tree is ∧. /

Clearly, if ϕ is in prenex normal form, then the quantifier block rank of ϕ is equal
to its number of quantifier blocks, i.e. qbr(ϕ) = qbn(ϕ). For formulas which are not in
prenex normal form, the number of quantifier blocks is counted as follows.

Definition 3.2 Let ϕ be a first-order formula. The number of quantifier blocks in ϕ,
denoted by qbn(ϕ) is:

• If ϕ is quantifier-free, then qbn(ϕ) = 0.

• qbn(ϕ1 ∧ ϕ2) = qbn(ϕ1 ∨ ϕ2) = qbn(ϕ1) + qbn(ϕ2);

• qbn(¬ϕ) = qbn(ϕ);

• if ϕ is not universally quantified and n ≥ 1, then qbn(∀x1 . . . ∀xnϕ) = 1 + qbn(ϕ);

• if ϕ is not existentially quantified and n ≥ 1, then qbn(∃x1 . . . ∃xnϕ) = 1 + qbn(ϕ).

/

Every first-order formula has an equivalent one in prenex normal form with a lower or
equal number of quantifier blocks.

Example 3.7 Let ϕ be the formula of Example 3.6. Let ψ = ∃x∃y∃u∃v(ϕ1 ∧ ϕ2) be an
equivalent formula in prenex normal form. We have qbn(ψ) = 1 and qbn(ϕ) = 3. /

Proposition 3.1 For every first-order formula ϕ, there exists a first-order formula ψ
such that ψ ≡ ϕ, ψ is in prenex normal form and qbn(ψ) ≤ qbn(ϕ).

35

Chapter 3. Certain Conjunctive Query Answering in First-Order Logic

Proof. The proof runs by induction on the structure of ϕ. The result is obvious if ϕ
is quantifier free. For the induction step, we distinguish the following cases:

• Case ϕ = ϕ1 ∧ ϕ2 or ϕ = ϕ1 ∨ ϕ2. Assume qbn(ϕ1) = n1 and qbn(ϕ2) = n2. By the
induction hypothesis, we can assume integersm1 ≤ n1 andm2 ≤ n2 such that ϕ1 has
an equivalent formula ϕ′1 in prenex normal form with a number of quantifier blocks
m1, and ϕ2 has an equivalent formula ϕ′2 in prenex normal form with a number
of quantifier blocks m2. A standard translation [Papadimitriou 1994, page 99] of
ϕ′1 ∧ ϕ′2 in prenex normal form yields a formula with a number of quantifier blocks
≤ m1 +m2. Finally, notice m1 +m2 ≤ n1 + n2 = qbn(ϕ).

• Case ϕ = ¬ϕ1. Easy.

• Case ϕ = ∀x1 . . . ∀xnϕ1 with n ≥ 1 and ϕ1 is not universally quantified. Assume
qbn(ϕ1) = n1. By the induction hypothesis, we can assume integer m1 ≤ n1 such
that ϕ1 has an equivalent formula ϕ′1 in prenex normal form with a number of
quantifier blocksm1. Obviously, ∀x1 . . . ∀xnϕ′1 is equivalent to ϕ, is in prenex normal
form, and has a number of quantifier blocks ≤ 1 + m1. Finally, notice 1 + m1 ≤
1 + n1 = qbn(ϕ).

• Case ϕ = ∃x1 . . . ∃xnϕ1 with n ≥ 1 and ϕ1 is not existentially quantified. Analogous
to the previous case.

2

Formulas returned by function NaiveFo can be “optimized” so as to have lower quan-
tifier (block) rank and/or less quantifier blocks. Consider the penultimate line of function
NaiveFo, which specifies the first-order formula ϕ returned by a call NaiveFo(q, V) with
q 6= ∅. Since NaiveFo is called recursively once for each atom of q, the algorithm can
return a formula with 2|q| quantifier blocks and with a quantifier block rank as high as
2|q|.

In the following subsections, we present some theoretical results that can be used to
construct “improved” or “simpler” certain first-order rewritings. Subsection 3.2.2 presents
results to decrease the quantifier block rank. In Subsection 3.2.3, we show that NaiveFo
can be easily modified so as to return formulas with less (alternations of) quantifier
blocks. Importantly, our simplifications do not decrease (nor increase) the total number
of quantifiers in a formula; they merely group quantifiers of the same type in blocks and/or
decrease the nesting depth of quantifiers.

3.2.2 Reduction of the Quantifier (Block) Rank

Consider query TmU with m ≥ 1 in Example 3.4. Function NaiveFo will “rewrite” the
atoms Ri(xi, b) sequentially (1 ≤ i ≤ m). However, since these atoms have no bound
variables in common, it is correct to rewrite them “in parallel” and then join the resulting
formulas.

36

3.2. Syntactic Simplifications

Example 3.8 Let q3 = ∃x1∃x2∃x3

(
R1(x1, b) ∧ R2(x2, b) ∧ R3(x3, b)

)
. This is, q3 = b3c.

A naive certain first-order rewriting of q3 is the following sentence ϕ3:

ϕ3 =

∃x1

[
R1(x1, b) ∧ ∀y1

(
R1(x1, y1)→ y1 = b∧

∃x2

[
R2(x2, b) ∧ ∀y2

(
R2(x2, y2)→ y2 = b∧

∃x3

[
R3(x3, b) ∧ ∀y3

(
R3(x3, y3)→ y3 = b

)])]
)]

An “improved” certain first-order rewriting is given by the following query ρ3. As atoms
R1(x1, b), R2(x2, b) and R3(x3, b) have no common variable, certain first-order rewritings
are computed for each of them and then joined together.

ρ3 =

∃x1

(
R1(x1, b) ∧ ∀y1

(
R1(x1, y1)→ y1 = b

))
∧

∃x2

(
R2(x2, b) ∧ ∀y2

(
R2(x2, y2)→ y2 = b

))
∧

∃x3

(
R3(x3, b) ∧ ∀y3

(
R3(x3, y3)→ y3 = b

))

Queries ϕ3 and ρ3 contain exactly the same number of quantifiers of each type. Those
quantifiers are nested in ϕ3 while they are spread in three “independent” parts in ρ3. /

The idea is generalized in Theorem 3.1.

Definition 3.3 Let Q = (q, V) be an SJFC query with q 6= ∅. An independent partition
of Q is a (complete disjoint) partition {q1, . . . , qk} of q such that for 1 ≤ i < j ≤ k,
vars(qi) ∩ vars(qj) ⊆ V . /

Theorem 3.1 Let Q = (q, V) be an acyclic SJFC query. Let {q1, . . . , qk} be an inde-
pendent partition of Q. For each 1 ≤ i ≤ k, let ϕi be a certain first-order rewriting for
Qi = (qi, Vi), where Vi = V ∩ vars(qi). Then,

∧k
i=1 ϕi is a certain first-order rewriting for

Q.

Proof. Let θ be an arbitrary valuation over V . Let ~x be the ordered sequence of
variables in V . For 1 ≤ i ≤ k, let θi be the restriction of θ on Vi, and let ~xi be the ordered
sequence of variables in Vi. Define ϕ =

∧k
i=1 ϕi.

Let db be a database such that db |= ϕ(θ(~x)). Then, for 1 ≤ i ≤ k, db |= ϕi(θi(~xi)).
Let rep be an arbitrary repair of db. Since each ϕi is a certain first-order rewriting for
Qi, we have that for 1 ≤ i ≤ k, θi(~xi) ∈ Qisure(db), hence θi(~xi) ∈ Qi(rep). So, for
every 1 ≤ i ≤ k, we can extend θi to a valuation Θi over vars(qi) such that Θi(qi) ⊆ rep.
Let Θ =

⋃k
i=1 Θi. We show that Θ is a function. Assume that the same variable x

occurs in vars(qi) and vars(qj) with i 6= j. Since {q1, . . . , qk} is an independent partition
of Q, we have x ∈ V , consequently x ∈ Vi and x ∈ Vj. It follows that Θi(x) = θ(x)
and Θj(x) = θ(x), hence Θi(x) = Θj(x). Since Θ(q) ⊆ rep is now obvious, we have
Θ(~x) = θ(~x) ∈ Q(rep). Since rep is an arbitrary repair of db, it follows θ(~x) ∈ Qsure(db).

37

Chapter 3. Certain Conjunctive Query Answering in First-Order Logic

R1(y, x)

R0(x)

R2(x, y)
R3(x, a)

{x, y}

{x}
{x}

Figure 3.2: A join tree τ for query q of Example 3.9.

Conversely, assume θ(~x) ∈ Qsure(db). Let rep be a repair of db. We have θ(~x) ∈ Q(rep).
So, we can extend θ to a valuation Θ over vars(q) such that Θ(q) ⊆ rep. For 1 ≤ i ≤ k,
let Θi be the restriction of Θ on vars(qi). Then for 1 ≤ i ≤ k, Θi(qi) ⊆ rep. It follows
Θi(~xi) ∈ Qi(rep). As Θ(~xi) = θi(~xi) is obvious and since rep is an arbitrary repair of db, it
follows that for 1 ≤ i ≤ k, θi(~xi) ∈ Qisure(db). As each ϕi is a certain first-order rewriting
for Qi, we have that for 1 ≤ i ≤ k, db |= ϕi(θi(~xi)). Consequently, db |= ∧k

i=1 ϕi(θi(~xi)).
It follows db |= ϕ(θ(~x)). 2

Intuitively, given a join tree τ , we define diameter(τ) as the maximal sum of arities
found on any path in τ . An example follows.

Example 3.9 Let q = {R0(x), R1(y, x), R2(x, y), R3(x, a)}, an acyclic SJFC query. Fig-
ure 3.2 shows a join tree τ for q. The maximal sum of arities is given by the chain
{R1(y, x), R2(x, y), R3(x, a)}. This join tree has diameter(τ) = 6.

/

Definition 3.4 Let Q = (q, V) be an acyclic SJFC query. Let τ be a join tree for Q. A
chain in τ is a subset q′ ⊆ q such that the subgraph of τ induced by q′ is a path graph.
We define diameter(τ) as the largest integer n such that n = ΣF∈q′arity(F) for some chain
q′ in τ . /

Corollary 3.1 Let Q = (q, V) be an acyclic SJFC query whose attack graph is acyclic.
Let τ be a join tree for Q. There exists a certain first-order rewriting ϕ for Q such that
qr(ϕ) ≤ diameter(τ).

Proof. The proof makes use of the following sublemma.

Sublemma 3.1 [Wijsen 2012, Lemma C.1] Let Q = (q, V) be an acyclic conjunctive
query without self-join with an acyclic attack graph. Let x be a variable that occurs in q.
Let Q′ = (q, V ∪ {x}) then, Q′ is an acyclic conjunctive query without self-join with an
acyclic attack graph. Moreover, for F ∈ Q, if F is unattacked in Q, then F is unattacked
in Q′.

The proof of Corollary 3.1 runs by induction on |q|. The desired result holds obviously
for |q| = 0. For the induction step, assume |q| ≥ 1. We can assume an unattacked atom

38

3.2. Syntactic Simplifications

F

F1 F2 Fk

L1
L2

Lk

q1 q2 qk

. . .

Figure 3.3: Join tree τF .

F = R(~x, ~y) in Q, and let ` be the arity of R. Let Q′ = (q′, V ′) where q′ = q \ {F} and
V ′ =

(
V ∪ vars(F)

)
∩ vars(q′).

Let τ be a join tree for Q, and denote by τF the directed rooted join tree obtained from
τ by selecting F as the root. This situation is depicted in Figure 3.3. Let F1, F2, . . . , Fk be
the children of F in τF . For 1 ≤ i ≤ k, let qi be the set of atoms that contains Fi and all its
descendants, and let τi be the subtree of τ induced by qi. Let Vi =

(
V ∪vars(F)

)
∩vars(qi),

and Qi = (qi, Vi). By Sublemma 3.1, each Qi has an acyclic attack graph and by the
induction hypothesis, we can assume a certain first-order rewriting ϕi for Qi such that
qr(ϕi) ≤ diameter(τi) (for 1 ≤ i ≤ k). Let ∆ = max1≤i≤k diameter(τi). Since qr(

∧k
i=1 ϕi) =

max1≤i≤k qr(qi), it follows qr(
∧k
i=1 ϕi) ≤ ∆.

The crux is now that {q1, . . . , qk} is an independent partition of Q′. Indeed, for
1 ≤ i < j ≤ k, if x ∈ vars(qi) ∩ vars(qj), then by the definition of join tree, x ∈ vars(F),
hence x is a free variable in Q′. From Theorem 3.1, it follows that a certain first-order
rewriting ϕ0 for Q can be obtained from the formula ϕ in function NaiveFo by replac-
ing the recursive call NaiveFo(q′, V ′) with

∧k
i=1 ϕi. Since our construction guarantees

qr(ϕ0) ≤ ` + qr(
∧k
i=1 ϕi), we obtain qr(ϕ0) ≤ ` + ∆. Finally, it can be easily seen that

`+ ∆ ≤ diameter(τ). This concludes the proof. 2

We illustrate in the following example the proof of Corollary 3.1. We show that the
query of Example 3.9 has a certain first-order rewriting ϕ with qr(ϕ) ≤ 6.

Example 3.10 Consider query q = {R0(x), R1(y, x), R2(x, y), R3(x, a)} of Example 3.9.
Let F = R1(y, x), an unattacked atom in the attack graph of q. Let Q1 = ({R0(x)}, {x}),
Q2 = ({R2(x, y)}, {x, y}) and Q3 = ({R3(x, a)}, {x}). Using Corollary 3.1, we compute
the following certain first-order rewriting for q.

ϕ = ∃y∃x
(

R1(y, x) ∧ ∀x
(
R1(y, x)→

R0(x)︸ ︷︷ ︸
rewriting of Q1

∧ R2(x, y)︸ ︷︷ ︸
rewriting of Q2

∧R3(x, a) ∧ ∀z
(
R3(x, z)→ z = a

)
︸ ︷︷ ︸

rewriting of Q3

))

We have qr(ϕ) = 4. /

39

Chapter 3. Certain Conjunctive Query Answering in First-Order Logic

Theorem 3.1 and Corollary 3.1 leads us to modify the function NaiveFo in order to
get a certain first-order rewriting which decreases the quantifier (block) rank. This is
function SplitFo on page 41.

Example 3.11 Let ρ3 and ϕ3 be the queries of Example 3.8. It can be seen that
qbn(ϕ3) = qbr(ϕ3) = qr(ϕ3) = 6. Using SplitFo, the query ρ3 decreases the quanti-
fier block rank and the quantifier rank: qbr(ρ3) = qr(ρ3) = 2. The number of quantifier
blocks is not changed. Figure 3.1 shows the translations in SQL of ϕ3 and ρ3 respectively
named N3 and R3. The nesting depth of subqueries decreases from 5 in N3 to 1 in R3. /

3.2.3 Reduction of the Number of Quantifier Blocks

Function NaiveFo constructs a certain first-order rewriting by treating one unattacked
atom at a time. However, if a query contains multiple unattacked atoms, then those
atoms can be “rewritten” together. This is Theorem 3.2. Rewriting multiple unattacked
atoms together generally results in less quantifier blocks, as expressed by Corollary 3.2.
Examples 3.12 and 3.14 illustrate the idea.

Example 3.12 We go on with the queries of Example 3.8. Remember the naive certain
first-order rewriting ϕ3 of q3:

ϕ3 =

∃x1

[
R1(x1, b) ∧ ∀y1

(
R1(x1, y1)→ y1 = b∧

∃x2

[
R2(x2, b) ∧ ∀y2

(
R2(x2, y2)→ y2 = b∧

∃x3

[
R3(x3, b) ∧ ∀y3

(
R3(x3, y3)→ y3 = b

)])]
)]

It can be seen that atoms R1(x1, b), R2(x2, b) and R3(x3, b) are unattacked in the
attack graph of q3. An “improved” certain first-order rewriting β3 for q3 is given next.

β3 =

∃x1∃x2∃x3

(
R1(x1, b) ∧R2(x2, b) ∧R3(x3, b)∧

∀y1∀y2∀y3

(
R1(x1, y1) ∧R2(x2, y2) ∧R3(x3, y3)→

y1 = b ∧ y2 = b ∧ y3 = b
))

In β3, the three unattacked atoms are “rewritten” together, resulting in only one im-
plication with a conjunction of three atoms on both sides of the implication. This allows
the quantifiers to be regrouped in blocks of the same type and results in a smaller number
of quantifier blocks. Notice that the quantifier rank is still equal to 6 in β3. /

Example 3.13 Consider query q = {R0(y1, y2, y3), R1(x1, y1), R2(x2, y2), R3(x3, y3)}. To
simplify the notation, let Fi = Ri(xi, yi) for 1 ≤ i ≤ 3 and G = R0(y1, y2, y3). The
attack graph of q is shown in Figure 3.4. Function NaiveFo or SplitFo will first choose,

40

3.2. Syntactic Simplifications

Function SplitFo(q,V) constructs certain first-order rewriting.
Input: Q = (q, V) is an acyclic SJFC query whose attack graph is acyclic and

where V is the set of free variables of q.
Result: certain first-order rewriting ρ for Q.
begin

if q = ∅ then
ρ← true;

else
let {q1, . . . , qm} be a maximal partition of q such that for 1 ≤ i < j ≤ m,
vars(qi) ∩ vars(qj) ⊆ V ;
if m ≥ 2 then

foreach i← 1 to m do
V ′i ← V ∩ vars(qi)

ρ← ∧m
i=1 SplitFo(qi, V

′
i);

else /* m = 1 */
E ← AttackGraph((q, V));
choose F = R(x1, . . . , xk, y1, . . . , y`) in q such that ∀G ∈ q : (G,F) 6∈ E;
V ′ ← V ;
X← ∅;
foreach i← 1 to k do

if xi is a variable and xi 6∈ V ′ then
V ′ ← V ′ ∪ {xi};
X← X ∪ {xi};

Y ← ∅;
NEW← ∅;
foreach i← 1 to ` do

if yi is a constant or yi ∈ V ′ then
let zi be a new variable;
NEW← NEW ∪ {i};

else /* yi is a variable not in V ′ */
let zi be the same variable as yi;
V ′ ← V ′ ∪ {yi};
Y ← Y ∪ {yi};

q′ ← q \ {F};
V ′ ← V ′ ∩ vars(q′);

ρ←

∃X ∃YR(x1, . . . , xk, y1, . . . , y`)∧
∀z1 . . . ∀z`

[
R(x1, . . . , xk, z1, . . . , z`)→

[∧
i∈NEW zi = yi
∧ SplitFo(q′, V ′)

]]

;

return ρ;

41

Chapter 3. Certain Conjunctive Query Answering in First-Order Logic

R1(x1, y1) R2(x2, y2) R3(x3, y3)

R0(y1, y2, y3)

Figure 3.4: The attack graph of q in Example 3.14.

for example, F1, then F2, then F3 and eventually G, resulting in the following certain
first-order rewriting ϕ.

ϕ = ∃x1∃y1

[
R1(x1, y1) ∧ ∀y′1

(
R1(x1, y

′
1)→

[
∃x2∃y2

(
R2(x2, y2) ∧ ∀y′2

(
R2(x2, y

′
2)→

[
∃x3∃y3

(
R3(x3, y3) ∧ ∀y′3(R3(x3, y

′
3)→ R0(y′1, y

′
2, y
′
3))
)]))]

)]

Since F1, F2 and F3 are unattacked in the attack graph of q, they can be “rewritten”
together and an “improved” certain first-order rewriting can be computed, as follows.

β = ∃x1∃x2∃x3∃y1∃y2∃y3

(
R1(x1, y1) ∧R2(x2, y2) ∧R3(x3, y3)∧
∀y′1∀y′2∀y′3

(
R1(x1, y

′
1) ∧R2(x2, y

′
2) ∧R3(x3, y

′
3)
)

→ R0(y′1, y
′
2, y
′
3)
)

It is easy to see that β has a number of quantifier blocks that is less than the one of
ϕ: qbn(β) = 2 while qbn(ϕ) = 6. Notice that ϕ and β both contain 9 quantifiers. /

Theorem 3.2 Let Q = (q, V) be an acyclic SJFC query. Let S ⊆ q be a set of unattacked
atoms in Q’s attack graph. Let X =

(⋃
F∈S keyVars(F)

)
\ V . If ϕ is a certain first-order

rewriting for (q, V ∪X), then ∃Xϕ is a certain first-order rewriting for Q.

Proof. The proof makes use of the following sublemma.

Sublemma 3.2 [Wijsen 2010, Corollary 1] Let Q = (q, V) be an acyclic SJFC query
whose attack graph is acyclic. Let F ∈ Q be an atom which is unattacked in the attack
graph of Q. Assume without loss of generality that 〈v1, . . . , vm〉 is the ordered sequence of
variables of V and that 〈x1, . . . xk〉 is the ordered sequence of variables of keyVars(F) \ V .
Let Q′ = (q, V ∪ keyVars(F)). Then, for every database db, for every ~a ∈ domm, there
exists ~b ∈ domk such that ~a ∈ Qsure(db) implies 〈~a,~b〉 ∈ Q′sure(db).

42

3.2. Syntactic Simplifications

We show Theorem 3.2. Assume without loss of generality that 〈v1, . . . , vm, x1, . . . , x`〉
is the ordered sequence of variables of V ∪X, where vi ∈ V and xj ∈ X for 1 ≤ i ≤ m,
1 ≤ j ≤ `. Let ~v = 〈v1, . . . , vm〉 and ~x = 〈x1, . . . , x`〉. Let Q′ = (q, V ∪X). Assume
ϕ is a certain first-order rewriting for (q, V ∪X). Then, for every database db, for all
~a ∈ domm, ~b ∈ dom`,

〈~a,~b〉 ∈ Q′sure(db) ⇐⇒ db |= ϕ(~a,~b). (3.1)

We need to show that for every database db, for every ~a ∈ domm,

~a ∈ Qsure(db) ⇐⇒ db |= ∃~xϕ(~a, ~x).

⇐ Easy. ⇒ Assume S = {F1, . . . , Fu}. Let X1 = keyVars(F1) \ V , and assume
w.l.o.g. that ~x1 = 〈x1, . . . , xk〉 with k ≤ ` is the ordered sequence of variables in X1. Let
Q1 = (q, V ∪X1). By Sublemma 3.2, for every database db, for every ~a ∈ domm, there
exists ~b ∈ domk such that:

~a ∈ Qsure(db) =⇒ 〈~a,~b〉 ∈ Q1
sure(db).

By Sublemma 3.1, none of the atoms of S is attacked in the attack graph of Q1. Then, by
repeated application of the same arguments, for every database db, for every ~a ∈ domm,
there exists ~b ∈ dom` such that:

~a ∈ Qsure(db) =⇒ 〈~a,~b〉 ∈ Q′sure(db). (3.2)

From (3.1) and (3.2), for every database db, for every ~a ∈ domm, there exists ~b ∈ dom`

such that ~a ∈ Qsure(db) implies db |= ϕ(~a,~b). Consequently, for every database db, for
every ~a ∈ domm, ~a ∈ Qsure(db) implies db |= ∃~xϕ(~a, ~x). 2

Corollary 3.2 Let Q = (q, V) be an acyclic SJFC query whose attack graph is acyclic.
Let p be the number of atoms on the longest directed path in the attack graph of Q. There
exists a certain first-order rewriting ϕ for Q such that qbn(ϕ) ≤ 2p.

Proof. For every F ∈ q, we define the stratum of F as the number of atoms on the
longest directed path (in the attack graph of Q) that starts from some unattacked atom
and ends at F . In particular, an atom has stratum 1 if and only if it is unattacked. The
greatest stratum is p.

From Theorem 3.2, it follows that function NaiveFo can be modified so as to proceed
stratum-by-stratum (rather than atom-by-atom), starting with all atoms at stratum 1. In
particular, let {Ri(~xi, ~yi)}ki=1 be all atoms at stratum 1. Then Q has a certain first-order
rewriting of the form:

∃~x∃~y
(k∧

i=1

Ri(~xi, ~yi) ∧ ∀~z
(k∧

i=1

Ri(~xi, ~zi)→ φ ∧ ψ
))
,

where the construction of ~x, ~y, and ~z is as in function NaiveFo, φ is a conjunction of
equality predicates, and ψ is a certain first-order rewriting of the query obtained from Q

43

Chapter 3. Certain Conjunctive Query Answering in First-Order Logic

by removing all atoms with stratum 1. If ψ is obtained by recursive application of the
same method (on a smaller query), we obtain a certain first-order rewriting for Q that
has a prenex normal form with 2p quantifier blocks. 2

The optimization is implemented in function GroupingFo and relies on Theorem 3.2.
Function GroupingFo on page 45 improves function NaiveFo by decreasing the number
of quantifier blocks of certain first-order rewritings.

Example 3.14 Consider the queries ϕ3, ρ3 and β3 of Examples 3.8 and 3.12. In partic-
ular, using Theorem 3.2, β3 groups the quantifiers of the same type and decreases the
number of quantifier blocks of ϕ3 from 6 to 2. As already mentioned in Example 3.12,
the quantifier ranks of ϕ3 and β3 are equal. The SQL queries Q3,N3 and B3 shown in
Figure 3.1 encode respectively q3, ϕ3 and β3. Query N3 contains 5 NOT EXISTS subqueries
while B3 only contains 1 NOT EXISTS subquery. The following table summarizes those
metrics.

(Naive) ϕ3 (Split) ρ3 (Grouping) β3

qbn(·) 6 6 2
qbr(·) 6 2 2
qr(·) 6 2 6

depth of nested NOT EXISTS subqueries 5 1 1
number of NOT EXISTS subqueries 5 3 1

/

Corollaries 3.1 and 3.2 provide an upper bound on the quantifier block rank and on
the number of quantifier blocks that are needed in certain first-order rewritings. We see
that function NaiveFo can be easily modified so as to diminish either of those measures.
In particular, SplitFo aims to reduce the quantifier (block) rank while GroupingFo aims
to reduce the number of quantifier blocks.

One can see that the certain first-order rewritings computed using function SplitFo
or function GroupingFo never increase the number of quantifier blocks nor the quanti-
fier (block) rank in comparison with the certain first-order rewritings computed using
NaiveFo. Indeed, no new quantifier is added when computing ρ or β in the last line of
these functions. Moreover, the depth of recursive calls in NaiveFo is exactly the number
of atoms in the query while the depth of recursive calls in SplitFo and GroupingFo can
be smaller.

The three functions have a similar time complexity. Note that, in contrast with the
complexity of CERTAINTY(q) which is about data complexity, the complexity of the three
functions is about query complexity. A rough time complexity analysis shows that one
recursive call is solved in O(|Q|2), due to the complexity of function AttackGraph which
runs in quadratic time in the length of Q [Wijsen 2012]. As the number of recursive calls
is bound by the number of atoms in the query, the resulting time complexity to compute
a certain first-order rewriting is thus in O(|Q|3).

The following table gives the number of quantifier blocks, the quantifier block rank and
the quantifier rank of the certain first-order rewritings computed using the three functions
introduced in this chapter. The input query is TmU of Example 3.4.

44

3.2. Syntactic Simplifications

Function GroupingFo(q,V) constructs certain first-order rewriting.
Input: Q = (q, V) is an acyclic SJFC query whose attack graph is acyclic and

where V is the set of free variables of q.
Result: certain first-order rewriting β for Q.
begin

if q = ∅ then
β ← true;

else
E ← AttackGraph((q, V));
Let F1, F2, . . . , Fu in q such that ∀G ∈ q∀i ∈ {1, . . . , u} : (G,Fi) 6∈ E;
V ′ ← V ;
X← ∅;
Y ← ∅;
foreach j ← 1 to u do

Let Fj = Rj(xj,1, . . . , xj,k, yj,1, . . . , yj,`);
NEWj ← ∅;
foreach i← 1 to k do

if xj,i is a variable and xj,i 6∈ V ′ then
V ′ ← V ′ ∪ {xj,i};
X← X ∪ {xj,i};

foreach i← 1 to ` do
if yj,i is a constant or yj,i ∈ V ′ then

let zj,i be a new variable;
NEWj ← NEWj ∪ {i};

else /* yj,i is a variable not in V ′ */
let zj,i be the same variable as yj,i;
V ′ ← V ′ ∪ {yj,i};
Y ← Y ∪ {yj,i};

q′ ← q \ {F1, F2, . . . , Fu};
V ′ ← V ′ ∩ vars(q′);

β ←

∃X ∃Y∧u

j=1Rj(~xj, ~yj)∧

∀~z1 . . . ∀~zu
[∧u

j=1Rj(~xj, ~zj)→
[∧u

j=1

∧
i∈NEWj

zj,i = yj,i
∧ GroupingFo(q′, V ′)

]]

;

return β;

45

Chapter 3. Certain Conjunctive Query Answering in First-Order Logic

NaiveFo SplitFo GroupingFo
qbn(·) 2m 2m 2
qbr(·) 2m 2 2
qr(·) 2m 2 2m

However, we think it is generally not possible to minimize the three metrics simul-
taneously. For instance, it does not exist a certain first-order rewriting ψ for TmU with
qbn(ψ) = qbr(ψ) = qr(ψ) = 2.

46

. .CHAPTER 4
Certain Conjunctive

Query Answering in SQL

For acyclic SJFC queries q, a certain first-order rewriting for q exists if and only if the
attack graph of q is acyclic. Moreover, if a certain first-order rewriting exists, then it can
be effectively computed. One of the main advantages of this approach is the ease to use
the resulting first-order query in database applications. In this chapter, we first show how
to compute certain first-order rewritings in SQL. Then, we investigate the performance
of these SQL queries in practice.

In Section 4.1, we explain how one can obtain a certain SQL rewriting for a given
query q. We do not directly translate from first-order logic to SQL: the certain rewritings
are first computed in tuple relational calculus [Ullman 1988] (TRC), and then translated
in SQL. Subsection 4.1.1 introduces the tuple relational calculus and three functions that
compute certain TRC rewritings. Subsection 4.1.2 shows how to translate those rewritings
from TRC to SQL.

We then investigate in Section 4.2 whether the certain SQL rewriting technique is
an efficient practical technique to compute the certain answer of a query. We measure
the execution times of several certain SQL rewritings and the impact of the following
parameters:

• the syntactic optimizations presented in the previous chapter,

• the fraction of tuples involved in some primary key violation,

• the size of the database, and

• the cardinality of the query.

The experiments, the measurements and the observations are summarized in Section 4.2.

47

Chapter 4. Certain Conjunctive Query Answering in SQL

4.1 From First-Order to SQL

The first-order queries introduced in Sections 3.1 and 3.2 were expressed in domain rela-
tional calculus (DRC), a first-order language in which the variables range over the con-
stants of the domain. It is usual in the database field to refer to queries that are in
DRC with the terms first-order queries. Given an acyclic SJFC query q whose attack
graph is acyclic, the procedures described in these sections compute a certain first-order
rewriting ϕ in DRC. If we want to execute ϕ using standard DBMS technology, it has to
be translated in SQL.

A certain SQL rewriting can be obtained by a direct translation from first-order logic
to SQL, but the technical treatment involved is difficult. In this section, we present three
functions that return certain rewritings in tuple relational calculus (TRC) [Ullman 1988].
The motivation is that the translation from TRC to SQL is straightforward.

The whole process is summarized by Figure 4.1. Given an acyclic SJFC query q in
first-order logic, we compute a certain SQL rewriting. The theory, including the syntactic
optimizations, is made on first-order queries (left part of the figure). To compute a certain
SQL rewriting for q, we first compute a certain TRC rewriting for q using one of the three
new functions that produce a certain TRC rewriting and the resulting query is then
translated in SQL (right part of the figure, in red).

acyclic SJFC query q in FO

NaiveFo
GroupingFo
SplitFo

NaiveTRC
GroupingTRC
SplitTRC

ϕ in FO ϕ in TRC ϕ′ in SQL

'

≡
SQL(·)

Figure 4.1: From a first-order acyclic SJFC query q to a certain SQL rewriting ϕ′ for q.

4.1.1 Tuple Relational Calculus

The set of legal tuple relational calculus formulas we consider is defined in a way that is
similar to domain relational calculus formulas, except for the basic atoms, which are of
the following form [Maier 1983]:

1. For any relation name R whose arity is n, and for any tuple variable t with the same
arity, R(t) is an atom and is true if t ∈ R. The arity of t is denoted by arity(t);

48

4.1. From First-Order to SQL

2. For any tuple variables t1, t2, and for any positions i, j (with 1 ≤ i ≤ arity(t1) and
1 ≤ j ≤ arity(t2)), t1 · i = t2 · j is an atom;

3. For any tuple variable t, any position i (with 1 ≤ i ≤ arity(t)) and if c is a constant
in the domain, then c = t · i and t · i θ c are atoms.

The following abbreviations will be used.

• ∀t ∈ R(ϕ) is a shorthand for ∀t
(
R(t)→ ϕ

)
, and

• ∃t ∈ R(ϕ) is a shorthand for ∃t
(
R(t) ∧ ϕ

)
.

The translation from first-order logic to TRC is straightforward for conjunctive queries,
as illustrated by the following example.

Example 4.1 Let q = ∃x1∃x2∃x3R1(x1, x2, a) ∧ R2(x2, x3). An equivalent formula in
TRC is given by q′:

q′ = ∃t1∃t2
(
R1(t1) ∧R2(t2) ∧ t1 · 2 = t2 · 1 ∧ t1 · 3 = a

)

The variables range over the tuples of their respective relations, t1 ranges over the
tuples of R1 and t2 ranges over the tuples of R2. /

The functions NaiveFo, GroupingFo and SplitFo have been modified to output
queries that are in TRC. The resulting functions are respectively NaiveTRC, GroupingTRC
and SplitTRC. Importantly, the functions take as input an acyclic SJFC query Q = (q, V)
expressed in first-order logic. The output is in TRC.

The function NaiveTRC is shown on page 51. It initializes some data structures, and
then makes a call to the subroutine NaiveTRCSub. The function GroupingTRC is not
shown, because it is the same as NaiveTRC up to changing the call of NaiveTRCSub with
a call to GroupingTRCSub. The latter subroutine is shown on page 53. Likewise, the
function SplitTRC is not shown, because it can be obtained from NaiveTRC by replacing
the call of NaiveTRCSub with SplitTRCSub. The subroutine SplitTRCSub is shown on
page 54.

For every relation name R (in upper case), we introduce three tuple variables r0, r1

and r2 (in lower case) that range over relation R. The parameter REFS is an array whose
indices are the variables of vars(q) and the value is of the form r · i where r is a variable
name and i a position in r.

The initialization in NaiveTRC, GroupingTRC or SplitTRC essentially handles the free
variables of the input query Q = (q, V). For every free variable x of Q (i.e. for every
variable x ∈ V), the initialization picks an atom of q that contains x. If this atom is
R(x1, x2, . . . , xn) with xi = x, then REFS[x] is initialized to r0 · i. Entries in REFS will
never be changed after their initialization.

Example 4.2 Let R, S be relation names with signature [2, 1]. Let Q = (q, V) with
V = {x} and q = {R(a, y), S(y, x)}. Consider for example a run of SplitTRC(q, V).

The only free variable x occurs at the second position in S. Function SplitTRC
initializes REFS such that REFS[x] = s0 · 2. A certain TRC rewriting for Q is of the form
{s0 · 2 | s0 ∈ S ∧ ϕ} where ϕ is the output of SplitTRCsub(q, V,REFS). /

49

Chapter 4. Certain Conjunctive Query Answering in SQL

We now explain a run of function SplitTRCsub.

Example 4.3 We go on with Example 4.2. A call to SplitTRCsub(q, V,REFS) chooses
the unattacked atom R(a, y) and eventually returns

∃r1 ∈ R
(
r1 · 1 = a ∧
∀r2 ∈ R

(
r2 · 1 = r1 · 1→

true ∧ SplitTRCsub(q′, {x, y},REFS)
))
,

with q′ = {S(y, x)}, REFS[x] = s0 · 2 (unchanged), and REFS[y] = r2 · 2. The call
SplitTRCsub(q′, {x, y},REFS) chooses the only remaining atom S(y, x) and eventually
returns

∃s1 ∈ S
(
s1 · 1 = r2 · 2 ∧
∀s2 ∈ S

(
s2 · 1 = s1 · 1→

s2 · 2 = s0 · 2 ∧ true
))
.

Putting everything together, we get a certain TRC rewriting for Q:

{s0 · 2 | s0 ∈ S ∧ ∃r1 ∈ R
(
r1 · 1 = a ∧

∀r2 ∈ R
(
r2 · 1 = r1 · 1→

∃s1 ∈ S
(
s1 · 1 = r2 · 2 ∧
∀s2 ∈ S(s2 · 1 = s1 · 1→

s2 · 2 = s0 · 2)
)))
}

/

50

4.1. From First-Order to SQL

Function NaiveTRC(q,V)
Input: Q = (q, V) is an acyclic SJFC query whose attack graph is acyclic and

where V is the set of free variables of q.
Result: A certain TRC rewriting ϕ for Q
begin

foreach variable x in q do
REFS[x]← ⊥;

ϕ← true;
SELECT← 〈〉;
USED← ∅;
foreach x ∈ V do

Let F = R(~x) be an atom in which x occurs at position i;
REFS[x]← r0 · i;
append r0.i to SELECT;
if R 6∈ USED then

ϕ← ϕ ∧ (r0 ∈ R); /* r0 ranges over R-facts */
USED← USED ∪ {R};

ϕ← {SELECT | ϕ ∧ NaiveTRCsub(q, V,REFS)};
return ϕ;

4.1.2 Encoding from TRC to SQL

The functions introduced in the previous subsection output certain TRC rewritings. We
briefly explain the main ideas and rules to translate the resulting queries in SQL.

Let toSQL denote the translation function. This function takes as input a query
expressed in tuple relational calculus and returns a query which is semantically equivalent
but expressed in SQL.

The translation into SQL is made recursively on the elements of the syntax tree of
the input query. The main rules used for this function are described in Table 4.1. The
function ATTR(t, i) used for t · i is a function that returns the name of the i-th attribute
of the relation of t. In practice, function toSQL is enhanced to handle some simple logical
simplifications (like true∧ϕ which becomes ϕ) and to support nonBoolean queries. This
function constructs SQL queries following SQL99 standard. For example, we use NOT
EXISTS instead of forall. Although SQL99 is a standard, it is not always strictly imple-
mented by commercial DBMS’s. For instance, MySQL does not support the INTERSECT
operator. In our experiments, we replaced this operator by an appropriate join.

Example 4.4 Let ϕ be the certain first-order rewriting obtained in Example 4.3. An
SQL translation using the (enhanced version of) function toSQL returns the following
query.

SELECT s0.2 FROM S AS s0
WHERE EXISTS (SELECT *

FROM R AS r1

51

Chapter 4. Certain Conjunctive Query Answering in SQL

Function NaiveTRCsub(q,V ,REFS)
Input: Q = (q, V) is an acyclic SJFC query whose attack graph is acyclic and

where V is the set of free variables of q. REFS is an array whose indices are
the variables of V such that for each x ∈ V , REFS[x] is of the form rj · i
where rj is a tuple variable and i a position.

Result: formula ϕ in TRC
begin

if q = ∅ then
ϕ← true

else
E ← AttackGraph((q, V));
choose F = R(x1, . . . , xk, yk+1, . . . , y`) in q such that ∀G ∈ q : (G,F) 6∈ E;
CONDX← true; CONDY ← true;
FREE← V ;
foreach i← 1 to k do

if xi is a constant then
CONDX← CONDX ∧

(
r1 · i = xi

)
;

else /* xi is a variable */
if xi ∈ FREE then

CONDX← CONDX ∧
(
r1 · i = REFS[xi]

)
;

else
FREE← FREE ∪ {xi}; REFS[xi]← r1 · i;

foreach i← k + 1 to ` do
if yi is a constant then

CONDY ← CONDY ∧
(
r2 · i = yi

)
;

else /* yi is a variable */
if yi ∈ FREE then

CONDY ← CONDY ∧
(
r2 · i = REFS[yi]

)
;

else
FREE← FREE ∪ {yi}; REFS[yi]← r2 · i;

q′ ← q \ {F};

ϕ←

 ∃r1 ∈ R

[
CONDX ∧ ∀r2 ∈ R

(∧k
i=1(r2 · i = r1 · i)→

CONDY ∧ NaiveTRCsub(q′,FREE,REFS)
)]

;

return ϕ

52

4.1. From First-Order to SQL

Function GroupingTRCsub(q,V ,REFS)
Input: Q = (q, V) is an acyclic SJFC query whose attack graph is acyclic and

where V is the set of free variables of q. REFS is an array whose indices are
the variables of V such that for each x ∈ V , REFS[x] is of the form rj · i
where rj is a tuple variable and i a position.

Result: formula β in TRC
begin

if q = ∅ then
β ← true

else
E ← AttackGraph((q, V));
Let F1, F2, . . . , Fu in q such that ∀G ∈ q∀i ∈ {1, . . . , u} : (G,Fi) 6∈ E;
β ← true; CONDX← true; CONDY ← true;
FREE← V ; KEY ← [];
foreach j ← 1 to u do

Let Fj = Rj(xj,1, . . . , xj,k, yj,k+1, . . . , yj,`);
KEY[Rj]← k;
foreach i← 1 to k do

if xj,i is a constant then
CONDX← CONDX ∧

(
rj,1 · i = xj,i

)
;

else /* xj,i is a variable */
if xj,i ∈ FREE then

CONDX← CONDX ∧
(
rj,1 · i = REFS[xj,i]

)
;

else
FREE← FREE ∪ {xj,i}; REFS[xj,i]← rj,1 · i;

foreach i← k + 1 to ` do
if yj,i is a constant then

CONDY ← CONDY ∧
(
rj,2 · i = yj,i

)
;

else /* yj,i is a variable */
if yj,i ∈ FREE then

CONDY ← CONDY ∧
(
rj,2 · i = REFS[yj,i]

)
;

else
FREE← FREE ∪ {yj,i}; REFS[yj,i]← rj,2 · i;

q′ ← q \ {F1, . . . , Fu};

β ←

∃r1,1 ∈ R1 . . . ∃ru,1 ∈ Ru, CONDX∧
∀r1,2 ∈ R1 . . . ∀ru,2 ∈ Ru

[∧u
j=1

∧KEY[Rj]
i=1 (rj,2 · i = rj,1 · i)

→
[
CONDY ∧ GroupingTRCsub(q′,FREE,REFS)

]]

;

return β

53

Chapter 4. Certain Conjunctive Query Answering in SQL

Function SplitTRCsub(q,V ,REFS)
Input: Q = (q, V) is an acyclic SJFC query whose attack graph is acyclic and

where V is the set of free variables of q. REFS is an array whose indices are
the variables of V such that for each x ∈ V , REFS[x] is of the form rj · i
where rj is a tuple variable and i a position.

Result: formula ρ in TRC
begin

if q = ∅ then
ρ← true

else
let {q1, . . . , qm} be a maximal partition of q such that for 1 ≤ i < j ≤ m,
vars(qi) ∩ vars(qj) ⊆ V ;
if m ≥ 2 then

ρ← ∧m
i=1 SplitTRCsub(qi, V,REFS);

else /* m = 1 */
choose F = R(x1, . . . , xk, yk+1, . . . , y`) in q such that
∀G ∈ q : (G,F) 6∈ E;
CONDX← true; CONDY ← true;
FREE← V ;
foreach i← 1 to k do

if xi is a constant then
CONDX← CONDX ∧

(
r1 · i = xi

)
;

else /* xi is a variable */
if xi ∈ FREE then

CONDX← CONDX ∧
(
r1 · i = REFS[xi]

)
;

else
FREE← FREE ∪ {xi}; REFS[xi]← r1 · i;

foreach i← k + 1 to ` do
if yi is a constant then

CONDY ← CONDY ∧
(
r2 · i = yi

)
;

else /* yi is a variable */
if yi ∈ FREE then

CONDY ← CONDY ∧
(
r2 · i = REFS[yi]

)
;

else
FREE← FREE ∪ {yi}; REFS[yi]← r2 · i;

q′ ← q \ {F};

ρ←

 ∃r1 ∈ R

[
CONDX ∧ ∀r2 ∈ R

(∧k
i=1(r2 · i = r1 · i)→

CONDY ∧ SplitTRCsub(q′,FREE,REFS)
)]

;

return ρ

54

4.1. From First-Order to SQL

Input Rule to apply
true TRUE
false FALSE
c "c" (c is a constant)
t t (t is a tuple variable)
t.i t.ATTR(t, i) (1 ≤ i ≤ arity(t))

∃t ∈ R T1 EXISTS (SELECT * FROM R as t WHERE (toSQL(T1)))
∀t ∈ R T1 toSQL(¬∃t ∈ R ¬T1)
T1 → T2 toSQL(T1 ∨ ¬T2)

T1 ∧ · · · ∧ Tn (toSQL(T1) AND ... AND toSQL(Tn))
T1 ∨ · · · ∨ Tn (toSQL(T1) OR ... OR toSQL(Tn))
¬T1 (NOT toSQL(T1))

T1 = T2 (toSQL(T1) = toSQL(T2))
T1 6= T2 (toSQL(T1) <> toSQL(T2))
T1 SELECT ’true’ WHERE (toSQL(T1))

Table 4.1: Main rules to translate a query from TRC to SQL.

WHERE r1.1 = ’a’
AND NOT EXISTS (SELECT *

FROM R AS r2
WHERE r2.1 = r1.1
AND NOT EXISTS (SELECT *

FROM S as s1
WHERE s1.1 = r2.2
AND NOT EXISTS (SELECT *

FROM S AS s2
WHERE s2.1 = s1.1
AND s2.2 <> s0.2))))

The above SQL query can be shortened by replacing WHERE EXISTS with a join:

SELECT s0.2 FROM S AS s0, R AS r1
WHERE r1.1 = ’a’
AND NOT EXISTS (SELECT *

FROM R AS r2
WHERE r2.1 = r1.1
AND NOT EXISTS (SELECT *

FROM S as s1
WHERE s1.1 = r2.2
AND NOT EXISTS (SELECT *

FROM S AS s2
WHERE s2.1 = s1.1
AND s2.2 <> s0.2)))

/

55

Chapter 4. Certain Conjunctive Query Answering in SQL

4.2 Experiments

We showed how to compute certain first-order rewritings for acyclic SJFC queries whose
attack graph is acyclic. We gave a function that produces a “naive” certain TRC rewrit-
ing and we showed how to get an SQL translation of this rewriting. We also provided
two syntactic optimizations that aim to reduce the number of quantifier blocks and the
quantifier (block) rank of certain first-order rewritings.

In this section, we investigate whether the certain query rewriting technique is an
efficient way to compute the certain answer to a given query. In particular, we conducted
experiments to answer the following questions:

• Does the certain rewriting technique result in acceptable evaluation times on practi-
cal databases? Is this technique efficient and applicable in a practical environment?

• Does the reduction of the quantifier block rank or the number of quantifier blocks
result in better performance? Do the syntactic optimizations have an impact? Is
this impact systematic?

• What affects the evaluation time of the different rewritings? How does the evaluation
time behave in function of the proportion of uncertainties, of the size of the database,
or of the size of the conjunctive query?

No established benchmark for certain query answering exists in the literature. The
following subsections describe the two main experiments we conducted in order to answer
the aforementioned questions. The first experiment involves a large subset of a practical
database: (a snapshot of) the Wikipedia’s database. In this first experiment, we study the
feasability of the certain rewriting technique for both Boolean and nonBoolean queries.
We measure the evaluation times for several variants of this database in which the number
of tuples involved in a primary key violation differs.

The second experiment concerns several synthetic databases. This situation is less
relevant to study the practicability of the certain rewriting approach but allows to specifi-
cally study the impact of the two syntactic optimizations considered so far. We also study
the impact on the evaluation time of the databases size and of the size of the queries.

All the experiments were conducted on the same configuration: the hardware is an
Intel Core i5 2540M running at 2.50Ghz with 6 gygabites of DDR3 memory. The hard
disk is a Solid State Disk Crucial M4. The DBMS is MySQL 5.5.24 running on a Kubuntu
12.04 (kernel 3.2.0-32-generic, x64).

The following notational convention will be used in the following subsections: if Q is
an acyclic SJFC query whose attack graph is acyclic, then ϕQ denotes the certain first-
order rewriting for Q obtained using NaiveFo, βQ denotes the certain first-order rewriting
for Q obtained using GroupingFo and ρQ denotes the certain first-order rewriting for Q
obtained using SplitFo.

Finally, given a database db and a query Q, we denote by TQ,db the average of 100
execution times of the (SQL translation of) Q on db. It is important to note that the
query cache is cleared after each execution of the query. Given a certain first-order
rewriting q′ for q, we first compute a certain TRC rewriting q′′ for q using one of the

56

4.2. Experiments

Schema Arity Number of tuples Size
PAGE[id, namespace, title, . . .] 12 4,862,082 417 MB
CATEGORY[id, title, . . .] 6 296,002 13 MB
CATEGORYLINKS[from, to, . . .] 7 14,101,121 1.8 GB
INTERWIKI[prefix, url, . . .] 6 662 40 KB
EXTERNALLINKS[from, to, . . .] 3 6,933,703 1.3 GB

Table 4.2: Database schema of the first experiment.

functions NaiveTRC, GroupingTRC or SplitTRC and then translate the resulting certain
TRC rewriting in SQL for execution.

4.2.1 Performances on a Practical Database

This first experiment aims to verify that computing the certain answer using the ap-
proach of certain query rewriting is a feasible approach, meaning that the time required
to compute the certain answer is acceptable and scales well with the database size.

We are interested in measuring the execution times on large databases of practical
interest. For this purpose, we choose a large subset of Wikipedia’s database. We choose
two conjunctive queries—a Boolean and a nonBoolean one—and measure their evaluation
times on this database. Since SQL rewritings contain nested subqueries, we expect those
evaluation times to be significantly higher for the three certain SQL rewritings compared
to the conjunctive query.

For the second part of this experiment, we gradually add to the database an increasing
number of tuples that violate one of the primary keys.

Databases and Queries

We use a subset of a snapshot of the relational database containing Wikipedia’s meta-data
which is publicly available at http://dumps.wikimedia.org/frwiki/20120117/.

The subset contains approximately 25 million tuples; its size is 3.5 gigabytes on disk.
This subset is composed of 5 relations with 34 attributes. The database schema and the
database size are shown in Table 4.2. Attributes that are not shown are not relevant for
our queries. The full database layout is documented on Mediawiki’s website1.

We created six versions of this database in which we added tuples that are involved
in some primary key violations. We will refer to those databases using the notation Wp

where p is the percentage of tuples added. To allow primary key violations, all primary key
constraints were dropped and replaced by nonunique indexes. We introduce conflicting
tuples as follows:

1. We randomly take two distinct tuples in each relation R. Let R(~a,~b) and R(~c, ~d)

(with R(~a, ~d) not in R) be those atoms;

2. We add a tuple R(~a, ~d) in R.

1Mediawiki’s website is available at http://www.mediawiki.org/wiki/Manual:Database_layout.

57

http://dumps.wikimedia.org/frwiki/20120117/
http://www.mediawiki.org/wiki/Manual:Database_layout

Chapter 4. Certain Conjunctive Query Answering in SQL

The databases W0.001%,W0.01%,W0.1%,W1% and W2% contain respectively 0.001%,
0.01%, 0.1%, 1% and 2% more tuples than W0%. As no tuples are removed in order
to add primary key violations, notice that the size of W2% for example, is 1.02 times the
size ofW0%. As every new tuple added in the database is involved in a primary key viola-
tion, the proportion of conflicting tuples inW2% is 2×2

1.02
% (approximatively 4%). Although

only 4% of uncertainties may seem small in a database, it still represents about 1.000.000
tuples involved in a primary key violation in our case.

In our experiments, we chose two acyclic SJFC queries which are in accordance with
the intended semantics of the database schema. We investigate the performance of the
evaluation of (certain SQL rewritings for) a Boolean query (QB) and a nonBoolean query
(QnB):

QB = ∃x∃t∃y∃u∃ . . .

PAGE(x, . . .) ∧ CATEGORYLINKS(x, t, . . .)∧
CATEGORY(y, t, . . .) ∧ EXTERNALLINKS(x, u, . . .)∧
INTERWIKI(fr, u, . . .)

QnB(u) = ∃x∃t∃y∃ . . .

PAGE(x, . . .) ∧ CATEGORYLINKS(x, t, . . .)∧
CATEGORY(y, t, . . .) ∧ EXTERNALLINKS(x, u, . . .)∧
INTERWIKI(fr, u, . . .)

The query QB asks: “Is there some page with a category link to some category and
with an external link to the Wiki identified by fr?” and evaluates to true on each database.
Query QnB is a nonBoolean variant of query QB and asks for the addresses of those Wikis
identified by fr.

To help understanding, we point out that attribute CATEGORYLINKS · to refers to
CATEGORY · title, not to CATEGORY · id. Each position that is not shown contains a new
distinct variable which does not occur elsewhere.

The queries ϕQB
, βQB

and ρQB
(resp. ϕQnB

, βQnB
and ρQnB

) refer to the certain first-
order rewritings for QB (resp. QnB), using NaiveFo, GroupingFo and SplitFo. For
instance, SQL translations of queries ρQB

and βQnB
are shown in Figure 4.2. The following

table gives the number of subqueries and the maximal depth of nested subqueries for the
SQL translations of the three certain first-order rewritings for QB and QnB .

ϕQB
βQB

ρQB
ϕQnB

βQnB
ρQnB

number of (NOT) EXISTS subqueries 8 4 6 8 4 6
depth of nested (NOT) EXISTS subqueries 8 4 5 8 4 5

Observations and Measurements

Each of the eight queries is evaluated against the six different databases. The resulting
evaluation times are summarized in Table 4.3. The execution times of the certain SQL
rewritings on large databases seem acceptable in practice. A further analysis reveals the
following:

1. Despite the size of the databases, the execution times are very small. The execution
time ranges from 1.15 milliseconds to 6.16 milliseconds.

58

4.2. Experiments

RHO_QB = SELECT ’true’ FROM interwiki AS iw
WHERE (iw.iw_prefix = ’fr’
AND (NOT EXISTS

(SELECT * FROM interwiki AS iw_bis
WHERE ((NOT EXISTS

(SELECT * FROM category AS c
WHERE (NOT EXISTS

(SELECT * FROM category AS c_bis
WHERE ((NOT EXISTS

(SELECT * FROM externallinks AS el
WHERE (iw_bis.iw_url = el.el_to

AND EXISTS
(SELECT * FROM categorylinks AS cl
WHERE (el.el_from = cl.cl_from

OR c_bis.cat_title = cl.cl_to))
AND EXISTS

(SELECT * FROM page AS p
WHERE el.el_from = p.page_id))))

AND c.cat_id = c_bis.cat_id)))))
AND iw.iw_prefix = iw_bis.iw_prefix)))) LIMIT 1

BETA_QnB = SELECT DISTINCT iw.iw_url FROM interwiki AS iw
WHERE (iw.iw_prefix = ’fr’
AND (NOT EXISTS

(SELECT * FROM interwiki AS iw_bis
WHERE ((iw_bis.iw_url <> iw.iw_url

OR (NOT EXISTS
(SELECT * FROM category AS c
WHERE (NOT EXISTS

(SELECT * FROM category AS c_bis
WHERE ((NOT EXISTS

(SELECT * FROM externallinks AS el,
categorylinks AS cl,
page AS p

WHERE (iw_bis.iw_url = el.el_to
AND el.el_from = cl.cl_from
AND c_bis.cat_title = cl.cl_to
AND el.el_from = p.page_id)))

AND c.cat_id = c_bis.cat_id))))))
AND iw.iw_prefix = iw_bis.iw_prefix))))

Figure 4.2: SQL translations of queries ρQB
and βQnB

.

59

Chapter 4. Certain Conjunctive Query Answering in SQL

W0% W0.001% W0.01% W0.1% W1% W2%

QB 1.15 1.149 1.151 1.151 1.151 1.149
ϕQB

4.658 3.156 3.155 4.157 3.656 4.66
βQB

2.652 3.155 2.155 3.157 2.148 3.156
ρQB

3.158 3.155 3.155 3.156 2.163 3.156

QnB 5.659 6.159 6.159 5.658 5.659 6.153
ϕQnB

4.659 4.659 4.658 4.661 4.661 4.66
βQnB

3.155 3.155 3.154 3.156 3.153 3.155
ρQnB

3.659 3.154 3.155 3.152 3.155 3.656

Table 4.3: Execution times for the first experiment. Time is in milliseconds.

2. For the Boolean query, the certain SQL rewriting is at worst four times slower than
the original query;

3. For the nonBoolean query, the certain SQL rewriting is always slightly faster than
the original query. A possible explanation is that the additional conditions occurring
in the subqueries of the certain SQL rewritings allow the DBMS to avoid some
Cartesian products;

4. The execution times are independent of the amount of conflicting tuples in the
database. Figures 4.3 and 4.4 illustrate the evolution of the evaluation times for
queries QB and QnB and their certain SQL rewritings for a proportion of conflicting
tuples that ranges from 0% to 4%.

This last observation was confirmed by some more experiments we conducted on var-
ious synthetic databases in which we obtained a similar result: the proportion of tuples
involved in primary key violations does not affect the evaluation times. As the proportion
of uncertainties in the database does not affect the resulting evaluation times, we only
consider databases that are consistent in our second experiment.

4.2.2 Query and Data Complexities

The second experiment measures the impact of the number of tuples in the databases and
of the number of atoms in the conjunctive query. We also study whether execution times
depend on the quantifier rank, the quantifier block rank or the quantifier block number
of the query. Unlike the databases of the previous experiment, databases in this second
experiment are synthetic and consistent (that is, they contain no primary key violation).

A synthetic database that is consistent is easier to characterize than an inconsistent
one: the parameters are mainly the number of tuples per relation and how those tuples
join together. It allows us to choose queries that are more specific and more relevant
to study the effect of the syntactic optimizations. Moreover, on a consistent database,
the answer of the conjunctive query is the same as the answer of its certain first-order
rewritings.

60

4.2. Experiments

0 0.001 0.01 0.1 1 2
Percentage of tuples added to create conflicts

1

2

3

4

5

6

7

8

9

10

ti
m
e
 i
n
 m

ill
is
e
co

n
d
s

Evaluation times for QB and its rewritings

QB

ϕQB

βQB

ρQB

Figure 4.3: Time needed to evaluate QB and its three certain SQL rewritings. The time
is in milliseconds. The percentage of added tuples to create conflict ranges from 0% to
2%.

61

Chapter 4. Certain Conjunctive Query Answering in SQL

0 0.001 0.01 0.1 1 2
Percentage of tuples added to create conflicts

1

2

3

4

5

6

7

8

9

10

ti
m
e
 i
n
 m

ill
is
e
co

n
d
s

Evaluation times for QnB and its rewritings

QnB

ϕQnB

βQnB

ρQnB

Figure 4.4: Time needed to evaluate QnB and its three certain SQL rewritings. The time
is in milliseconds. The percentage of added tuples to create conflict ranges from 0% to
2%.

62

4.2. Experiments

Databases and Queries

Consider schema R1, . . . , R10 where each Ri has signature [2, 1]. For N in {102, 103, 5 ×
103, 104, 5 × 104, 105}, we constructed a database denoted dbN . Database dbN contains
facts Ri(1, 1), . . . , Ri(N − 1, N − 1) and Ri(N, b) for 1 ≤ i ≤ 10, where b is a constant.
Hence, dbN contains 10×N tuples.

The queries that are used for this experiment are T1U, . . . ,T10U. Remember TmU =
(bmc, ∅) where bmc = {R1(x1, b), . . . , Rm(xm, b)}. This query evaluates to true on each
of the considered databases.

For each 1 ≤ m ≤ 10, ϕTmU denotes the certain first-order rewriting obtained using
NaiveFo, βTmU denotes the certain first-order rewriting obtained using GroupingFo and
ρTmU denotes the certain first-order rewriting obtained using SplitFo.

The following table recalls the number of quantifier blocks, the quantifier block rank
and the quantifier rank of the certain first-order rewritings of TmU. SQL translations of
T3U, ϕT3U, βT3U and ρT3U are shown in Figure 3.1.

ϕTmU βTmU ρTmU

qbn(·) 2m 2 2m
qbr(·) 2m 2 2
qr(·) 2m 2m 2

Observations and Measurements

The 40 queries of this experiment are evaluated on the six different databases. Table 4.4
summarizes the results. The evaluation times vary from 0.6 milliseconds (for the smallest
conjunctive query on the smallest database) to 378 milliseconds for ρT10U on the biggest
database. We make the following observations:

1. The certain SQL rewriting is always less than two times slower than the conjunctive
query;

2. Figure 4.5 illustrates the behaviour of the evaluation times for T10U and for its
three rewritings when the number of tuples in the database increases, from 1, 000 to
1, 000, 000 tuples. Although the execution times are clearly dependent of the number
of tuples in the database, the evolution of the execution times for the certain SQL
rewritings is similar to the evolution of the execution times for the conjunctive query
with respect to the number of tuples in the database;

3. A similar observation can be made with respect of the number of atoms in the
conjunctive query. Figure 4.6 shows the execution times of TmU and its certain
SQL rewritings for 1 ≤ m ≤ 10 on db10,000;

4. It can be seen in Figures 4.5 and 4.6 that the curve of βTmU is below the curve of
ϕTmU. Query βTmU lowers the execution times of ϕTmU with about 20% on average;

5. Notice that the execution time of ρTmU is sometimes higher than the execution time
of ϕTmU (see m = 10 on db100,000 for instance). We cannot explain this behavior, we
think the small variations are induced by some side effects in the DBMS during the
process or a different query plan chosen and executed by the DBMS.

63

Chapter 4. Certain Conjunctive Query Answering in SQL

4.2.3 Conclusions

We conducted two sets of experiments. The first experiment focused on a large database of
practical interest while the second experiment considered synthetic, consistent databases.

The resulting execution times provide a strong confidence that the certain first-order
rewriting approach is an efficient way to deal with uncertainty in databases if the query is
an acyclic SJFC query whose attack graph is acyclic. The first experiment showed that
the execution times for the certain SQL rewritings are close to the execution times of the
original conjunctive queries. This experiment also showed that the execution times are
not affected by the proportion of tuples that are involved in a primary key violation.

In the second experiment, we measured the impact of the size of the database, of the
size of the query, and of the two considered syntactic optimizations. Again, we observed
acceptable execution times for the certain SQL rewritings: the execution times are always
less than two times those of the conjunctive query. The increase of the size of the database
or the increase of the size of the query seems to result in a linear increase of the execution
times of the certain SQL rewritings. We observed that the syntactic optimization that
reduces the number of quantifier blocks (i.e. function GroupingFo) results in a certain
SQL rewriting that runs slightly faster than the “naive” certain SQL rewriting. The
performance gain can reach 30%. It is on average of 15% but is not systematic.

The reduction of the number of quantifier blocks, of the quantifier block rank or of the
quantifier rank is not the only way to reduce the execution time of the SQL translations
of certain first-order rewritings. The following example suggests that parameters other
than qbn(·), qbr(·) and qr(·) play an important role.

Example 4.5 Consider the following query q = ∃y
(
R(x, y) ∧ S(y, z)

)
. Query q has a

certain first-order rewriting, namely:

ϕ = ∃y
(
R(x, y) ∧ ∀y′

(
R(x, y′)→ S(y′, z)

))
.

There are at least two certain SQL rewritings for q. The following SQL queries Q1 and
Q2 are two examples of such rewritings.

Q1 = SELECT s1.B, r1.A
FROM S as s1, R as r1
WHERE s1.A = r1.B
AND NOT EXISTS (SELECT *

FROM R as r2
WHERE r2.A = r1.A
AND NOT EXISTS (SELECT *

FROM S as s2
WHERE s2.B = s1.B
AND s2.A = r2.B))

Q2 = SELECT s1.B, r1.A
FROM S as s1, R as r1

64

4.2. Experiments

WHERE NOT EXISTS (SELECT *
FROM R as r2
WHERE r2.A = r1.A
AND NOT EXISTS (SELECT *

FROM S as s2
WHERE s2.B = s1.B
AND s2.A = r2.B))

The only difference between Q1 and Q2 is an additional condition s1.A = r1.B in the
outermost WHERE in Q1. Intuitively, Q1 is a translation of q ∧ ϕ while Q2 is a translation
of ϕ in SQL. As ϕ→ q, it is easy to see that Q1 and Q2 are semantically equivalent. The
execution time heavily depends on the translation chosen, as it is shown in the following
table. This table gives the time to get the answer of those queries on two consistent
databases of 1, 000 tuples and 10, 000 tuples.

number of tuples SQL of q Q1 Q2
1, 000 11.4 ms 11.5 ms 44.21 ms
10, 000 69.25 ms 73.74 ms > 30, 000 ms

The syntactic difference, which is clearly not related to the number of quantifier blocks,
the quantifier block rank or the quantifier rank, seems to have a big impact on the execu-
tion times. Even on a small database of 1, 000 tuples, the execution time of Q2 is 4 times
higher than the one of Q1. It takes more than 30 seconds to get the answer of query Q2
on a database of 10, 000 tuples. /

Although certain first-order rewritings obtained using our functions generally have
execution times that are comparable to the ones of the conjunctive queries, this last
example suggests that the performance can depend on some factors that are unrelated
to the number of quantifier blocks, to the quantifier block rank or to the quantifier rank.
Currently, we have not been able to identify these factors.

65

Chapter 4. Certain Conjunctive Query Answering in SQL

db100 db1,000 db5,000 db10,000 db50,000 db100,000

T1U 0.648 2.152 3.147 4.148 16.678 31.697
ϕT1U 0.648 2.152 3.655 4.154 18.171 34.71
βT1U 0.647 2.152 3.153 4.648 18.178 39.212
ρT1U 0.647 2.152 3.147 5.152 17.677 34.707

T2U 1.149 2.652 4.148 6.15 29.695 67.77
ϕT2U 1.149 3.656 5.156 8.154 35.705 72.279
βT2U 1.149 3.155 4.155 7.154 29.694 72.78
ρT2U 1.15 3.154 5.155 8.656 35.204 79.79

T3U 1.149 3.657 6.158 9.164 47.73 96.834
ϕT3U 1.651 5.16 6.66 11.667 54.74 125.874
βT3U 1.149 4.157 5.659 9.156 48.732 102.838
ρT3U 1.651 5.161 7.66 11.662 51.736 110.854

T4U 1.149 4.659 6.659 11.166 64.262 120.871
ϕT4U 1.651 3.656 9.656 14.67 68.764 164.959
βT4U 1.651 5.161 6.659 12.162 64.767 116.861
ρT4U 1.651 5.16 8.161 14.674 78.787 148.913

T5U 1.149 5.159 7.152 13.665 75.29 140.903
ϕT5U 2.152 3.154 10.157 18.178 85.798 189.001
βT5U 1.65 3.155 9.665 14.666 73.777 145.411
ρT5U 2.152 3.147 9.655 18.172 85.295 168.437

T6U 1.65 2.651 8.665 16.17 90.813 179.481
ϕT6U 2.653 3.646 11.66 21.678 112.353 210.027
βT6U 2.154 3.154 9.659 17.174 90.302 169.444
ρT6U 2.652 3.147 11.659 21.679 104.331 230.574

T7U 1.652 3.152 9.662 18.678 101.332 207.532
ϕT7U 3.172 4.154 13.664 25.187 120.36 261.108
βT7U 2.153 3.148 10.665 21.686 104.338 224.576
ρT7U 2.654 4.148 14.668 25.183 119.364 256.123

T8U 1.65 3.148 11.166 21.681 114.357 217.044
ϕT8U 3.155 4.154 15.167 28.698 145.905 307.206
βT8U 2.151 3.152 12.162 22.69 128.892 256.63
ρT8U 3.155 4.155 15.166 28.699 147.922 272.639

T9U 2.153 3.65 12.669 26.19 127.89 237.584
ϕT9U 3.656 5.158 17.673 31.7 169.956 346.284
βT9U 2.653 3.655 13.17 25.689 124.877 252.613
ρT9U 3.656 4.66 16.67 31.704 152.419 348.795

T10U 2.152 3.647 13.163 25.688 134.391 266.233
ϕT10U 3.656 5.155 19.176 35.206 191.501 336.26
βT10U 2.654 4.147 14.668 29.203 147.923 310.731
ρT10U 3.657 4.649 18.673 38.721 184.982 378.849

Table 4.4: Execution times for the second experiment. Time is in milliseconds.

66

4.2. Experiments

0 20000 40000 60000 80000 100000
number of tuples per relation

0

100

200

300

400

500

tim
e

in
m

ill
is

ec
on

ds

Evaluation times for T10U and its rewritings

T10U
ϕT10U

βT10U
ρT10U

Figure 4.5: Time needed to evaluate T10U and its rewritings. The time is in milliseconds.
The number of tuples per relation ranges from 100 to 100, 000.

67

Chapter 4. Certain Conjunctive Query Answering in SQL

0 2 4 6 8 10
value for m

0

50

100

150

200

250

tim
e

in
m

ill
is

ec
on

ds

Evaluation times for TmU over db10,000

TmU
ϕTmU

βTmU
ρTmU

Figure 4.6: Time needed to evaluate TmU and its rewritings for 1 ≤ m ≤ 10. Time is in
milliseconds. The database is fixed and contains 10, 000 tuples per relation.

68

. .CHAPTER 5
Conclusions

In the first part of the thesis, we dealt with certain query answering on relational databases
that are allowed to violate primary key constraints. We say that a Boolean query q is
certain in such an uncertain database db if q evaluates to true on every repair of db. Given
a Boolean query q, CERTAINTY(q) is defined as the set of uncertain databases in which
q is certain. We focused on the case where CERTAINTY(q) is first-order definable.

The set CERTAINTY(q) is first-order definable if and only if there exists a first-order
sentence ϕ such that, for every database db, ϕ is true on db if and only if q is certain in
db. Such sentence ϕ is called a certain first-order rewriting for q.

In [Wijsen 2010], it was shown that if q is an acyclic SJFC query, then the first-order
definability of CERTAINTY(q) is decidable. This characterization relies on the attack
graph of q. A certain first-order rewriting for q exists if and only if the attack graph of
q is acyclic. We provided a function that, given a query q with an acyclic attack graph,
produces a certain first-order rewriting for q.

We showed that the SQL translation of the certain first-order rewritings produced by
this function can contain deeply nested subqueries. We studied the number of quantifier
blocks, the quantifier block rank, and the quantifier rank of certain first-order rewritings.
We presented two syntactic optimizations that aim to reduce the number of (nested)
subqueries in the SQL translations of those certain first-order rewritings.

We then conducted experiments to investigate whether the certain first-order rewriting
technique is an efficient way to deal with uncertainty in practical databases. We measured
the execution times of several queries and their certain first-order rewritings. We found
that certain first-order rewriting is a technique that scales well, both for data complexity
and query complexity. This approach also scales well when the proportion of tuples
involved in primary key violations increases.

Our experimental results suggest that the approach of computing the certain answer to
a query using the certain first-order rewriting technique is efficient, practical and scalable.
The two considered syntactic optimizations lead to a performance improvement. The gain
is on average of 15% but is not systematic.

There are still several open questions about CERTAINTY(q). Relatively little is known
in the case of conjunctive queries q that are cyclic and/or contain self-joins. It is also an

69

Chapter 5. Conclusions

open conjecture that, for every conjunctive query q without self-join, CERTAINTY(q) is
either in P or coNP-complete. This dichotomy has been proven to be true for queries
with exactly two atoms [Kolaitis and Pema 2012]. [Fontaine 2013] explains why it seems
hard to get such a dichotomy for consistent query answering: it would imply a solution for
the dichotomy conjecture for the constraint satisfaction problem, a famous long-standing
open problem.

70

Part II

A Pattern Matching Problem for
Multiwords

71

. .CHAPTER 6
A Variant of the Pattern Matching Problem

The second part of the thesis deals with uncertainty in the framework of first- order
logic on words. In this setting, uncertainty is captured by the concept of multiword,
which is a finite sequence of nonempty sets of possible symbols. Every word obtained by
selecting one symbol from each set of possible symbols is a possible word. In particular,
we are interested in the following variant of the pattern matching problem: given a word
w, is w a factor of every possible word of a given multiword?

Section 6.1 situates our pattern matching problem using multiwords among several
other variants of the pattern matching problem.

In Section 6.2, we recall the notions of words and partial words. Partial words are
words in which don’t-care symbols are allowed and can be replaced by any symbol of the
alphabet. Partial words are a special case of multiwords. Given a word w, we define
CERTAIN(w) as the set of multiwords such that w is a factor of every possible word of
the multiword. We postulate the conjecture that CERTAIN(w) is first-order expressible
for every word w. In a forthcoming chapter, we will show the first-order definability of
CERTAIN(w) under rather weak restrictions on w.

The variant of the pattern matching problem with multiwords has a direct application
in the context of certain query answering in uncertain database history. In Section 6.3,
we introduce the notion of database histories and uncertainty by primary key violations
in database histories. We show how the problem of certain query answering in uncertain
database histories can be viewed as an application of the variant of the pattern matching
problem with multiwords.

73

Chapter 6. A Variant of the Pattern Matching Problem

6.1 Words with don’t-care Symbols

Given a pattern w and a text t, the pattern matching problem is to find all the occur-
rences of the word w in t. There exist efficient algorithms that solve this problem, like
the well-known Knuth-Morris-Pratt algorithm [Knuth et al. 1977] and Boyer-Moore algo-
rithm [Boyer and Moore 1977] (Chapters 3 and 4 in [Crochemore and Rytter 1994]).

Several extensions of this problem have been studied. Instead of a single pattern w,
the Aho-Corasick algorithm efficiently finds in a text t all the occurrences of words w
taken from a finite set of words [Aho and Corasick 1975]. A more general problem is the
regular expression matching problem where the pattern is a set of words specified by a
regular expression (see for instance Chapter 7 in [Crochemore and Rytter 1994]).

Other extensions deal with the pattern matching problem by allowing don’t-care sym-
bols in the pattern w and/or in the text t. In this case, some positions in the pattern
or in the text can contain a set of symbols, instead of a single symbol. A word with
don’t-care symbols represents a finite set of (classical) words obtained by selecting a sin-
gle symbol among the symbols provided in each don’t-care position. If w is a pattern with
don’t-care symbols and t is a text, the problem consists in finding all the occurrences of
words represented by w in the text t. When w is a pattern and t is a text with don’t-care
symbols, we are interested in finding the occurrences of w in t such that in each don’t-care
position i, the symbol at the corresponding position of w belongs to the set of symbols of
t at position i.

When don’t-care symbols are allowed, most of the existing exact methods for pattern
matching are useless or have to be adapted. One among the first works in this framework
has been presented by Fisher and Paterson in [Fischer and Paterson 1974]. Without being
exhaustive, let us also mention the recent references [Holub et al. 2008; Rahman et al.
2007; Kucherov et al. 2007].

The interest in words with don’t-care symbols is driven by applications in compu-
tational biology, cryptanalysis, musicology, and other areas. In computational biology,
DNA sequences may still be considered to match each other if letter A (respectively, C) is
juxtaposed with letter T (respectively, G); analogous juxtapositions may count as matches
in protein sequences. In cryptanalysis, so far undecoded symbols may be known to match
one of a specific set of letters in the alphabet. In music, single notes may match chords,
or notes separated by an octave.

In the literature, different terms have been used for words with don’t-care symbols like
indeterminate words [Holub et al. 2008], partial words, words with holes or jokers [Berstel
and Boasson 1999; Blanchet-Sadri 2007; Crochemore et al. 2007]. In each case, either
the don’t-care symbol means any symbol of the alphabet, or it has to be selected among
a subset of the alphabet depending on its position in the word. We follow the second
approach and we use the term multiword. The notion of partial word has been generalized
in [Halava et al. 2007] by the concept of relational word. We will use the term partial
word to refer to words where don’t-care positions represent the entire alphabet.

Uncertainty in words is captured by the concept of multiwords. A multiword is a
finite sequence of nonempty sets of possible symbols. For example, multiword M =
〈{a, b}, {a}, {b}, {b}〉 encodes a word m in which the first symbol is a don’t-care symbol
and the symbols at the three last positions are a, b and b. The set {a, b} at the first

74

6.2. Definitions and Preliminaries

position in M means that we do not know exactly what is the first symbol of m but it
has to be a or b. A multiword gives rise to a finite set of possible words that are obtained
by selecting a single symbol in each set of symbols of the multiword. The possible words
of M are aabb and babb.

We are interested in the following variant of the pattern matching problem: given a
word w, is w certain in a given multiword, meaning that w is a factor of every possible
word of the multiword? For example, ab and bb are certain in M , but aa is not, because
aa is not a factor of the possible word babb.

6.2 Definitions and Preliminaries

Definition 6.1 (Words) Let Σ be a finite set. We call Σ = {a, b, c, . . . } an alphabet and
elements of Σ are called symbols or letters. A word of length n ≥ 0 over Σ is a total
function w: {1, . . . , n} → Σ. As usual, we write such a word w1 · · ·wn, where wi = w(i)
is the symbol at position i. The empty word, denoted by ε, has length 0. The length of a
word w is denoted by |w|.

The set Σ∗ contains every word over Σ. The set Σ+ contains every nonempty word
over Σ. A language over Σ (or simply language if there is no ambiguity) is a possibly
empty subset of Σ∗. If L is a language over Σ, we denote by L the set Σ∗ \ L.

If u and v are two words over Σ, then the concatenation of words u and v is denoted uv
or u ·v and is also a word over Σ. Let w ∈ Σ+, then w1 = w and, for k > 1, wk = w ·wk−1.
If w = pq for some words p and q, then p is called a prefix of w and q is called a suffix of
w. A prefix or a suffix of w that is different from w is called proper. We say that a word
w is a factor of v, denoted by v w, if there exist words p and q such that v = pwq. /

Definition 6.2 (Multiwords) We define the powerset alphabet as Σ̂ = 2Σ \ {∅}. A mul-
tiword M = A1A2 · · ·An is a finite word over the powerset alphabet Σ̂, i.e. Ai ⊆ Σ and
Ai 6= ∅ for all i.

Given a multiword M = A1A2 · · ·An, we define the set of words represented by M :

words(M) := {a1a2 · · · an | ∀i ∈ {1, . . . , n} : ai ∈ Ai}.

We say that a word w is certain inM , denotedM |=certain w, if w is a factor of every word
in words(M). /

Given a nonemtpy word w, the set CERTAIN(w) defined next is the set of every mul-
tiword such that w is certain in the multiword.

Definition 6.3 Let w ∈ Σ+ be a word. The set CERTAIN(w) is defined as follows.

CERTAIN(w) := {M ∈ Σ̂∗ |M |=certain w}.

/

75

Chapter 6. A Variant of the Pattern Matching Problem

Example 6.1 Let M = abdabca{a, b}bdab{c, d}abcab, a multiword. Curly braces are
omitted for symbols that are singletons; for example, {a} is written as a. There are two
don’t-care positions in M with sets {a, b} and {c, d}. We have:

words(M) = { abdabcaabdabcabcab,

abdabcaabdabdabcab,

abdabcabbdabcabcab,

abdabcabbdabdabcab }.

Hence, M |=certain abdabcab because abdabcab is a factor (underlined for readability) of
each word in words(M). We have M ∈ CERTAIN(abdabcab). /

Definition 6.4 A partial word of length n is a multiword M = A1A2 · · ·An where, for
each i, either Ai = Σ, or Ai = {a}. The term “partial” refers to the fact that a partial
word of length n over Σ is defined by a partial function w : {1, . . . , n} → Σ. Every partial
word can be extended into a multiword by assuming Ai = Σ if w is undefined in position
i. In a partial word M = A1A2 . . . An, it is common to denote the letter Σ by 3 [Berstel
and Boasson 1999]. /

Example 6.2 Let Σ = {a, b, c}. The partial word M3 = a{a, b, c}b{a, b, c}c is also
denoted a3b3c following notation in [Berstel and Boasson 1999]. The set of possible
words of M3 is:

words(M3) = {aabac, aabbc, aabcc, abbac, abbbc, abbcc, acbac, acbbc, acbcc}

/

Finally, we define CERTAIN3(w) as the restriction of CERTAIN(w) to partial words:

CERTAIN3(w) = {M | M is a partial word and M |=certain w}

Note that, over an alphabet Σ of exactly two symbols, every multiword is a partial
word.

A word over a finite alphabet can be represented as first-order structure [Libkin 2004].
The following definition explains relationships between words and first-order structures,
and between languages and first-order sentences.

Definition 6.5 For a finite alphabet Σ, we define a first-order vocabulary, denoted σΣ,
which contains the following predicate symbols:

1. σΣ contains the binary predicates < and S (successor) ;

2. for every a ∈ Σ, σΣ contains a unary predicate Pa.

Every word w of length n defines a σΣ-structure struct(w) as follows.

1. The universe of struct(w) is {1, 2, . . . , n} ;

76

6.2. Definitions and Preliminaries

2. S is interpreted by {(1, 2), (2, 3), . . . (n− 1, n)} and < by the transitive closure of S;

3. For every a ∈ Σ, Pa is interpreted by the set of positions in w where a occurs.

A language L is said to be first-order definable if there exists a first-order sentence ϕ
such that

L = {w ∈ Σ∗ | struct(w) |= ϕ}.
/

Example 6.3 Let Σ = {a, b}. Consider word w = abaab.
We have struct(w) = 〈{1, 2, 3, 4, 5}, <, S, Pa, Pb〉, where Pa = {1, 3, 4} and Pb = {2, 5}. /

Notice that every multiword is a word hence all definitions that apply on words also
apply on multiwords.

Example 6.4 AmultiwordM belongs to CERTAIN(ab) if struct(M) satisfies the following
formula.

∃i∃j
(

(i < j) ∧ P{a}(i) ∧ P{b}(j) ∧ ∀k
(

(i < k < j)→ P{a,b}(k)
))

.

Intuitively, ab is certain in a word if there is one position where “a” occurs, some
greater position where “b” occurs and every position between those two positions contains
either “a” or “b” (represented in a multiword by the set {a, b} of possible symbols). /

Example 6.5 We will see in Section 8.8 that the word aba is certain in a multiword M
if and only if M contains the sequence 〈{a}, {b}, {a}〉. It follows that a multiword M
belongs to CERTAIN(aba) if struct(M) satisfies the following formula.

∃i∃j∃k
(
S(i, j) ∧ S(j, k) ∧ P{a}(i) ∧ P{b}(j) ∧ P{a}(k)

)
.

/

It follows from Examples 6.4 and 6.5 that CERTAIN(ab) and CERTAIN(aba) are first-
order definable.

Given a word w, we are interested in the first-order definability of CERTAIN(w). It
is an open conjecture that CERTAIN(w) is first-order definable for every word w. We
experimentally verified this conjecture for more than 80,000,000 words for several sizes
of alphabets and several lengths of words. In Chapter 8, we prove this conjecture under
some rather weak assumptions on w.

The first-order definability of CERTAIN(w) has direct applications in the context of
certain query answering in database histories. We introduce in the next section an ex-
ample of such an application for uncertain database histories, i.e. database histories that
are allowed to violate primary key constraints. We show a link between the first-order
definability of CERTAIN(w) and the computation of the certain answer of a Boolean
Linear-Time First-Order Temporal query on an uncertain database history.

77

Chapter 6. A Variant of the Pattern Matching Problem

6.3 Application in Uncertain Database Histories

A database history is a finite sequence of snapshot databases sharing the same schema.
We assume a discrete and linear time scale. Consecutive snapshots have consecutive
associated time points. Consider for example the relation WorksFor which contains two
attributes: Name and Company. Let Name be the primary key. An example of such a
relation is given next (primary key is underlined).

WorksFor Name Company
Ed IBM
John MS

In this example, a tuple 〈Ed, IBM〉 means there exists an employee whose name is Ed
and who is currently working at IBM. Database histories help us to store information
about the evolution of an employee’s company. Here is an example of such a database
history with the relation WorksFor at four successive time points t0, t1, t2 and t3.

WorksFor, t0 Name Company
Ed IBM
John MS

WorksFor, t1 Name Company
Ed IBM
John MS

WorksFor, t2 Name Company
Ed IBM
John MS

WorksFor, t3 Name Company
Ed MS
John MS

In this example, Ed moved from IBM to MS at t3. The query “Did MS recruit an IBM
employee?” can be expressed in first-order temporal logic (see, for example, [Tuzhilin and
Clifford 1990]) as follows. In this example, # means “at the next time point”.

q = ∃x(WorksFor(x, IBM) ∧#WorksFor(x,MS))

This query q evaluates to true on our example database because there exists an em-
ployee, Ed in this case, who worked for IBM at some time point and for MS at the next
time point.

We have considered so far that the primary key Name is satisfied. We now consider
that database histories are allowed to violate the primary key. Primary key violations
bring uncertainty in database histories. Consider the following database history DBhis

where the primary key Name is violated at times t1 and t2:

WorksFor, t0 Name Company
Ed IBM

WorksFor, t1 Name Company
Ed IBM
Ed MS

WorksFor, t2 Name Company
Ed IBM
Ed MS

WorksFor, t3 Name Company
Ed MS

78

6.3. Application in Uncertain Database Histories

Tuples 〈Ed, IBM〉 and 〈Ed,MS〉 at t1 and t2 mean that Ed worked for MS or IBM but
we do not know which one. In order to make this history consistent, we have to delete
one of the two tuples at t1 and one of the two tuples at t2. Thus, we have four repairs
for DBhis. An example of such repair where we choose to delete 〈Ed,MS〉 twice is shown
next.

WorksFor, t0 Name Company
Ed IBM

WorksFor, t1 Name Company
Ed IBM

WorksFor, t2 Name Company
Ed IBM

WorksFor, t3 Name Company
Ed MS

It can be easily checked that query q evaluates to true on each of the four possible
repairs : there always exists a time point where Ed worked for IBM such that at the next
time point, Ed worked for MS. Note that this time point may differ for each repair. In
the context of uncertain database histories, we say that q is certain in DBhis because q is
true on every repair of DBhis.

We could encode Ed’s employment history with the following sequence of sets of values:

S = 〈{IBM}, {IBM,MS}, {IBM,MS}, {MS}〉.

By analogy with the notion of repairs, this sequence may represent four possible sequences,
each one can be obtained by selecting one value in each set of values. The four sequences
are:

• s1 = 〈IBM, IBM, IBM,MS〉;

• s2 = 〈IBM, IBM,MS,MS〉;

• s3 = 〈IBM,MS, IBM,MS〉 and

• s4 = 〈IBM,MS,MS,MS〉.

Asking if there exists some employee who moved from IBM to MS is equivalent
to checking if the sequence 〈IBM,MS〉 is a subsequence of s1, s2, s3 and s4, this is, if
〈IBM,MS〉 is a subsequence of every sequence represented by S.

Assume a finite alphabet Σ = {a, b}. A multiword may represent an uncertain
database history. For example, if we substitute IBM by a ∈ Σ and MS by b ∈ Σ,
the following multiword M = {a}{a, b}{a, b}{b} encodes the WorksFor relation at its four
successive time points. M has four possible words: aaab, aabb, abab, and abbb that are
related to the repairs of the uncertain database history. It is easy to see that the word
ab, which abstracts q, is a factor of every possible word of M , which abstracts DBhis, and
as M ∈ CERTAIN(ab), q is certain on DBhis.

The problem of computing the certain answer in uncertain database histories can be
seen as a variant of pattern matching: given a pattern w and a text t with don’t-care
symbols, does w appear as a factor of each word z represented by t? It is important
to notice that we want to be sure that w appears in each z, and not in some z. In
the context of database histories, the queries ask whether a sequence w = a1 · · · an is

79

Chapter 6. A Variant of the Pattern Matching Problem

encountered in every repair, i.e. whether in every repair we can find a sequence t1 · · · tn of
successive time points such that ai holds at t1, a2 holds at t2 and so on. The first-order
definability of CERTAIN(w) gives us a preliminary insight in certain linear-time first-order
query rewriting.

80

. .CHAPTER 7
The Problem CERTAIN(w)

Given a word w, CERTAIN(w) is the set of all multiwords in which w is certain, meaning
that w is a factor of every possible word of the multiword.

It is an open conjecture that CERTAIN(w) is first-order definable for every word w.
Section 7.1 formalizes the problems we are interested in. We show that CERTAIN(w) and
CERTAIN3(w) are regular languages and hence, their first-order definability is equivalent
to their aperiodicity [Schützenberger 1965; McNaughton and Papert 1971].

In Section 7.2, we give a procedure to decide CERTAIN(w). We show that this proce-
dure has several similarities with the well known Knuth-Morris-Pratt pattern matching
algorithm.

81

Chapter 7. The Problem CERTAIN(w)

∀Xa∀Xb

∀y(Xa(y) ∨Xb(y))
∧ ¬∃y(Xa(y) ∧Xb(y))
∧ ∀y(Xa(y)→ P{a}(y) ∨ P{a,b}(y))
∧ ∀y(Xb(y)→ P{b}(y) ∨ P{a,b}(y))

→ ∃z1∃z2

S(z1, z2)
∧ Xa(z1)
∧ Xb(z2)

Figure 7.1: MSO definition of CERTAIN(ab) for alphabet Σ = {a, b}.

7.1 Problem Statement

Given a word w, we defined CERTAIN(w) as the set of all multiwords in which w is
certain. We are interested in the first-order definability of CERTAIN(w) and we postulate
the conjecture that CERTAIN(w) is first-order definable for every word w. This conjecture
had been experimentally checked for a large number of words of various lengths and over
alphabets of various sizes.

We make progress in proving the conjecture. We first show the regularity for both
CERTAIN(w) and CERTAIN3(w) for every word w. The regularity of CERTAIN(w) is
obtained by exhibiting an automaton recognizing this language. The construction of such
an automaton is given in Chapter 9 and the regularity of CERTAIN(w) is then deduced in
Theorem 9.2. We argue that CERTAIN3(w) is also regular as follows. Regular languages
are closed under intersection, and since CERTAIN3(w) is the intersection of CERTAIN(w)
and the (regular) set of all partial words, CERTAIN3(w) is also regular.

The regularity of CERTAIN(w) can also be deduced by showing that CERTAIN(w)
can be defined by a formula in monadic second order-logic (MSO). The regularity of
CERTAIN(w) follows by Büchi’s theorem [Büchi 1960].

An example of such an MSO formula is given for the word ab over Σ = {a, b} in
Figure 7.1. For any multiwordM over Σ̂, ab is certain inM if struct(M) satisfies this MSO
formula. Let struct(M) be the structure 〈{1, . . . , n}, <, S, P{a}, P{b}, P{a,b}〉, the monadic
second-order variables Xa and Xb range over all subsets of the universe {1, . . . , n}. The
first two conjuncts of the premise express that Xa ∪ Xb = {1, . . . , n} and Xa ∩ Xb = ∅.
Variables Xa and Xb encode all words represented by the multiword M : if Xa(y) is true,
then a is chosen at position y, and if Xb(y) is true, then b is chosen at position y. The
premise states that for each position in multiword M , either a or b has to be chosen; a
can only be chosen at position y if M contains {a} or {a, b} at position y; b can only be
chosen at position y if M contains {b} or {a, b} at y. Notice that the premise depends
on the alphabet. The consequence states that two successive positions contain a and b in
that order; the successor relation S(z1, z2) means that position z2 is immediately after z1.

Remember that we are interested in the first-order definability of CERTAIN(w) for
every word w.

Theorem 7.1 ([Schützenberger 1965; McNaughton and Papert 1971]) The following are
equivalent for each regular language L ⊆ Σ∗:

1. L is aperiodic.

82

7.1. Problem Statement

2. L is first-order definable.

3. L is star-free, i.e. L can be expressed by a regular expression with no Kleene star.

Hence, the first-order definability of CERTAIN(w) and CERTAIN3(w) is equivalent to
their aperiodicity.

Definition 7.1 A language L is aperiodic if there exists an integer k > 0 such that

∀p, u, q ∈ Σ∗ (pukq ∈ L ⇐⇒ puk+1q ∈ L).

/

As before, any definition that applies to words also applies to multiwords. We have
CERTAIN(w) is aperiodic if there exists k > 0 such that,

∀P,U,Q ∈ Σ̂∗, PUkQ |=certain w ⇐⇒ PUk+1Q |=certain w.

The proof of the aperiodicity of CERTAIN(w) can be restricted to only one implication
instead of an equivalence as in Definition 7.1. This is stated by the following lemma.

Lemma 7.1 A regular language L is aperiodic if and only if there exists an integer n > 0
such that

∀p, u, q ∈ Σ∗ (punq ∈ L =⇒ pun+1q ∈ L). (7.1)

Proof. The only-if part is obvious. We show the if part. We use the classical result
that for any finite monoid M , there exists an integer m such that for any s ∈M , sm is an
idempotent, that is s2m = sm [Pin 1986]. By this result applied to the syntactic monoid
of L, there exists an integer m such that

∀p, u, q ∈ Σ∗ (pumq ∈ L ⇐⇒ pu2mq ∈ L). (7.2)

Let n be an integer such that (7.1) holds. Let k ≥ max(n,m), and let i, j be integers such
that k = im+ j with 0 ≤ j < m. We have the following equivalences.

pu2k−jq ∈ L
⇐⇒ (as 2k − j = 2im+ j)

p(ui)2mujq ∈ L
⇐⇒ (by (7.2))

p(ui)mujq ∈ L
⇐⇒ (as k = im+ j)

pukq ∈ L

To show the if part, it suffices to show that ∀p, u, q ∈ Σ∗(puk+1q ∈ L =⇒ pukq ∈ L).
Assume puk+1q ∈ L. We show pukq ∈ L. By (7.1), we have puk+2q ∈ L. By repeated
applications of the same argument, we have pu2k−jq ∈ L. By the aforementioned equiva-
lences, we have puk+1q ∈ L =⇒ pukq ∈ L. 2

In Chapter 8, we establish the aperiodicity of CERTAIN(w) for a large class of words.

83

Chapter 7. The Problem CERTAIN(w)

7.2 Deciding Membership of CERTAIN(w)

Let w be a word. We give a procedure for deciding the membership of CERTAIN(w). This
procedure relies on a construction defined in Lemma 7.3. The correctness of the procedure
is established in Theorem 7.2.

The procedure is based on an idea which is quite similar to the shift function of the
Knuth-Morris-Pratt pattern matching algorithm [Knuth et al. 1977].

The Knuth-Morris-Pratt pattern matching algorithm finds all occurrences of one given
word (the pattern) within another one (the text). The algorithm relies on the use of a
sliding window and a shift function to limit the number of comparisons needed to find
the occurrences of the pattern.

The sliding window delimits a factor of the text which has the same length as the
pattern. At each step of the algorithm, a comparison is made between the symbols of the
sliding window and the symbols of the pattern. If this comparison results in a match,
then the next symbols are compared. If the comparison results in a mismatch, then a shift
value is computed using the shift function and the sliding window is shifted according to
this value.

The shift function is constructed based on the observation that the pattern embodies
information that can be used to determine the position where the next match could occur.
This allows the algorithm to bypass some comparisons and to run in an average complexity
smaller or equal to O(n) where n is the length of the text. The shift function associates
with every nonempty string its longest proper suffix that is a prefix of the pattern.

Let p be a prefix of the text. Let w be the pattern. Let i be the current position in
w such that w1 · · ·wi is a suffix of p. Assume a is the next symbol to be read in the text
and p · a leads to a mismatch (i.e. wi+1 6= a). The shift function keeps the longest suffix
of p · a which is also a prefix of w. The idea of the shift function is best explained with
an example.

Example 7.1 [Knuth et al. 1977] In this example, we juxtapose the pattern on the first
line (which corresponds to the sliding window) with the text on second line. The under-
lined symbol indicates the current position in the text that is considered for comparison
with the corresponding symbol of the pattern.

Let babcbabcabcaabcabcabcacabc be the text and let abcabcacab be the pattern. The
pattern is placed at the left end and the first symbol considered for comparison is the
leftmost one:

a b c a b c a c a b
b a b c b a b c a b c a a b c a b c a b c a c a b c

Since b does not match a, we shift the pattern to the right for the next candidate
position.

a b c a b c a c a b
b a b c b a b c a b c a a b c a b c a b c a c a b c

This time we have a match. In order to check if we have an occurrence of our pattern
in the text at this position, we go on comparing the next symbols. The next symbols b

84

7.2. Deciding Membership of CERTAIN(w)

and c match, then comes a mismatch:

a b c a b c a c a b
b a b c b a b c a b c a a b c a b c a b c a c a b c

The fourth symbol of the pattern does not match the text but the three first ones
matched the text, so we know that the last four considered symbols of the text are abcx
with x 6= a. As our pattern does not start with something that can match abcx with
x 6= a, we can shift the window four positions to the right. This leads to the following
situation, with a mismatch on the eighth symbol of the pattern.

a b c a b c a c a b
b a b c b a b c a b c a a b c a b c a b c a c a b c

The last eight symbols were abcabcax with x 6= c. This time, there exists a prefix of w
that is a proper suffix of abcabcax with x 6= c: abcab. This allows us to shift the window
three positions to the right.

a b c a b c a c a b
b a b c b a b c a b c a a b c a b c a b c a c a b c

Again, there is a mismatch. We move the pattern four places to the right. This new
position produces a match. We continue the comparisons until we reach a position with
a mismatch, on the eighth symbol of the pattern:

a b c a b c a c a b
b a b c b a b c a b c a a b c a b c a b c a c a b c

The window is moved three more positions to the right, leading to a match and an
full occurrence of the pattern.

a b c a b c a c a b
b a b c b a b c a b c a a b c a b c a b c a c a b c

/

We define an operator called sufpre(·, ·) which brings the idea of this shift function to
multiwords.

Definition 7.2 Let w be a word. If u is a word, then sufpre(u,w) denotes the maximal
suffix of u that is a prefix of w. For a set S of words, we define sufpre(S,w) = {sufpre(u,w) |
u ∈ S}. /

Example 7.2 For example, sufpre(abcd, cde) = cd and sufpre(ab, c) = ε. Let S =
{ba, aab}, then sufpre(S, ab) = {a, ab}. /

Let S be a set of words. We write bSc for the smallest set of words satisfying: bSc ⊆ S
and bSc contains a suffix of every word in S.

85

Chapter 7. The Problem CERTAIN(w)

Example 7.3 If S = {aa, ac, abc, bc, c}, then bSc = {c, aa} because aa is a suffix of aa
and c is a suffix of ac, abc, bc and c. /

Lemma 7.2 If sufpre(u,w) = q, then sufpre(u · a, w) = sufpre(q · a, w).

Proof. Assume sufpre(u,w) = q. We can assume a (possibly empty) word u′ such
that u = u′ · q, q is a prefix of w, and (Maximality:) for every suffix s 6= ε of u′, s · q is
not a prefix of w.

We need to show sufpre(u′ · q · a, w) = sufpre(q · a, w). Obviously, sufpre(q · a, w) is a
suffix of sufpre(u′ · q · a, w). Assume |sufpre(u′ · q · a, w)| > |sufpre(q · a, w)|. Then, there
exists a suffix s 6= ε of u′ such that s · q · a is a prefix of w, contradicting the above
Maximality condition.

We conclude by contradiction sufpre(u′ · q · a, w) = sufpre(q · a, w). 2

We now give Lemma 7.3 and then illustrate its construction by an example.

Lemma 7.3 Let M = A1 · · ·An be a multiword. Let w be a nonempty word. Let
〈S0, S1, . . . , Sn〉 be a sequence such that S0 = {ε} and for every i ∈ {1, . . . , n},

Si = bsufpre(Si−1 · Ai, w) \ {w}c.

Let m ∈ {1, 2, . . . , n}. For every word u ∈ words(A1 · · ·Am), Sm contains a suffix of
sufpre(u,w) or u w, i.e. w is a factor of u.

Proof. Proof by induction on m. For the induction basis, take m = 1 and let u =
b ∈ words(A1) such that b 1 w (i.e. w 6= b). Then, S1 contains a suffix of sufpre(ε · b, w) =
sufpre(b, w).

For the induction step, assume w.l.o.g. Sm = {p1, . . . , pk} and Am+1 = {a1, . . . , al}.
Then, Sm+1 = b{sufpre(p1 · a1, w), . . . , sufpre(pi · aj, w), . . . , sufpre(pk · al, w)}\{w}c. Let
u ∈ words(A1 · · ·Am+1). We can assume v ∈ words(A1 · · ·Am) and j ∈ {1, . . . , l} such that
u = v · aj. We need to show that Sm+1 contains a suffix of sufpre(v · aj, w) or v · aj w.
Two cases can occur:

• v w. Obviously, v · aj |= w.

• v 1 w. By the induction hypothesis, Sm contains a suffix of sufpre(v, w). We
can assume w.l.o.g. i ∈ {1, . . . , k} such that pi is a suffix of sufpre(v, w). We can
assume word q such that sufpre(v, w) = q · pi. By Lemma 7.2, sufpre(v · aj, w) =
sufpre(q · pi · aj, w). If sufpre(pi · aj, w) = w, then v ·aj w; otherwise Sm+1 contains
a suffix of sufpre(pi · aj, w). Clearly, every suffix of sufpre(pi · aj, w) is a suffix of
sufpre(v · aj, w).

This concludes the proof. 2

We show in Theorem 7.2 that the construction of Lemma 7.3 solves the membership
problem for CERTAIN(w) as follows: M ∈ CERTAIN(w) if and only if the last element of
〈S0, S1, . . . , Sn〉 is the empty set, with 〈S0, S1, . . . , Sn〉 as in the statement of Lemma 7.3.

86

7.2. Deciding Membership of CERTAIN(w)

S0 = {ε}
A1 = {a} S1 = {a}
A2 = {b} S2 = {ab}
A3 = {d} S3 = {abd}
A4 = {a} S4 = {abda}
A5 = {b} S5 = {abdab}
A6 = {c} S6 = {abdabc}
A7 = {a} S7 = {abdabca}
A8 = {a, b} S8 = {a}
A9 = {b} S9 = {ab}
A10 = {d} S10 = {abd}
A11 = {a} S11 = {abda}
A12 = {b} S12 = {abdab}
A13 = {c, d} S13 = {abdabc, abd}
A14 = {a} S14 = {abdabca, abda}
A15 = {b} S15 = {abdab}
A16 = {c} S16 = {abdabc}
A17 = {a} S17 = {abdabca}
A18 = {b} S18 = {}

Figure 7.2: Illustration of the construction in Lemma 7.3.

Example 7.4 The construction is illustrated in Figure 7.2 for the multiword

M = abdabca{a, b}bdab{c, d}abcab

and the word w = abdabcab. The set S8, for example, is computed from S7 · A8 =
{abdabcaa, w}, in which abdabcaa is replaced with its suffix a, and the word w is removed.

/

A rough time complexity analysis shows that the construction of 〈S0, . . . , Sn〉 in
Lemma 7.3 is in O(|M | · |Σ| · |w|3). The length of the sequence is equal to |M | + 1.
Each Si contains at most |w| prefixes of w, and each Ai contains at most |Σ| symbols.
Each Si is of the form bRic, where Ri is constructed by computing sufpre(p · a, w) for
every p ∈ Si−1 and a ∈ Ai. A naive computation of sufpre(u,w) with |u| ≤ |w| takes time
O(|w|2), and the computation of bRic is in O(|w|3).

Lemma 7.4 Let M = A1 · · ·An, w, and 〈S0, S1, . . . , Sn〉 be as in Lemma 7.3. Let i ∈
{1, . . . , n}. For every p ∈ Si, there exists u ∈ words(A1 · · ·Ai) such that u 1 w and
sufpre(u,w) = p.

Proof. Proof by induction on i. The basis of the induction, i = 1, is easy.
For the induction step, assume p ∈ Si+1. We can assume q ∈ Si and a ∈ Ai+1 such that

w 6= p = sufpre(q · a, w). By the induction hypothesis, there exists u ∈ words(A1 · · ·Ai)
such that u 1 w and sufpre(u,w) = q. Then, u ·a ∈ words(A1 · · ·Ai+1). It suffices to show
that u · a 1 w and sufpre(u · a, w) = p.

87

Chapter 7. The Problem CERTAIN(w)

• Assume u · a w. Then necessarily, w = q · a. But then p = w, a contradiction.
We conclude by contradiction that u · a 1 w.

• By Lemma 7.2, sufpre(u · a, w) = sufpre(q · a, w) = p.

This concludes the proof. 2

Theorem 7.2 Let M = A1 · · ·An, w, and 〈S0, S1, . . . , Sn〉 be as in Lemma 7.3. Then,
M ∈ CERTAIN(w) if and only if Sn = {}.

Proof. If part. Assume Sn = {}. Lemma 7.3 implies that M ∈ CERTAIN(w).
Only-if part. Assume Sn 6= {}. Lemma 7.4 implies that M 6∈ CERTAIN(w). 2

Intuitively, the construction of 〈S0, S1, . . . , Sn〉 for a word (or pattern) w and a mul-
tiword M can be thought of as executing the Knuth-Morris-Pratt pattern matching al-
gorithm simultaneously on every word in words(M). In particular, in case M is of the
form {a1}{a2} · · · {an}, i.e. every symbol is a singleton, then words(M) is the singleton
{a1a2 . . . an} and our algorithm executes in a way that is close to the Knuth-Morris-Pratt
algorithm.

88

. .CHAPTER 8
Aperiodicity of CERTAIN(w)

It is an open conjecture that CERTAIN(w) is first-order definable for every word w. Since
CERTAIN(w) is regular, we have that CERTAIN(w) is first-order definable if and only if it is
aperiodic. In this chapter, we study the aperiodicity of CERTAIN(w) and CERTAIN3(w).

We first show in Section 8.1 that CERTAIN3(w) is aperiodic for every word w if the al-
phabet contains at least 3 symbols. For alphabets of smaller size, the notions of multiwords
and partial words coincide and CERTAIN3(w) is aperiodic if and only if CERTAIN(w) is
aperiodic.

Section 8.2 introduces four families of words. Section 8.3 shows that every family
contains a word that does not belong to any of the three other families.

Sections 8.5 through 8.8 will show the aperiodicity of CERTAIN(w) for all words w in
each of these four classes. The aperiodicity proofs rely on an important tool, called the
Decomposition Lemma, which is proved in Section 8.4.

In Section 8.9, we study the size of those families for different alphabets and several
lengths of words. We show experimentally that the four families cover a large proportion
of words.

This chapter is an extended version of the following scientific publications:

(i) “On First-Order Query Rewriting for Incomplete Database Histories” in 16th In-
ternational Symposium on Temporal Representation and Reasoning, 2009, IEEE
Computer Society [Bruyère et al. 2009];

(ii) “An Aperiodicity Problem for Multiwords” in RAIRO – Theoretical Informatics and
Applications, 46, 2012 [Bruyère et al. 2012].

89

Chapter 8. Aperiodicity of CERTAIN(w)

8.1 The Case of CERTAIN3(w)

We show that if |Σ| ≥ 3, then CERTAIN3(w) is aperiodic for every word w. For alphabets
of smaller size, multiwords and partial words coincide and CERTAIN(w) is aperiodic if
and only if CERTAIN3(w) is aperiodic.

We begin with a lemma dealing with multiwords M containing a symbol with at least
three values.

Lemma 8.1 For every multiwordM , ifM ∈ CERTAIN(w) then, for every position i inM
such that |Mi| ≥ 3, we have M1 · · ·Mi−1 ∈ CERTAIN(w) or Mi+1 · · ·M|M | ∈ CERTAIN(w).

Proof. Let M be a multiword and w a word such that M ∈ CERTAIN(w). Let i be
a position in M such that |Mi| ≥ 3. Let a, b, c be three distinct symbols in Mi. Assume
M ∈ CERTAIN(w), M1 · · ·Mi−1 /∈ CERTAIN(w) and Mi+1 · · ·Mn /∈ CERTAIN(w).

Let m ∈ words(M1 · · ·Mi−1) and m′ ∈ words(Mi+1 · · ·Mn) such that neither m nor m′
contains w as a factor. By hypothesis, w is a factor of mam′,mbm′,mcm′. Therefore,
w.l.o.g., there exist words u, v, x, y such that w = uavbxcy and:

• u is a suffix of m and vbxcy is a prefix of m′;

• uav is a suffix of m and xcy is a prefix of m′; and

• uavbx is a suffix of m and y is a prefix of m′.

Graphically,
← m → ← m′ →
· · ·u a vbxcy · · ·

· · ·uav b xcy · · ·
· · ·uavbx c y · · ·

Let k = |u| + 1 + |x| + 1. If we start reading the first line in the array above, and
switch to the second one after m, we observe that the k-th symbol of w must be c. Let
j = |y| + 1 + |v| + 1. Then, if we start reading the third line from the end of w, and
switch to the second one after reading m′, we note that the j-th last symbol of w must
be a. Since k + j = |w| + 1, the k-th symbol equals the j-th last symbol, hence a = c, a
contradiction. This concludes the proof. 2

Since Σ contains at least 3 symbols, Lemma 8.1 can be applied for every position in a
partial word that is not a singleton.

Theorem 8.1 If |Σ| ≥ 3, then CERTAIN3(w) is aperiodic for each w ∈ Σ+.

Proof. Let Σ be an alphabet of at least 3 symbols. Let w be a word. Let M be a
multiword that is a partial word. By repeated applications of Lemma 8.1 on M , it is easy
to see that M ∈ CERTAIN3(w) if and only if 〈{w1}, {w2}, . . . , {w|w|}〉 is a factor of M . It
follows that M ∈ CERTAIN3(w) if and only if struct(M) satisfies the following first-order
formula.

90

8.2. Four Families of Words

∃i1∃i2 . . . ∃i|w|
(
S(i1, i2) ∧ · · · ∧ S(i|w|−1, i|w|) ∧ P{w1}(i1) ∧ P{w2}(i2) ∧ · · · ∧ P{w|w|}(i|w|)

)
.

We have that CERTAIN3(w) is first-order definable. The aperiodicity follows by The-
orem 7.1. 2

8.2 Four Families of Words

We show the aperiodicity of CERTAIN(w) for every word w in four large families of
words. This section introduces those families. We show in Section 8.3 that those fami-
lies are incomparable under set inclusion. Sections 8.5 through 8.8 show aperiodicity of
CERTAIN(w) for each family.

Family Frep.3 of Repeated (≥ 3) Words

The first family of words contains every word w such that w is at least three repetitions
of some word u.

Definition 8.1 We denote by Frep.3 the family of words of the form pukq where

1. u is a nonempty word,

2. k ≥ 3,

3. p is a proper suffix of u, and q is a proper prefix of u.

/

A word w ∈ Σ+ is primitive if w = vk implies k = 1. Every word in Frep.3 can be
viewed as a power (≥ 3) of a primitive word. This is Lemma 8.2

Lemma 8.2 Every word w ∈ Frep.3 is of the form w = vhv′ where

1. v is a nonempty primitive word,

2. h ≥ 3, and

3. v′ is a proper prefix of v.

Proof. We make use of the following sublemmas.

Sublemma 8.1 [Lothaire 1997] Every word is a power (≥ 1) of a primitive word.

Sublemma 8.2 Every word w ∈ Frep.3 is of the form w = vhv′ where v is a word, v′ is
a proper prefix of v and h ≥ 3.

91

Chapter 8. Aperiodicity of CERTAIN(w)

Proof. Let w = pukq following Definition 8.1. Let p′ be a word such that u = p′p.
We have w = p(p′p)kq = (pp′)kpq. Let v = pp′. We distinguish two cases.

• Case |q| < |p′|. Since q is a prefix of p′, pq is a prefix of pp′ = v. It follows w = vkv′

with v′ = pq.

• Case |q| > |p′|. It must be the case that pq = pp′v′ for some proper prefix v′ of p. It
follows w = vk+1v′.

a

Let w ∈ Frep.3. By Sublemma 8.2, w = vhv′ where v is a word, v′ is a proper prefix of
v and h ≥ 3. By Sublemma 8.1, v = uj for some u primitive, j ≥ 1. If j = 1, the desired
result follows. Assume j > 1. We distinguish two cases.

• Case |v′| < |u|. We have w = ujhv′ with v′ a proper prefix of u and jh ≥ h ≥ 3.

• Case |v′| ≥ |u|. It must be the case that v′ = unu′ for some n ≥ 1 and u′ a proper
prefix of u. Then, w = ujhunu′ = ujh+nu′ where jh+ n ≥ h ≥ 3.

This concludes the proof. 2

For example, the word b(abab)3a is of the form pukq according to Definition 8.1 and
is equal to (ba)7ε.

Family Fp.unb. of Powers of Unbordered Words

The second family is composed of powers of unbordered words.

Definition 8.2 A nonempty word u ∈ Σ+ is a border of a word w ∈ Σ∗ if w = uv = v′u
for some nonempty words v and v′. If a word has no border, it is unbordered, otherwise it
is bordered. /

For example, the word ababa has two borders: a and aba. The word aaab is unbordered.

Definition 8.3 We denote by Fp.unb. the family of words w such that, for some unbor-
dered word v and integer h ≥ 1, we have w = vh. /

The family Fp.unb. includes both bordered and unbordered words. For example, Fp.unb.

contains both the unbordered word ab and the bordered word (ab)2.

Family Fanch. of Anchored Words

The third family is composed of “anchored” words.

Definition 8.4 A word w is anchored if w = savat for some a ∈ Σ, and v, s, t ∈ Σ∗ such
that

1. v does not contain a;

92

8.2. Four Families of Words

a a b
a a b

a a b
a a b

a b a b
a b a b

Figure 8.1: Rims for aab and abab.

2. ava occurs only once in w: if w = s1avat1 = s2avat2 then s1 = s2;

3. if s 6= ε, no nonempty prefix of w is a suffix of ava; and

4. if t 6= ε, no nonempty suffix of w is a prefix of ava.

Such a word w is called anchored with ava as an anchor. We denote by Fanch. the family
of anchored words. /

For example, w = b2abab2 is an anchored word with aba as an anchor. Word aba is
also anchored. Intuitively, the anchor ava of an anchored word savat restrict the ways
the word can overlap with itself. The role of the anchor will be highlighted in the proof
of Theorem 8.4.

Family Funr. of Unrimmed Words

For the fourth family of words, we define a variant of the notion of border called a rim.
Intuitively, a rim of a word w is a nonempty prefix of w such that w has a suffix of the
same length and there is exactly one mismatch between the prefix and the suffix.

Definition 8.5 A nonempty word u ∈ Σ+ is a rim of a word w ∈ Σ∗ if w = uv = v′u′ for
some nonempty words v, v′ and u′ such that |u| = |u′| and u and u′ agree on all positions
except one. A word is unrimmed if it has no rim. We denote by Funr. the family of
unrimmed words. /

For example, word aab has two rims (a and aa) and word abab has one rim (a).
Figure 8.1 shows these rims, underlined for clarity. The family Funr. contains, for example,
the words aabaa and abca. Clearly, every unrimmed word agrees on its first and last
position, and hence is bordered.

Remember that a palindrome is a word that cannot be distinguished when read from
left to right and from right to left. The following lemma establishes that every palindrome
belongs to Funr.. Note that the converse is not true. For instance, aababbaa is unrimmed
but is not a palindrome.

Lemma 8.3 Every palindrome is unrimmed.

Proof. Let w be a palindrome. We show by induction on the length of w that w has
no rim.

• Base case w = a or w = aa. Obvious.

93

Chapter 8. Aperiodicity of CERTAIN(w)

w

w

p

p′

a a

a a

i

|w| − i+ 1

Figure 8.2: Situation in the proof of Lemma 8.3.

• Assume w = ava where v is a palindrome. By contradiction, assume w has a rim.
The alignment is depicted in Figure 8.2. In this figure, p is a rim for w, meaning
there exists exactly one mismatch between the rim p and its corresponding suffix p′.
Let i = |w| − |p′| be a position in w, in front of the first a. As w is a palindrome,
we have wi = w|w|−i−1. Two cases can occur:

– Suppose wi = a. By the induction hypothesis, we know v has no rim and it
must be the case that there is no mismatch between p and p′, a contradiction.

– Suppose wi = b. Then, p = aqb and p′ = bq′a for some suitable words q and q′.
But in that case, the number of mismatches between p and p′ is at least 2, a
contradiction.

We conclude by contradiction that w has no rim. 2

8.3 Comparisons of the Four Families

The following lemma states that anchored words are primitive words and that no anchored
word belongs to Frep.3.

Lemma 8.4

(1) Every anchored word is primitive.

(2) Frep.3 ∩ Fanch. = ∅.

Proof. (First item) Let w be a word such that w is anchored. Assume by contradic-
tion that w is not primitive. Then w = uh for some h > 1. But in this case, the anchor ava
cannot appear in u by condition (2) of Definition 8.4, so there exists i, 0 ≤ i ≤ |v|, such
that av1 · · · vi is a suffix of u and vi+1 · · · v|v|a, a prefix of u: this contradicts conditions
(3) and (4) of Definition 8.4.

(Second item) Anchored words do not belong to Frep.3: if w = uhu′ with u primitive,
h ≥ 3 and u′ a proper prefix of u (see Lemma 8.2), then an anchor ava cannot appear

94

8.4. Decomposition Lemma

in u nor u2 by condition (2) of Definition 8.4, and can neither appear in uu′ (it would
appear in u2). Assume ava appears in u3 and not in u2. Then, |u| < |ava| and it must
be the case that v contains a, which contradicts condition (1). 2

The four families of words are incomparable under set inclusion: every family contains
a word that belongs to no other family. For instance, abaabaabaa is only in Frep.3, aaab
is only in Fp.unb., aaabba only in Fanch., and abca only in Funr.. Finally, word aaba does
not belong to any of those families.

Starting from our four languages, we can construct 24 = 16 languages by means of
intersect and complement. Table 8.1 lists these 16 languages. For example, the second
line corresponds to Frep.3 ∩ Fp.unb. ∩ Fanch. ∩ Funr.. The following proposition shows that
Frep.3∩Fp.unb.∩Fanch.∩Funr. only contains words of length equal to 1 (line 6 in Table 8.1).

Proposition 8.1 Let w be a word. If w ∈ Frep.3 ∩Fp.unb. ∩Fanch. ∩Funr., then w = a for
some a ∈ Σ.

Proof. Let w ∈ Fp.unb., this is, w = vh where v is unbordered and h ≥ 1. We
distinguish two cases:

• Case |v| ≥ 2. As v is unbordered, we can assume w.l.o.g. that v starts with a ∈ Σ
and ends with b ∈ Σ. This implies that v and w have a rim, a contradiction.

• Case |v| = 1. If h ≥ 3, we have w ∈ Frep.3, a contradiction. If h = 2, we have
w = aa for some a ∈ Σ and w is anchored, a contradiction. If h = 1, the desired
result follows.

We conclude that w = a for some a ∈ Σ. 2

8.4 Decomposition Lemma

Our main aperiodicity results are stated and proven in the following sections. In each
case, aperiodicity is established by using Lemma 7.1, ad absurdum, in combination with a
decomposition lemma. This section is devoted to this lemma which is our main technical
tool.

Lemma 8.5 (Decomposition Lemma) Let w ∈ Σ+ be a word, and k ≥ 1. Let
P,U,Q ∈ Σ̂∗ be multiwords such that P Uk Q |=certain w. Let p ∈ words(P), q ∈ words(Q)
and u ∈ words(Uk+1). If m = puq does not contain w as a factor, then for every position
π in m such that |P | ≤ π ≤ |PUk|, there exist x, y ∈ Σ+ such that

1. w = xy;

2. x is a nonempty suffix of m1 · · ·mπ; and

3. y is a nonempty prefix of mπ+|U |+1 · · ·m|m|.

95

Chapter 8. Aperiodicity of CERTAIN(w)

Frep.3 Fp.unb. Fanch. Funr. Word in the language
aaba

∈ aabaa
∈ aaabba
∈ ∈ aababaa

∈ aaab
∈ ∈ a
∈ ∈ ababb
∈ ∈ ∈ aa

∈ (aba)3a
∈ ∈ (ab)3a
∈ ∈ empty by Lemma 8.4
∈ ∈ ∈ empty by Lemma 8.4
∈ ∈ (ab)3

∈ ∈ ∈ a3

∈ ∈ ∈ empty by Lemma 8.4
∈ ∈ ∈ ∈ empty by Lemma 8.4

Table 8.1: Summary of the membership to different families of words.

In other words, this lemma states that, for every position π of m (under the hypothe-
ses), there exist a prefix x of w ending at position π and a suffix y of w beginning at
position π + |U |+ 1, such that xy = w. This situation is depicted in Figure 8.3.

The pair (x, y) mentioned in Lemma 8.5 is called an `-decomposition of w at position
π (or simply an `-decomposition at position π, if w is clear from the context), and also
an r-decomposition of w at position π + |U |+ 1.1 A position π is left-maximal if mπ+1 6=
mπ+1+|U |. Any `-decomposition (x, y) at a left-maximal position is called maximal. A
position π is right-maximal if mπ−1 6= mπ−1−|U |. Any r -decomposition (x, y) at a right-
maximal position is called maximal. Finally, a witness is a maximal `-decomposition of
w at a left-maximal position, or a maximal r -decomposition of w at a right-maximal
position. The rationale for calling decompositions maximal comes from the following
obvious observations:

• If (x, y) is an `-decomposition of w at a left-maximal position π, then xmπ+1 is not
a prefix of w. Intuitively, x cannot be extended to the right.

• If (x, y) is an r -decomposition of w at a right-maximal position π, then mπ−1y is
not a suffix of w. Intuitively, y cannot be extended to the left.

Consider for instance the case w = abab. Figure 8.4 shows two `-decompositions
(a, bab) and (aba, b) at a position π of a word m. Both `-decompositions are maximal,
since none of them can be extended to position π+ 1. Hence π is a left-maximal position,
with witnesses (a, bab) and (aba, b).

1Notice that in the `-decomposition, x ends at position π, and in the r -decomposition, y begins at
position π + |U |+ 1 (See Figure 8.3).

96

8.4. Decomposition Lemma

m
x y

π π+|U |+1|U |

Figure 8.3: `-decomposition (x, y) of w at position π.

m

π π + |U |+ 1
|U |

aba

a

a

bab

b

Figure 8.4: Two maximal `-decompositions.

97

Chapter 8. Aperiodicity of CERTAIN(w)

Proof.[Proof of Lemma 8.5] Let π be a position in m such that |P | ≤ π ≤ |PUk|.
We can assume m = pv1uv2q with |pv1| = π and |u| = |U |. Let m′ = pv1v2q. From
PUkQ |=certain w and m′ ∈ words(PUkQ), we have m′ w. The situation is:

m =
1w︷ ︸︸ ︷

pv1uv2q m′ =
1w︷︸︸︷
pv1

1w︷︸︸︷
v2q︸ ︷︷ ︸

w

But m 1 w implies pv1 1 w and v2q 1 w, so pv1 ends with some nonempty prefix x of w,
and v2q starts with some nonempty suffix y of w, and w = xy. 2

The following lemma shows that every `-decomposition can be extended to the right,
until a maximal `-decomposition is reached.

Lemma 8.6 Let w, k, P, U,Q,m and π be defined as in Lemma 8.5. Let (x, y) be an `-
decomposition of w at position π. There exists a left-maximal position π + j such that
0 ≤ j < |y| and with a witness (x′, y′) where x′ = xmπ+1 · · ·mπ+j.

Symmetrically, if (x, y) is an r-decomposition at position π, then there exists a right-
maximal position π − j such that 0 ≤ j < |x| and with a witness (x′, y′) where y′ =
mπ−j · · ·mπ−1y.

Proof. Suppose for contradiction that for all j satisfying 0 ≤ j < |y|, the position π+ j
is not left-maximal. We show that under these conditions, w is a factor of m, which is
impossible. Let a be the first symbol of y, and y′ be such that y = ay′. As π is not
left-maximal, x can be extended to x′ = xa, and (x′, y′) is an `-decomposition of w at
position π + 1.

We can repeat this step from π + 1 to π + 2, and so on, |y| times. Thus, x can be
extended symbol by symbol, until w appears as factor. 2

Remark 8.1 In the remainder, we will show the aperiodicity of CERTAIN(w) ad absur-
dum. We will apply Lemma 8.5 at several positions π “far enough from extremities” in
some possible word m, without explicitly checking the condition |P | ≤ π ≤ |PUk|. In
fact, all our proofs are local, in that they work on a region of the word m, which length
only depends on |w| and |U |. Let us check that we can always find such a region, where
Lemma 8.5 can be applied.

We can define such a region as an interval between a leftmost position π1 and a right-
most position π2. As mentioned above, the width of the region only depends on |w| and
|U |, that is π2 = π1 + i|w| + j|U | for some i, j ≥ 0 depending on the proof we consider.
For each proof, i and j are fixed, and for every w ∈ Σ+, we have to find k such that for
all P,U,Q, there is a position π1 for which |P | ≤ π1 and π1 + i · |w| + j · |U | ≤ |PUk|.
This is equivalent to |P | ≤ π1 ≤ |P |+ (k − j) · |U | − i · |w|. As |U | ≥ 1 (the case |U | = 0
being trivial), it is sufficient that |P | ≤ π1 ≤ |P |+ (k − j)− i · |w|. Lemma 8.5 applies if
k ≥ j + i · |w|.

98

8.5. Family Frep.3 of Repeated (≥ 3) Words

v
a

|v| − 1

x

r s

Figure 8.5: Two v-factorizations.

v a

bs r

r r r r′

r s

Figure 8.6: x has period r.

8.5 Family Frep.3 of Repeated (≥ 3) Words

We show in Theorem 8.2 that CERTAIN(w) is aperiodic for every word w in Frep.3 (see
Definition 8.1). The proof is quite long and technical. We first introduce some terminol-
ogy [Lothaire 1997] and some helpful lemmas.

A word w is a conjugate of a word w′ if w = uv and w′ = vu for some nonempty words
u, v. It is known that all conjugates of a primitive word are primitive. We say that a
word x has period r if r 6= ε and x = rir′ with i ≥ 1 and r′ is a proper prefix of r. If v is
a primitive word, a v-factorization of a word x is a factorization of the form x = r · vi · s
where i ≥ 0, r is a proper suffix of v and s is a proper prefix of v. A word x can have
several v-factorizations. The following lemma shows that the v-factorization is unique
when x is large enough.

Lemma 8.7 Let v be a primitive word. If x has a v-factorization, and |x| ≥ |v|− 1, then
x has only one v-factorization.

Proof. We first consider the case where |x| = |v| − 1. Assume for contradiction that
x has two distinct v-factorizations. We can assume that these two v-factorizations are rs
and εx (where ε is the empty word). This can be assumed w.l.o.g. by considering the
suitable conjugate of v.

Hence the situation looks like in Figure 8.5, with r a proper nonempty suffix of v, s
a proper prefix of v, and xa = v where a is a symbol. In particular, s is prefix of x. Let
b be the symbol such that sb is a proper prefix of v. We will show in the following that

99

Chapter 8. Aperiodicity of CERTAIN(w)

≥ |v| − 1

x
y

Figure 8.7: Synchronization of words x and y.

x has period r and also period sb. Then, as |x| = |r| + |sb| − 1, we can apply Fine and
Wilf’s theorem [Lothaire 1997; Fine and Wilf 1965], to obtain that r and sb are powers
of the same word. Hence v = (sb)r is not primitive, which is a contradiction.

Let us prove that x has period r. Figure 8.6 illustrates the situation. As x = rs, it is
sufficient to prove that either s is a proper prefix of r, or s has period r. If |s| < |r|, then
because of the two v-factorizations, s is a proper prefix of r. If |s| ≥ |r|, r is now a prefix
of s. Let rj be the prefix of s, with j ≥ 1 being maximal. The word rj+1 is a prefix of rs.
But s is also a prefix of rs (consider the two v-factorizations). Hence, either s has period
r, or rj+1 is a prefix of s. The latter is impossible by definition of j, so s has period r.

Now we prove that sb is a period of x. The proof follows the same line. As v = (sb)r,
we only have to show that either r is a proper prefix of sb, or r has period sb. Then we
just have to consider two cases |r| < |sb| and |r| ≥ |sb| as we did before.

We now consider the case where |x| ≥ |v| + 1. Note that if x has two distinct v-
factorizations, then x has a factor x′ of length |x| − 1 with two distinct v-factorizations.
This is impossible according to the preceding arguments. This concludes the proof. 2

Let v be a primitive word. If two words x and y have a v-factorization, and have a com-
mon factor of length |v| − 1, then the preceding lemma implies that their v-factorizations
are identical on this common factor, as depicted in Figure 8.7. In this case, we say that
x and y are synchronized (according to v).

We now show that if w is in Frep.3, then CERTAIN(w) is aperiodic. To improve read-
ability, some parts of the proof are stated as sublemmas.

Theorem 8.2 For every word w ∈ Frep.3, CERTAIN(w) is aperiodic.

Proof. Let w ∈ Frep.3. According to Lemma 8.2, w is of the form w = vhv′ where v
is primitive, h ≥ 3, and v′ is a proper prefix of v. We prove Theorem 8.2 by contradiction,
using Lemma 7.1.

Let k be sufficiently large (see Remark 8.1), and let P,U,Q ∈ Σ̂∗ be multiwords such
that PUkQ |=certain w. Let p ∈ words(P), q ∈ words(Q) and u ∈ words(Uk+1). Assume
for contradiction that m = puq does not contain w as a factor. Therefore |U | > 0 and
Lemma 8.5 can be applied. We start the proof with two sublemmas based on these
hypotheses. The first sublemma can be paraphrased as follows. Consider a left-maximal
position π with witness (x, y). Then, consider any `-decomposition (x′, y′) at the next
position π + 1. The sublemma implies that x and x′ cannot overlap much; in particular,
the length of each common factor must be less than |v| − 1.

100

8.5. Family Frep.3 of Repeated (≥ 3) Words

m

π |U |x y

π+1
|U |

x′
y′

Figure 8.8: Decompositions in the proof of Sublemma 8.3, case |x| < |v|.

Sublemma 8.3 Let π be a left-maximal position with witness (x, y). Let (x′, y′) be an
`-decomposition at position π + 1. Then for all common factors f of x and x′ (resp. of y
and y′), |f | < |v| − 1.

Proof. The words x and x′ are proper prefixes of w, while y and y′ are proper suffixes
of w, so these four words have a v-factorization. Assume that x and x′ share a common
factor f with |f | ≥ |v| − 1. Then, by Lemma 8.7, they are synchronized. Hence x can
be extended to a larger prefix of w (using x′), which contradicts the premise that π is
left-maximal. Assume now, that y and y′ have a common factor f with |f | ≥ |v| − 1. By
Lemma 8.7, they are synchronized, as illustrated in Figure 8.8. The shift of |U | is the
same in both decompositions, so x can be extended to a longer prefix of w by one symbol,
which is impossible. a

The second sublemma shows that a maximal `-decomposition (x, y) is such that x is
large compared to y. In particular, the length of x is always more than twice the length
of y. Symmetrically for a maximal r -decomposition.

Sublemma 8.4 If π is a left-maximal position with witness (x, y), then |x| > |w| − |v|
and |y| < |v|. Symmetrically, if π is right-maximal with witness (x, y), then |x| < |v| and
|y| > |w| − |v|.

Proof. We only prove the first part of the sublemma (the proof of the second part is
symmetrical). Suppose for contradiction that |x| ≤ |w| − |v|. We distinguish two cases:
|v| ≤ |x| and |x| < |v|.

• Case |v| ≤ |x| ≤ |w| − |v|. We have |y| ≥ |v|, because w = xy. Let (x′, y′) be
an `-decomposition at position π + 1. As w = x′y′ and |w| ≥ 3|v|, x, x′ or y, y′
have a common factor f such that |f | ≥ |v| − 1. This is impossible according to
Sublemma 8.3.

• Case |x| < |v|. Now we have |y| > |w| − |v|. As w = vhv′ with h ≥ 3, we get |y| >
2|v|. Let us consider an `-decomposition (x′, y′) at position π + 1. Sublemma 8.3
tells us that |y′| < |v|, and thus |x′| > |w| − |v|. According to Lemma 8.6 applied to
x′ at position π+ 1, there exists a left-maximal position π+ j such that 1 ≤ j ≤ |y′|
with witness (x′′, y′′), x′ being a prefix of x′′. Now consider an `-decomposition
(x̂, ŷ) at position π + j + 1. The situation is illustrated in Figure 8.9. Recall that
|x′| > |w| − |v| and |y| > |w| − |v|. As |x′′| ≥ |x′|, we have |x′′| > 2|v|. Applying

101

Chapter 8. Aperiodicity of CERTAIN(w)

m

π π+|U |

x y

π+j
π+1

x′′ y′

y′′x′

π+j+1

x̂ ŷ

Figure 8.9: Decompositions in the proof of Sublemma 8.4.

Sublemma 8.3 at position π + j, we get |x̂| < |v| and thus |ŷ| > |w| − |v|. We also
have j + 1 ≤ |y′|+ 1 ≤ |v| by Lemma 8.6. So ŷ and y have a common factor f with
|f | > |w| − 2|v| > |v|. By Lemma 8.7, they are synchronized.

Again, two cases can occur:

– y and ŷ end at the same position. In this case, x and x̂ have x as common
prefix. Hence, x̂ extends x to the right, yielding a larger prefix of w. This
contradicts the premise that π is left-maximal.

– y and ŷ do not end at the same position. As |x̂| < |v|, we know that ŷ ends
after y. Moreover, y and ŷ are synchronized, so ŷ is obtained from y by a
shift of |v|i positions in m, for some i ≥ 1. Let ṽ be the conjugate of v ending
with v′ (recall that w = vhv′). The word yṽ appears as factor of m. However,
|x| < |v|, so |yṽ| > |w|, and thus w is a factor of m. This is impossible.

This concludes the proof of Sublemma 8.4. a

We use the preceding lemmas and sublemmas to complete the proof of Theorem 8.2.
By Lemma 8.6, we can assume a left-maximal position π with witness (x, y). By Sub-
lemma 8.4, we have |x| > |w| − |v| and |y| < |v|. Let (x′, y′) be an `-decomposition at
position π + 1. According to Sublemma 8.3, |x′| < |v|. Using Lemma 8.6, we can extend
x′ until a left-maximal position π′ with witness (x′′, y′′), where x′ is a prefix of x′′. We
know by Sublemma 8.4 that |x′′| > |w| − |v| and |y′′| < |v|.

In the sequel, we consider the positions π, π − |v|, α, β and γ, as illustrated in
Figure 8.10:

• α is the position where x′ starts, i.e. x′ = mα · · ·mπ+1;

• β = α + |v|;

• γ = π − |v| + |y| + 1 is the position of m corresponding to the (|w|−|v| + 1)-th
position in x.

102

8.5. Family Frep.3 of Repeated (≥ 3) Words

m

π

π−|v| π′

π+1

α βγ

π+|U |

v

x

x′′x′

y

y′

Figure 8.10: Decompositions in the proof of Theorem 8.2, represented in terms of v.

· · · · · ·

ππ−|v| β

γ

x
x′′

ŷy

Figure 8.11: Case |ŷ| < β − γ.

As 1 ≤ |y| < |v|, we know that:

π − |v|+ 2 ≤ γ < π + 1.

From the definition of α and the fact that |x′| < |v|, we have:

π − |v|+ 2 < α ≤ π + 1.

We distinguish two cases, and show that both of them lead to a contradiction. Let
(x̂, ŷ) be an r -decomposition at position γ.

• Case |ŷ| < β − γ (i.e. ŷ ends before position β − 1).

Then γ is not a right-maximal position. Indeed, |ŷ| < β−γ < 2|v| because β = α+|v|
and α − γ < |v|. However, according to Sublemma 8.4, if γ was a right-maximal
position, we would have |ŷ| > |w| − |v| ≥ 2|v|. Hence, by Lemma 8.6, there exists a
right-maximal position δ < γ with witness (x, y) such that ŷ is a suffix of y. This
configuration is illustrated in Figure 8.11.

According to Sublemma 8.4, |y| > |w|−|v|. Let us analyze the length of the common
factor f of x and y. We cannot have |f | < |v| − 1, because in that case y would
start after position π − |v| + 1. As y ends before position β − 1, this would imply
that |y| < 2|v|, a contradiction with |y| > |w| − |v|.

103

Chapter 8. Aperiodicity of CERTAIN(w)

· · · · · ·

ππ−|v|

α

β

γ

x
x′′

ŷfirst step
second step

Figure 8.12: Case |ŷ| ≥ β − γ.

So Lemma 8.7 can be applied, showing that x and y are synchronized. As y is a
suffix of w, and considering the definition of γ, y ends after π and allows to extend
x, in contradiction with the definition of π.

• Case |ŷ| ≥ β − γ (i.e. ŷ ends at or after position β − 1).

We will show that the word mπ−|v|+2 · · ·mπ has two distinct v-factorizations, which
constitutes a contradiction with Lemma 8.7 (as its length is |v| − 1). The first v-
factorization comes from x. The second one will be built by extending x′ to the left.
These two v-factorizations are distinct because π is a left-maximal position with
witness (x, y), so x cannot be extended. In the remainder of the proof, we show how
to build the second v-factorization from x′.

We proceed in two steps, as described in Figure 8.12:

– First step. Let z be the common factor between y and y′ (we have |z| = |y|−1).
From the definition of γ, z appears between positions π−|v|+2 and γ−1 (with
its two v-factorizations as suffix of y and prefix of y′): mπ−|v|+2 · · ·mγ−1 = z.

– Second step. In order to complete the second v-factorization (from position γ
to position π), we have to get the suffix of v between positions γ and α − 1.
If α ≤ γ, the second v-factorization has been completed during the first step.
So let us consider that γ < α. As |ŷ| ≥ β − γ (this corresponds to the second
case), x′′ and ŷ have a common factor of length greater than |v| − 1, so by
Lemma 8.7 they are synchronized. Hence ŷ enables to extend x′′ to the left
until γ, and we obtain the second v-factorization.

This concludes the proof of Theorem 8.2. 2

8.6 Family Fp.unb. of Powers of Unbordered Words

We show that CERTAIN(w) is aperiodic if w belongs to Fp.unb., the family of powers of
unbordered words (see Definition 8.3).

Theorem 8.3 For every word w ∈ Fp.unb., CERTAIN(w) is aperiodic.

104

8.6. Family Fp.unb. of Powers of Unbordered Words

m

π1

π2 π3

x3

r2

x1

Figure 8.13: Situation in the proof of Sublemma 8.5.

Proof. Let w = vh with v an unbordered word and h ≥ 1. The proof is by contra-
diction, using Lemma 7.1. Let k be sufficiently large (see Remark 8.1). Let P , U , Q be
multiwords such that PUkQ |=certain w. Assume towards a contradiction that m = puq
with p ∈ words(P), u ∈ words(Uk+1), and q ∈ words(Q) such that m 1 w. Hence the
Decomposition Lemma can be applied.

Sublemma 8.5 There exist a position π in m and an `-decomposition (x, y) at position
π such that |x| ≥ |v|.

Proof. Assume for contradiction that for every position π in m and for every `-
decomposition (x, y) at π, |x| < |v|. For each position π1, far enough from the borders of
m (see Remark 8.1), there exists an `-decomposition (x1, y1) at position π1 by Lemma 8.5.
We choose such position π1 and `-decomposition (x1, y1) with x1 of maximal length. By
our contradiction hypothesis, |x1| < |v|. Let (x2, y2) be an r -decomposition at position
π2 = π1 − |x1| + 1, and consider r2 such that y2 ∈ r2v

∗ with 0 < |r2| ≤ |v|. Thus, r2 is a
(not necessarily proper) nonempty suffix of v. The situation is depicted in Figure 8.13. As
v is unbordered, it must be the case that |r2| > |x1|. Let (x3, y3) be an `-decomposition
at position π3 = π2 + |r2| − 1. By our (contradiction) hypothesis, |x3| < |v|. As v is
unbordered, it must be the case that |x3| > |r2|. As |r2| > |x1|, we have a contradiction
with the choice of `-decomposition (x1, y1) at position π1 with x1 of maximal length. a

By Sublemma 8.5, we can assume a position π1 in m and a prefix x1 of w that ends
at position π1, and such that |x1| ≥ |v|. If w = vh with h = 1, it follows that x1 = w
and thus m w which is impossible. When h ≥ 2, we show in the next paragraph that
x1mπ1+1 is a prefix of w. Then, by repeated application of the same reasoning, we obtain
m w, again a contradiction.

We can assume j ≥ 1 such that x1 = vjr1 with 0 ≤ |r1| < |v|. Let (x2, y2) be an
r -decomposition at position π2 = π1 − |r1| + 1 where y2 ∈ r2v

∗ for some r2 satisfying
0 < |r2| ≤ |v|. Since v is unbordered it must be the case that |r2| > |r1|. We distinguish
two cases:

• Case |r2| = |v|. Obviously, x1mπ1+1 is a prefix of w.

• Case |r2| < |v|. Let (x3, y3) be an `-decomposition at position π3 = π2 + |r2| − 1.
Let x3 ∈ v∗r3 for some r3 satisfying 0 < |r3| ≤ |v|. As v is unbordered, |r3| > |r2|. It
follows that the word p = mπ3−|r3|+1 · · ·mπ2−1 must be a nonempty proper prefix of
v (see Figure 8.14). Since v is unbordered, p cannot be a suffix of v. Since x1 = vjr1

105

Chapter 8. Aperiodicity of CERTAIN(w)

m

π3 − |r3|+ 1
π2

π1

π3r3

p r2

r1

Figure 8.14: Situation in the proof of Theorem 8.3.

m

π

π + 1

x′
x y

y′

Figure 8.15: Case j ≥ 1 in the proof of Sublemma 8.6.

is a suffix of m1 · · ·mπ1 with j ≥ 1, we have that vj is a suffix of m1 · · ·mπ2−1. Then,
p is a suffix of v, a contradiction. We conclude that this case cannot occur.

This concludes the proof.
2

8.7 Family Fanch. of Anchored Words

The third family of words is the family Fanch. of anchored words as defined in Definition 8.4.

Theorem 8.4 For every word w ∈ Fanch., CERTAIN(w) is aperiodic.

Proof. Let w = savat be an anchored word, as in Definition 8.4. The proof is again
by contradiction, using Lemma 7.1. Let k be large enough (see Remark 8.1) and let P,U,Q
be multiwords such that PUkQ |=certain w. Assume that there exist p ∈ words(P), u ∈
words(Uk+1), q ∈ words(Q) such that m = puq does not contain w as a factor. Therefore
Lemma 8.5 can be applied.

Sublemma 8.6 There exist a position π in m and an `-decomposition (x, y) at position
π such that either x ava or y ava.

106

8.8. Family Funr. of Unrimmed Words

m

π′

π

s ava

ava t

x

y′

Figure 8.16: Case x′ ava in the proof of Theorem 8.4.

Proof. Assume the contrary, i.e. for all π (far enough from the borders of w, see
Remark 8.1) and all `-decompositions (x, y) at position π, we have x 1 ava and y 1 ava.
By Lemma 8.6, we can assume position π is left-maximal and its witness (x, y) is such that
x = sav1 · · · vi and y = vi+1 · · · vnat where n = |v|. Again, by our assumption, there is an
`-decomposition (x′, y′) at position π + 1 such that x′ = sav1 · · · vj and y′ = vj+1 · · · vnat
for some j. If j ≥ 1, one of sav1 · · · vi or sav1 · · · vj−1 must be a suffix of the other (see
x, x′ on Figure 8.15).

We recall that v does not contain the symbol a (by condition (1) of Definition 8.4).
It follows that these two words are equal, and therefore (x, y) is not a maximal `-
decomposition, a contradiction. So j = 0. Assume i < |v|. Considering y, the (|v| − i)-th
symbol of y′ must be the symbol a, a contradiction as y′ = vat.

Thus, j = 0, i = |v| and x = sav, y = at, x′ = sa and y′ = vat. Since mπ+1 = a =
mπ+|U |+1, it follows that the `-decomposition (x, y) is not maximal, a contradiction. a

By Sublemma 8.6, there exist a position π in m and an `-decomposition (x, y) at po-
sition π satisfying x ava or y ava. Suppose x ava (the other case is symmetrical).
By condition (2) of Definition 8.4, sava is prefix of x. It follows that t 6= ε, otherwise
m w which is impossible. We define π′ = π − |x| + |s| + 1 (see Figure 8.16). By
Lemma 8.5, there is an r -decomposition (x′, y′) at position π′. By construction, either
ava is a proper prefix of y′ or y′ is prefix of ava. Condition (4) implies that only the first
case can happen. By condition (2), we must have y′ = avat. Recall that sava is prefix of
x. It follows that w is factor of m (see Figure 8.16), a contradiction. 2

8.8 Family Funr. of Unrimmed Words

The last family of words w for which we show the aperiodicity of CERTAIN(w) is the
family Funr. of unrimmed words (see Definition 8.5).

We first show that if w is unrimmed, then for every multiword M , if M contains
a position that is not a singleton, then this position is not relevant to state that M ∈
CERTAIN(w). The statement of Lemma 8.8 resembles the one of Lemma 8.1.

Lemma 8.8 Let w be an unrimmed word. For every multiword M , if M ∈ CERTAIN(w)
then, for every position i in M such that |Mi| ≥ 2, we have M1 · · ·Mi−1 ∈ CERTAIN(w)

107

Chapter 8. Aperiodicity of CERTAIN(w)

or Mi+1 · · ·M|M | ∈ CERTAIN(w).

Proof. Let w be an unrimmed word. Assume by contradiction there exist a mul-
tiword M ∈ CERTAIN(w) and a position i ∈ {1, . . . , |M |} such that |Mi| ≥ 2, M ∈
CERTAIN(w) but M1 · · ·Mi−1 /∈ CERTAIN(w) and Mi+1 · · ·Mn /∈ CERTAIN(w). We
can assume w.l.o.g. words mleft and mright such that mleft ∈ words(M1 · · ·Mi−1) and
mright ∈ words(Mi+1 · · ·M|M |) such that neither mleft nor mright contains w as a factor.
Since w is a factor of mleft · a1 ·mright and a factor of mleft · a2 ·mright with a1 6= a2, it must
be the case that w has a rim, a contradiction. 2

The main result follows.

Theorem 8.5 For every word w ∈ Funr., CERTAIN(w) is aperiodic.

Proof. Let w be an unrimmed word. The proof is similar to the one of Theorem 8.1
and relies on Lemma 8.8. Using the same arguments, we have that CERTAIN(w) can be
expressed by the following first-order sentence:

∃i1∃i2 . . . ∃i|w|
(
S(i1, i2) ∧ . . . S(i|w|−1, i|w|) ∧ P{w1}(i1) ∧ P{w2}(i2) ∧ · · · ∧ P{w|w|}(i|w|)

)
.

It follows by Theorem 7.1 that CERTAIN(w) is aperiodic. 2

The first-order sentence in the proof of Theorem 8.5 explains the first-order sentence
of Example 6.5:

Example 8.1 Let w = aba be the word of Example 6.5, an unrimmed word. A multiword
M belongs to CERTAIN(w) if struct(M) satisfies the following formula.

∃i∃j∃k
(
S(i, j) ∧ S(j, k) ∧ P{a}(i) ∧ P{b}(j) ∧ P{a}(k)

)
.

/

8.9 Coverage of the Families of Words

Aperiodicity was easy to show for partial words defined on an alphabet with at least
three symbols. Somewhat surprisingly, aperiodicity proofs turn out to be much harder
for multiwords where uncertain positions can contain exactly two symbols.

It is still an open conjecture that CERTAIN(w) is aperiodic (and hence first-order
definable) for any word w. This conjecture has been experimentally verified on a very
large set of (about 80, 000, 000) words for different sizes of alphabet, including all words
of length less than or equal to 12 over Σ = {a, b, c}.

Those experiments were conducted by means of a set of tools we developed. Those
tools are publicly available on the Launchpad platform2. The tools use AMoRE3 to check
aperiodicity.

2See Multiwords Project at https://launchpad.net/multiwords/.
3AMoRE (for computing Automata, MOnoids, and Regular Expressions) is a tool developed by Chris-

tian Albrechts at the University of Kiel. The tool can be found at http://amore.sourceforge.net/.

108

https://launchpad.net/multiwords/
http://amore.sourceforge.net/

8.9. Coverage of the Families of Words

Using different techniques, we showed in this chapter the aperiodicity of CERTAIN(w)
for a large number of words w. Our proofs strongly rely on some synchronization proper-
ties of such words, and these techniques do not extend to arbitrary words.

We conducted experiments to study the size of each of those families for several fixed
lengths of words and several fixed sizes of the alphabet. The situation strongly differs
when we consider an alphabet of size two and alphabets of larger sizes.

Figure 8.17 shows the coverage of each of the four families of words for words of length
1 to 16 over an alphabet of two symbols while Figure 8.18 shows the results for an alphabet
of three symbols. On those two figures, the curve labelled “others” indicates the words
that do not belong to any of the four families. Note that there exist words that belong
to more than one family and thus they can be counted more than once.

The following observations can be made.

1. The family Fp.unb. of powers of unbordered words is a large family. Over an alphabet
of two symbols, it is the largest considered family of words. Over an alphabet of
three symbols, for 5 ≤ |w| ≤ 14, it is the second one and still contains more than
one word out of two.

2. There is a large proportion of words over an alphabet of three symbols that are
anchored. For instance, more than 90% of the words of length 14 over {a, b, c} are
anchored.

3. The family Frep.3 is the smallest family, either in the case of an alphabet of two
symbols or of three symbols.

4. Over an alphabet of two symbols, the proportion of words that do not belong to
one of the four families increases with the length of the words.

5. The situation completely differs for an alphabet of three symbols: the proportion
of words outside our families decreases when the length of the considered words
increases. For words of length ≥ 11, the proportion is less than or equal to 10%.

We give some concrete figures. Let Σ = {a, b, c} and let L contain all words w over Σ
such that 1 ≤ L ≤ 14. We have the following.

Language Language size Percentage
L ∩ Frep.3 450 0.006%
L ∩ Fp.unb. 3, 999, 906 55.8%
L ∩ Fanch. 6, 445, 509 89.8%
L ∩ Funr. 747, 654 10.4%
L ∩ others 464, 754 6.5%

L 7, 174, 452 100%

It turns out that many words are anchored. Figure 8.19 represents the proportion of
the different families for alphabets of two to six symbols. Note that the length of the
words is fixed to 8. The trends observed for an alphabet of three symbols are confirmed

109

Chapter 8. Aperiodicity of CERTAIN(w)

0 2 4 6 8 10 12 14 16
|w|

0

20

40

60

80

100

Pe
rc
e
n
ta
g
e
 o
f
w
o
rd
s

Frep.3

Fp.unb.

Fanch.

Funr.

others

Figure 8.17: Percentage of words w over alphabet {a, b} that belong to one of the families
for |w| ≤ 16.

for alphabets of four or more symbols. The families Fanch. of anchored words and Fp.unb.

of powers of unbordered words are strongly dominant. The proportion of words that do
not belong to any of the families decreases both when the length of the words or the
number of symbols in the alphabet increases.

110

8.9. Coverage of the Families of Words

2 4 6 8 10 12 14
|w|

0

20

40

60

80

100

Pe
rc
e
n
ta
g
e
 o
f
w
o
rd
s

Frep.3

Fp.unb.

Fanch.

Funr.

others

Figure 8.18: Percentage of words w over alphabet {a, b, c} that belong to one of the
families for |w| ≤ 14.

111

Chapter 8. Aperiodicity of CERTAIN(w)

1 2 3 4 5 6 7
|Σ|

0

20

40

60

80

100

Pe
rc
e
n
ta
g
e
 o
f
w
o
rd
s

Frep.3

Fp.unb.

Fanch.

Funr.

others

Figure 8.19: Percentage of words w of fixed length 8 that belong to one of the families.
The size of the alphabet ranges from 2 to 6.

112

. .CHAPTER 9
Automata Recognizing CERTAIN(w)

The previous chapter provided sufficient conditions for aperiodicity of CERTAIN(w).
This chapter studies CERTAIN(w) and CERTAIN3(w) from an automaton perspective.
The motivation is that automata theory could give some insights in the algebraic structure
of the languages CERTAIN(w), for any word w.

Section 9.1 recalls the notations and terminologies used in automata theory. This
section is mainly based on [Knuth et al. 1977; Hopcroft et al. 2007]. In Section 9.2, we
give a procedure for the construction of a minimal deterministic finite state automaton
that recognizes CERTAIN3(w). In Section 9.3, we explain how to construct a deterministic
finite automaton for CERTAIN(w) for every word w.

We developed a set of tools that, given a word w, automatically computes a minimal
(in terms of number of states) automaton that recognizes the language CERTAIN(w). In
Section 9.4, we experimentally study the size of these minimal automata. We identify
potential upper and lower bounds on the number of states of those minimal automata.
Sections 9.4.1 and 9.4.2 focus on families of words w whose minimal automata reach one
of those bounds.

113

Chapter 9. Automata Recognizing CERTAIN(w)

q0 q1 q2 q3

q4

a
b

a

b

a

b

a

b

a, b

Figure 9.1: Example of a DFA over Σ = {a, b}.

9.1 Preliminaries

A deterministic finite automaton (DFA) D over an alphabet Σ is described by a 5-tuple:
D = (Q,Σ, q0, F, δ) where Q is a set of states, q0 ∈ Q the initial state, F ⊆ Q a set of final
states and δ : Q×Σ→ Q is the transition function. It is usual to represent an automaton
using a graph. From a graph perspective, if δ(q, a) = p for some p ∈ Q, q ∈ Q, a ∈ Σ,
then there’s an arc from state q to state p labelled by a.

Let w = w1w2 · · ·wn be a sequence of letters from Σ. The DFA starts in its initial
state q0 by looking at δ(q0, w1) = q1 to find the state the DFA enters after processing the
first letter w1. The next state is obtained by computing δ(q1, w2) = q2, and so on until
wn is read. Assume δ(qn−1, wn) = qn. If qn ∈ F , then qn is called a final state and w is
accepted. If qn 6∈ F , then w is rejected. The language recognized by a DFA is the set of
all words that this DFA accepts.

If δ is a transition function, then we define δ∗ : Q×Σ∗ → Q as its extension to words.
The definition is inductive, as follows:

• δ∗(q, ε) = q (basis);

• δ∗(q, w) = δ(δ∗(q, x), a) for w = x · a (induction).

A state q is reachable if there exists some input word w such that δ∗(q0, w) = q for q0

the initial state. Obviously, a word w is accepted by the DFA if δ∗(q0, w) ∈ F .

Example 9.1 Let D = (Q,Σ, q0, F, δ) be the DFA shown in Figure 9.1. We have Σ =
{a, b} and Q = {q0, q1, q2, q3, q4}. We have F = {q3}, the set of final states, and the initial
state is q0. This deterministic finite automaton recognizes the language of words that
have abb as a factor. /

A DFA D recognizing a language L is called minimal if, for any DFA D′ recognizing
the same language L, the number of states of D is smaller or equal to the number of states
of D′. Given L, a minimal automaton recognizing L is unique up to a renaming of the
states. The minimization of an automaton is effective (see Chapter 4 in [Hopcroft et al.
2007]) and will be summarized in Section 9.3.

For example, the automaton shown in Figure 9.1 has 5 states. This automaton is not
minimal. States q1 and q4 are equivalent because their residual languages are identical: on

114

9.2. Automata Recognizing CERTAIN3(w)

ε a ab abb

a b

a

b

b a, ba

Figure 9.2: Construction of the minimal automaton KMP(abb).

every input word w, δ∗(q1, w) is an accepting state if and only if δ∗(q4, w) is an accepting
state. If we merge q1 and q4, we obtain a smaller automaton that accepts the same
language.

Given a word w, there exists a procedure to directly construct a minimal DFA that
recognizes the language of words that have w as a factor. This procedure is based on the
Knuth-Morris-Pratt algorithm and is described in Definition 9.1. The procedure always
results in a DFA which has |w|+ 1 states and which is minimal [Crochemore et al. 2007].

Definition 9.1 [Aho et al. 1974] Let w be a word. We define the following deterministic
finite automaton KMP(w). Let KMP(w) = (Q,Σ, q0, F, δ) where

• the set of states Q is {ε, w1, w1w2, w1w2w3, . . . , w};

• Σ is the alphabet;

• the initial state q0 is ε;

• the set of final states F = {w};

• if p is a prefix of w and a a letter from Σ, then

– δ(p, a) = w if p = w, or

– δ(p, a) = q where q is the longest suffix of p · a which is also a prefix of w.

/

The construction of the transition function in Definition 9.1 is quite similar to the
construction of the shift function in the Knuth-Morris-Pratt algorithm of Section 7.2.
Figure 9.2 shows the resulting automaton KMP(abb) for word abb. Thus, the automata of
Figure 9.1 and 9.2 accept the same language.

9.2 Automata Recognizing CERTAIN3(w)

In this section, for an alphabet Σ with |Σ| ≥ 3, we consider the construction of a de-
terministic finite automaton that recognizes the language CERTAIN3(w). Recall from
Section 6.2 (1) that a multiwordM = M1M2 . . .Mn is a partial word if eachMi is either a
singleton or the entire alphabet, and (2) that CERTAIN3(w) is the set of all partial words
in which w is certain.

115

Chapter 9. Automata Recognizing CERTAIN(w)

We show in the following definition a deterministic finite automaton A3(w) whose
construction is quite similar to the construction of KMP(w) of Definition 9.1. The tran-
sitions of A3(w) are roughly the same as in KMP(w) except for the transitions that are
labelled by a symbol that is not a singleton. These transitions lead to the initial state.

Definition 9.2 Let w be a word. Let KMP(w) = (Q,Σ, q0, F, δ
′). We define the deter-

ministic finite automaton A3(w) = (Q, Σ̂, q0, F, δ) where Σ̂ = 2Σ \ {∅}. The transition
function δ is defined next. For every a ∈ Σ,

• δ(f, a) = f , if f ∈ F ;
• δ(q, a) = δ′(q, a) if a is a singleton and q /∈ F ;
• δ(q, a) = q0 if a is not a singleton and q /∈ F .

/

We show in Theorem 9.1 that A3(w) recognizes CERTAIN3(w) and is minimal.

Theorem 9.1 Let Σ be an alphabet of at least three symbols. Let w be a word. Then
A3(w) recognizes CERTAIN3(w) and is minimal.

Proof. Let Σ be an alphabet of at least three symbols. Let w be a word and M a
partial word. Let KMP(w) and A3(w) be as in Definition 9.2. Let δ be the transition
function ofA3(w) and δ∗ be its extension. We showM ∈ CERTAIN3(w) ⇐⇒ δ∗(q0,M) ∈
F . The proof is by induction on the number n of positions i of M such that Mi is not a
singleton.

• Case n = 0. If M contains only singletons, then a run of A3(w) on M behaves
exactly as a run of KMP(w) on m where m is the only word of words(M).

• Case n ≥ 1. Let M = PAQ for suitable multiwords P and Q, where A ∈ Σ̂ such
that |A| = |Σ| ≥ 3 and Q is only composed of symbols that are singletons.

⇒ Assume M ∈ CERTAIN3(w). As |A| ≥ 3, we can apply Lemma 8.1 and either
P ∈ CERTAIN3(w) or Q ∈ CERTAIN3(w). We distinguish two cases:
1. P ∈ CERTAIN3(w). Then, by induction, P is accepted by A3(w) and
δ∗(q0, P) ∈ F .

2. P /∈ CERTAIN3(w). Then Q ∈ CERTAIN3(w). We have δ∗(q0, P) = q /∈ F ,
δ(q, A) = q0. As Q only contains singletons, it follows δ∗(q0, Q) ∈ F .

We have that A3(w) accepts M .
⇐ Assume A3(w) accepts M . We distinguish two cases:

1. δ∗(q0, P) ∈ F . This implies P ∈ CERTAIN3(w) and soM ∈ CERTAIN3(w).
2. δ∗(q0, P) = q /∈ F . By construction of A3(w), we have δ(q, A) = q0.

As A3(w) accepts M , it must be the case that δ∗(q0, Q) ∈ F . But Q
contains only singletons, so we have Q ∈ CERTAIN3(w) and thus M ∈
CERTAIN3(w).

It follows that A3(w) recognizes CERTAIN3(w). It is easy to see that A3(w) has |w|+ 1
states and is minimal. 2

116

9.3. Automata Recognizing CERTAIN(w)

{ε} {a} {ab} ∅

{a, ab}

{a} {b}
{a, b}

{a, b}

{a}

{b}
{a}

{b}

{b}

{a, b} {a}

{a, b}

{a}

{b}

{a, b}

Figure 9.3: The automaton A(abb) over Σ = {a, b}.

9.3 Automata Recognizing CERTAIN(w)

Theorem 7.2 on page 88 suggests the following construction of a deterministic finite au-
tomaton for CERTAIN(w).

Definition 9.3 Let P be the set of proper prefixes of w. We define the deterministic
finite automaton A(w) = (Q, Σ̂, S0, F, δ) on the powerset alphabet Σ̂.

• The finite set of states is Q = {bSc | S ⊆ P}.

• The initial state is S0 = {ε}, and the final states are F = {∅}.

• The transition function δ : Q× Σ̂→ Q is defined1 by:

δ(S,A) = bsufpre(S · A,w) \ {w}c

/

For instance, Figure 9.3 shows A(abb) for the alphabet Σ = {a, b}. Theorem 7.2 and the
construction of A(·) immediately lead to the following result.

Theorem 9.2 For every word w, the automaton A(w) recognizes CERTAIN(w).

It is important to notice that, for every word w, the automaton A(w) present a lot
of similarities with the automaton KMP(w) introduced in Definition 9.1. In particular, a
run of KMP(w) on an input a1a2 · · · an behaves exactly as a run of A(w) on the multiword
{a1}{a2} · · · {an}. This is not surprising as the transition functions are defined similarly:
if p is a state and a the letter to be read, these functions both compute the longest suffix

1Recall from Section 7.2 that, if S is a set of words, bSc is the smallest set of words satisfying bSc ⊆ S
and bSc contains a suffix of every word in S. If p, q are words, sufpre(p, q) is the longest suffix of p that
is a prefix of q.

117

Chapter 9. Automata Recognizing CERTAIN(w)

{ε} {a} {aa} {aab}

{aa, aab}

∅

{a} {a} {b}
{a, b}

{b}

{a}, {a, b}

{a}
{b}

{a}

{a}

{b}
{a, b}

Figure 9.4: A minimal automaton recognizing CERTAIN(aabb). The transitions leading
to the initial state {ε} are not shown for clarity.

of p · a that is also a prefix of w. The difference in the computation comes from the fact
that the construction of A(w) works on subsets of prefixes of w and not on prefixes of w
as in KMP(w).

Unfortunately, while the construction of KMP(w) always leads to a minimal automaton
whose size is exactly |w| + 1 states, the construction of A(w) does not necessarily result
in a minimal automaton. For example, the automaton of Figure 9.3 is not minimal:
states {a, b} and {a} can be merged, resulting in a minimal automaton with |w| + 1
states. Importantly, there exist words w such that a minimal automaton for CERTAIN(w)
has more than |w| + 1 states. For example, the automaton of Figure 9.4 recognizes
CERTAIN(w) where w = aabb. This DFA is minimal but has 6 (= |w|+ 2) states.

If w is a word, Amin(w) denotes the minimal automaton recognizing CERTAIN(w). The
minimization of an automaton is an effective procedure, i.e. one can compute Amin(w)
from A(w). The minimization procedure is described in [Hopcroft et al. 2007] and can be
summarized as follows:

1. Remove any state that cannot be reached from the initial state.

2. Partition the remaining states into blocks such that two states in the same blocks
are equivalent. Two states p and q are equivalent if, for every word w, δ∗(p, w) is a
final state if and only if δ∗(q, w) is a final state.

The resulting automaton is a minimal automaton recognizing the same language. The
study of minimal automata for CERTAIN(w) may provide useful insights, in particular
in the aperiodicity of CERTAIN(w). For this purpose, we developed a set of tools that
automatically construct Amin(w). In the next section, we explain the experiments we
conducted to study the size of the minimal automata for CERTAIN(w).

118

9.4. Number of States of Amin(w)

15 16 17 18 19 20 21
Number of states

0

2000

4000

6000

8000

10000

12000

14000

N
u
m
b
e
r
o
f
w
o
rd
s

Figure 9.5: Let Σ = {a, b}. For every word w such that |w| = 14, the number of states of
Amin(w) is in the range [15, 21]. For every n in this range, the graph shows the number
of words w such that |w| = 14 and Amin(w) has n states.

9.4 Number of States of Amin(w)

We computed Amin(w) for a large number of words w in order to study its number of
states. For alphabet Σ = {a, b}, we computed the size of Amin(w) for all words w such
that |w| ≤ 16. For larger words, we computed the size of Amin(w) for randomly generated
w. The experiments were conducted using our set of tools which use python-automata
library2 and GAP3. The tools are publicly available on the Launchpad platform4.

The first experiments concern an exhaustive study of the set of words w over Σ = {a, b}
such that 2 ≤ |w| ≤ 16. The following observations are striking.

1. No minimal automaton Amin(w) has more than |w|+ b |w|
2
c states for |w| ≥ 2.

2python-automata is a Python library to handle basic automata operations, developed by Andrew
Badr, and is available at https://code.google.com/p/python-automata/.

3GAP (Groups, Algorithms, Programming) is a system for computational discrete algebra which is
available at http://www.gap-system.org/.

4See Multiwords Project at https://launchpad.net/multiwords/.

119

https://code.google.com/p/python-automata/
http://www.gap-system.org/
https://launchpad.net/multiwords/

Chapter 9. Automata Recognizing CERTAIN(w)

0 5 10 15 20 25
Number of states

100

101

102

103

104

105

N
u
m
b
e
r
o
f
w
o
rd
s

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 9.6: Let Σ = {a, b}. For every word w such that 2 ≤ |w| ≤ 16, the number of
states of Amin(w) is in the range [|w| + 1, |w| + b |w|

2
c]. The graph with number n shows,

for every k in this range, the number of words w such that |w| = n and Amin(w) has k
states. The ordinate scale is logarithmic.

120

9.4. Number of States of Amin(w)

2. For a fixed length n, there is a majority of words of length n such that Amin(w) has
n+ 1 states, as in KMP(w). If Amin(w) has n+ 1 states, then this means that each
state of A(w) having more than one prefix can be merged with a state having only
one prefix, i.e. a state (equivalent to a state) of the Knuth-Morris-Pratt automaton.

The situation is depicted in Figure 9.5, for all words of length 14. For these words,
the size of Amin(w) ranges from 15 to 21. For n ∈ {15, . . . , 21}, the graph shows the
number of words w such that Amin(w) has n states.

3. The proportion of words w such that Amin(w) has |w|+ 1 states seems to be similar
for all word lengths. For Σ = {a, b} and words w such that 6 ≤ |w| ≤ 16, this
proportion is approximately 83%. This is Figure 9.6. The number of states of
Amin(w) is in the range [|w|+ 1, |w|+ b |w|

2
c]. The ordinate scale is logarithmic.

We also studied the impact of the alphabet size on the size of Amin(w). We computed
the number of states of Amin(w) for words w of fixed length 8 for alphabet sizes rang-
ing from 2 to 5. The results are shown in Figure 9.7 and do not contradict the three
observations above.

A non-exhaustive search for randomly generated words over {a, b} of length up to 28
confirmed those observations for words of greater length. We computed the size ofAmin(w)
for about 430, 000 words and never got a counter-example of the three observations made.
Figure 9.8 shows the number of words w in function of the number of states of Amin(w).
The length of w ranges from 17 to 28. There are about 110, 000 words w such that
17 ≤ |w| ≤ 24 and about 320, 000 words w such that 25 ≤ |w| ≤ 26. Data are represented
in the same way as in Figure 9.6 and confirm the observations we made.

Based on these observations, we conjecture an upper bound of |w| + b |w|
2
c on the

number of states of Amin(w).

Importantly, we do not see any obvious link between the fact that a word w belongs to
one of the families described in the previous chapter and the number of states of Amin(w),
with the notable exception of unrimmed words w which have a minimal DFA with |w|+ 1
states, as stated in Proposition 9.1 of the following subsection. Table 9.1 shows that,
within the same family of words, the number of states of Amin(w) can vary. In the two
following subsections, we focus on families of words w for which Amin(w) has exactly
|w|+ 1 states or exactly |w|+ b |w|

2
c states.

9.4.1 Families of words w minimizing |Amin(w)|
One of the observations made during the exhaustive search is that, for a large majority
of words w, a minimal automaton for CERTAIN(w) has exactly |w| + 1 states, the same
number of states as the minimal automaton KMP(w) of Definition 9.1.

The following proposition states that for every word w ∈ Funr., CERTAIN(w) can be
recognized by an automaton with |w|+ 1 states. Remember that this family includes the
well known family of palindromes.

Proposition 9.1 If w is an unrimmed word, then a minimal deterministic automaton
recognizing CERTAIN(w) has |w|+ 1 states.

121

Chapter 9. Automata Recognizing CERTAIN(w)

8 9 10 11 12 13
Number of states

100

101

102

103

104

105

106

N
u
m
b
e
r
o
f
w
o
rd
s

Size 2
Size 3
Size 4
Size 5

Figure 9.7: For every word w with |w| = 8, the number of states of Amin(w) is in the
range [9, 12]. The graph with label “Size i” concerns an alphabet Σ such that |Σ| = i. It
shows, for n ∈ [9, 12], the number of words w of length 8 such that Amin(w) has n states.
Notice that the graph labeled “size 2” is the same as the graph labeled “8” in Figure 9.6.

w |w| |Amin(w)| Frep.3 Fp.unb. Fanch.

(abaa)3 12 12 + 1 ×
(aabb)3 12 12 + 2 × ×
abbb 4 4 + 1 ×
aaabb 5 5 + 2 × ×
aaabab 6 6 + 3 × ×
abbaba 6 6 + 1 ×
abaaa 5 5 + 1
aaababa 7 7 + 3

Table 9.1: The number of states of Amin(w) can vary for words w in the same family.

122

9.4. Number of States of Amin(w)

15 20 25 30 35 40
Number of states

100

101

102

103

104

105

N
u
m
b
e
r
o
f
w
o
rd
s

17
18
19
20
21
22
23
24
25
26
27
28

Figure 9.8: For randomly generated words w such that 17 ≤ |w| ≤ 28, the number of
states of Amin(w) is in the range [|w| + 1, |w| + b |w|

2
c]. The graph with number n shows,

for every k in this range, the number of words w such that |w| = n and Amin(w) has k
states. The ordinate scale is logarithmic.

123

Chapter 9. Automata Recognizing CERTAIN(w)

q0 q1 q2 q3

{a} {b} {b}

{a}, {a, b}
{b}, {a, b} {a}, {a, b} ∗

Figure 9.9: A minimal automaton for CERTAIN(abb).

Proof. Let w be an unrimmed word. One can see that A3(w) of Definition 9.2
recognizes CERTAIN(w). The proof relies on Lemma 8.8 which states that, for every
multiword M , if M has a position i such that Mi is not a singleton, then this position i
is not relevant to state that w is certain in M .

The proof is similar to the one of Theorem 9.1 and, using the same arguments, it
follows that A3(w) recognizes CERTAIN(w), has |w|+ 1 states and is minimal. 2

The particularity of A3(w) is that every transition labelled by a set of at least two
letters systematically leads to the initial state, except for the transitions that come from
a final state. The converse of Proposition 9.1 is not true. For instance, a minimal DFA for
CERTAIN(abb) has 4 states but abb has two rims. Figure 9.9 shows a minimal automaton
recognizing CERTAIN(abb). Notice that Amin(abb) contains two transitions labelled by
{a, b} that do not lead to the initial state.

9.4.2 Families of words w maximizing |Amin(w)|
Through the experiments, we identified several families of words w for which a minimal
automaton Amin(w) has |w|+ b |w|

2
c. These families are:

• ak+2bakb (for 0 ≤ k)

• ak+2bajbakbajb (for 0 < j < k)

• ak+3bakb (for 0 ≤ k)

• ak+3bajbakbajb (0 < j < k)

For w = ak+2bakb, we explicitly construct a minimal automaton Amin(w) and we show
that it has a size of 3k + 6 = |w|+ b |w|

2
c.

For the construction of this automaton, we apply the procedure described in Defi-
nition 9.3 and we minimize the resulting automaton. Figure 9.10 shows the automaton
A(w) for w = ak+2bakb, depending on k. A minimal automaton is obtained by removing
the state in gray (equivalent to state {ak+2, ak+2b}). Notice that for simplicity, transitions
leading to state {ε} have been omitted.

124

9.4. Number of States of Amin(w)

Proposition 9.2 Let k ≥ 0. Let w = ak+2bakb. A minimal automaton that recognizes
CERTAIN(w) has |w|+ b |w|

2
c states.

Proof. Let w = ak+2bakb with k ≥ 0. We use the procedure described in Defi-
nition 9.3 to construct the automaton A(w). The resulting automaton is illustrated in
Figure 9.10. Notice that for simplicity, all the transitions that lead to state {ε} and the
non-reachable states have been omitted in the figure. The procedure ensures that this
automaton recognizes exactly the language CERTAIN(w). For this automaton, we say
that q is a singleton state if it contains at most one prefix, otherwise q is said to be a
composed state.

It is easy to see that the state in gray is equivalent to the state {ak+2, ak+2b} so it can
be merged with it. It can also be shown that the remaining states cannot be merged. To
show that two states cannot be merged, it suffices to exhibit words that belong to the
residual language of the first state but not to the residual language of the second state.

We now show that the remaining states are not equivalent and thus, the automaton
is minimal and has exactly |w| + b |w|

2
c states. By contradiction, suppose there exist two

different states q1 and q2 such that q1 and q2 are equivalent. We distinguish four cases:

1. q1 and q2 are singleton states;

2. q1 and q2 are composed states (i.e. states that contain two or more prefixes);

3. q1 is a composed state, q2 is a singleton state with a prefix p such that |p| > k + 2;

4. q1 is a composed state, q2 is a singleton state with a prefix p such that |p| ≤ k + 2.

Let δ be the transition function and δ∗ be its extension for words (see Section 9.1).
For each case, it suffices to show that there exists a multiword M such that δ∗(q1,M) and
δ∗(q2,M) are not equivalent. Notice that, for simplicity, if M is a multiword, we write
M = v as a shortcut for M = {v1}{v2} · · · {v|v|}.

Case 1 Let q1 and q2 be singleton states. We can assume that q1 (resp. q2) contains
some prefix p1 (resp. p2) such that |p1| < |p2|. Let M = s2 for some suitable s2 such
that w = p2 · s2. Clearly, δ∗(q2, s2) = ∅ 6= δ∗(q1, s2).

Case 2 Let q1 and q2 be composed states. We can assume that q1 (resp. q2) contains
prefixes ak+2 and ak+2bai (resp. ak+2 and ak+2baj) such that 0 ≤ i < j ≤ k. Let
M = ak−jbakb. It is easy to see that δ∗(q2,M) = ∅ and δ∗(q1,M) = {ε}.

Case 3 Let q1 be a composed state containing prefixes ak+2 and ak+2bai (0 ≤ i ≤ k)
and q2 a singleton state containing ak+2baj (0 ≤ j ≤ k). Let M = ak−jb. Clearly,
δ∗(q2,M) = ∅ 6= δ∗(q1,M).

Case 4 Let q1 be a composed state containing prefixes ak+2 and ak+2bai (0 ≤ i ≤ k) and
q2 a singleton state containing aj (0 ≤ j ≤ k + 2). Three cases occur:

• i = j + 2. Let M = ak−ia. Then δ∗(q1,M) = {ak+1} and δ∗(q2,M) = {ak+2}.
By case 1, these states are not equivalent;

125

Chapter 9. Automata Recognizing CERTAIN(w)

• i < j + 2. Let M = ak−ibakb. Then δ∗(q1,M) = ∅ and δ∗(q2,M) = {ε};
• i > j + 2. Let M = ak−j+2bakb. Then δ∗(q1,M) = {ε} and δ∗(q2,M) = ∅.

This concludes the proof. 2

In this chapter, we studied deterministic finite automata for CERTAIN(w) and for
CERTAIN3(w). We provided a procedure to construct a minimal deterministic finite
automaton for CERTAIN3(w) if the alphabet has at least three symbols. We also provided
a procedure to construct a DFA for CERTAIN(w). We discussed the relationship between
this automaton and KMP(w). We conducted several experiments to compute the (size
of) minimal automata for CERTAIN(w). These experiments resulted in the following
intriguing conjecture.

Conjecture 9.1 Let Σ be an alphabet such that |Σ| ≥ 2. For every nonempty word
w ∈ Σ∗, the number of states in Amin(w) is smaller than or equal to 3|w|

2
.

126

9.4. Number of States of Amin(w)

{ε
}a

a
2

..
.

a
k
+

1
a
k
+

2
a
k
+

2
b

a
k
+

2
ba

a
k
+

2
ba

2
..
.

a
k
+

2
ba

k

∅
a
k
+

2
,a

k
+

2
b

a
k
+

2
,a

k
+

2
ba

a
k
+

2
,a

k
+

2
ba

2

..
.

a
k
+

2
,a

k
+

2
ba

k

a
k
+

1
,a

k
+

2
b

∗

a
a

a
a

a
a

{a
,b
}

b
a

a
a

a

b

a
,{
a
,b
}

a a a a

{a
,b
}

a
b

a

Figure 9.10: Automaton A(w) for w = ak+2bakb. Transitions leading to {ε} and non-
reachable states are not shown for clarity.

127

. CHAPTER 10
Conclusions

In the framework of first-order logic on words, uncertainty is captured by the concept of
multiword, which is a finite sequence of nonempty sets of possible symbols. Motivated by
a problem in uncertain databases, we studied the first-order definability of CERTAIN(w).
A multiword M is in CERTAIN(w) if the word w is certain in M , this is, if w is a factor
of every word represented by M . We studied the conjecture that CERTAIN(w) is first-
order definable for every word w. As CERTAIN(w) is regular, the study of its first-order
definability is equivalent to the study of its aperiodicity.

The aperiodicity of CERTAIN(w) is easy to show if CERTAIN(w) is restricted to partial
words over an alphabet of at least three symbols, but turns out to be difficult in the
general case. We provided strong evidence to support the conjecture that CERTAIN(w)
is first-order definable for every word w.

We showed aperiodicity of CERTAIN(w) for words in the following classes: repeated (≥
3) words, powers of unbordered words, anchored words and unrimmed words. We showed
that those families are incomparable under set inclusion and we studied the coverage of
each of them. We observed that the proportion of words outside these families decreases
when the length of the words or the size of the alphabet increases.

We experimentally verified aperiodicity of CERTAIN(w) on large sets of words, includ-
ing all words of length less than or equal to 12 over Σ = {a, b, c}.

We studied the set CERTAIN(w) from an automaton perspective, expecting strong
algebraic properties that could be used to show the aperiodicity of CERTAIN(w) in the
general case. We gave a procedure for the construction of a deterministic finite state
automaton recognizing CERTAIN(w). In particular, we were interested in the number
of states of the minimal automaton recognizing CERTAIN(w) and CERTAIN3(w), the
restriction of CERTAIN(w) to partial words.

We showed that, for every word w over an alphabet with three or more symbols,
there exists an automaton recognizing CERTAIN3(w) with |w|+ 1 states. The automaton
is minimal and can be effectively constructed. If the alphabet contains less than three
symbols, CERTAIN3(w) is equal to CERTAIN(w). The study of a minimal automaton for
CERTAIN(w) turns out to be more difficult. We experimentally studied the size of those
minimal automata. We computed the size of Amin(w) for large sets of words, including

129

Chapter 10. Conclusions

every word w such that |w| ≤ 16 over Σ = {a, b}. Our experiments indicate that for every
word w, a minimal automaton for CERTAIN(w) has a number of states between |w| + 1

and 3|w|
2
. We formally showed that there exist words w such that CERTAIN(w) cannot be

recognized by an automaton with less than b3|w|
2
c states.

Our study reveals several problems for future research. It is still an open conjecture
that CERTAIN(w) is aperiodic and thus first-order definable for every word w. The min-
imal deterministic finite automata recognizing CERTAIN(w) exhibit several similarities
with the Knuth-Morris-Pratt automata. A better comprehension of a minimal automa-
ton for CERTAIN(w) could give some useful insight to study the first-order definability of
CERTAIN(w). In particular, it could be useful to identify which properties on w imply
that Amin(w) has more than |w|+ 1 states. It could be interesting to study other aspects
than the number of states of those automata as, for example, the number of forward and
backward transitions (see [Crochemore et al. 2007]).

The study of CERTAIN(w) can also be extended to words with variables. For example,
a pattern xx where x is a variable is certain in the multiword M = a{a, b}{a, b}{a, b}b
because every word in words(M) contains aa or bb as a factor. Note that CERTAIN(xx) 6=(
CERTAIN(aa)∪CERTAIN(bb)

)
. The conjecture that CERTAIN(w) is first-order definable

does not extend to words with variables. It can been seen that multiword a{a, b}ib is in
CERTAIN(xx) if and only if i is odd. The latter condition is not first-order definable.

130

Bibliography

Abiteboul S., Hull R., and Vianu V. 1995. Foundations of Databases. Addison-
Wesley

Afrati F.N. and Kolaitis P.G. 2009. Repair checking in inconsistent databases: al-
gorithms and complexity. In R. Fagin, ed., ICDT, volume 361 of ACM International
Conference Proceeding Series, pp. 31–41. ACM

Aho A.V. and Corasick M.J. 1975. Efficient string matching: An aid to bibliographic
search. Communications of the ACM, 18(6):333–340

Aho A.V., Hopcroft J.E., and Ullman J.D. 1974. The Design and Analysis of
Computer Algorithms. Addison-Wesley

Arenas M., Bertossi L., and Chomicki J. 2003. Answer sets for consistent query
answering in inconsistent databases. Theory Pract. Log. Program., 3(4):393–424

Arenas M., Bertossi L.E., and Chomicki J. 1999. Consistent query answers in
inconsistent databases. In PODS, pp. 68–79. ACM Press

Beeri C., Fagin R., Maier D., and Yannakakis M. 1983. On the desirability of
acyclic database schemes. J. ACM, 30(3):479–513

Berstel J. and Boasson L. 1999. Partial words and a theorem of Fine and Wilf.
Theoretical Computer Science, 218(1):135–141

Bertossi L. 2006. Consistent query answering in databases. SIGMOD Rec., 35(2):68–76

Bertossi L.E. 2011. Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers

Bertossi L.E., Bravo L., Franconi E., and Lopatenko A. 2008. The complexity and
approximation of fixing numerical attributes in databases under integrity constraints.
Inf. Syst., 33(4-5):407–434

Bienvenu M. 2012. Inconsistency-tolerant conjunctive query answering for simple on-
tologies. In Y. Kazakov, D. Lembo, and F. Wolter, eds., Description Logics, volume
846 of CEUR Workshop Proceedings. CEUR-WS.org

Blanchet-Sadri F. 2007. Algorithmic Combinatorics on Partial Words (Discrete Math-
ematics and Its Applications). Chapman & Hall/CRC

131

Bibliography

Boyer R.S. and Moore J.S. 1977. A fast string searching algorithm. Communications
of the ACM, 20(10):762–772

Bruyère V., Carton O., Decan A., Gauwin O., and Wijsen J. 2012. An aperi-
odicity problem for multiwords. RAIRO – Theoretical Informatics and Applications,
46:33–50

Bruyère V., Decan A., and Wijsen J. 2009. On first-order query rewriting for in-
complete database histories. In Proceedings of the 2009 16th International Symposium
on Temporal Representation and Reasoning, TIME ’09, pp. 54–61. IEEE Computer
Society, Washington, DC, USA

Büchi J.R. 1960. Weak second-order arithmetic and finite automata. Z. Math. Logik
und Grundl. Math., 6:66–92

Calì A. 2005. Query answering by rewriting in glav data integration systems under
constraints. In Proceedings of the Second international conference on Semantic Web
and Databases, SWDB’04, pp. 167–184. Springer-Verlag, Berlin, Heidelberg

Celle A. and Bertossi L.E. 2000. Querying inconsistent databases: Algorithms and
implementation. In Proceedings of the First International Conference on Computational
Logic, CL ’00, pp. 942–956. Springer-Verlag, London, UK

Chomicki J. and Marcinkowski J. 2004. Inconsistency tolerance. Chapter On the com-
putational complexity of minimal-change integrity maintenance in relational databases,
pp. 119–150. Springer-Verlag, Berlin, Heidelberg

Chomicki J. and Marcinkowski J. 2005. Minimal-change integrity maintenance using
tuple deletions. Inf. Comput., 197(1-2):90–121

Chomicki J., Marcinkowski J., and Staworko S. 2004. Computing consistent query
answers using conflict hypergraphs. In Proceedings of the thirteenth ACM international
conference on Information and knowledge management, CIKM ’04, pp. 417–426. ACM,
New York, NY, USA

Codd E.F. 1969. Derivability, redundancy and consistency of relations stored in large
data banks. IBM Research Report, San Jose, California, RJ599

Crochemore M., Hancart C., and Lecroq T. 2007. Algorithms on Strings. Cam-
bridge University Press. 392 pages

Crochemore M. and Rytter W. 1994. Text Algorithms. Oxford University Press

Dalvi N.N., Ré C., and Suciu D. 2009. Probabilistic databases: diamonds in the dirt.
Commun. ACM, 52(7):86–94

Dalvi N.N., Re C., and Suciu D. 2011. Queries and materialized views on probabilistic
databases. J. Comput. Syst. Sci., 77(3):473–490

132

Bibliography

Dalvi N.N. and Suciu D. 2007. Efficient query evaluation on probabilistic databases.
VLDB J., 16(4):523–544

Decan A., Pijcke F., and Wijsen J. 2012. Certain conjunctive query answering in
SQL. In E. Hüllermeier, S. Link, T. Fober, and B. Seeger, eds., Scalable Uncertainty
Management, volume 7520 of Lecture Notes in Computer Science, pp. 154–167. Springer
Berlin Heidelberg

Fine N.J. and Wilf H.S. 1965. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16:109–114

Fischer M. and Paterson M. 1974. String matching and other products. SIAM-AMS
Proceedings, Complexity of Computation, 7:113–125

Fontaine G. 2013. Why it is hard to obtain a dichotomy conjecture for consistent query
answering. In Proceedings of Logic In Computer Science (LICS 2013)

Fuxman A., Fazli E., and Miller R.J. 2005. Conquer: Efficient management of
inconsistent databases. In F. Özcan, ed., SIGMOD Conference, pp. 155–166. ACM

Fuxman A. and Miller R.J. 2005. First-order query rewriting for inconsistent
databases. In T. Eiter and L. Libkin, eds., ICDT, volume 3363 of Lecture Notes in
Computer Science, pp. 337–351. Springer

Fuxman A. and Miller R.J. 2007. First-order query rewriting for inconsistent
databases. Journal of Computer and System Sciences, 73(4):610–635

Gottlob G., Leone N., and Scarcello F. 2002. Hypertree decompositions and
tractable queries. J. Comput. Syst. Sci., 64(3):579–627

Halava V., Harju T., and Kärki T. 2007. Relational codes of words. Theoretical
Computer Science, 389(1-2):237–249

Holub J., Smyth W.F., and Wang S. 2008. Fast pattern-matching on indeterminate
strings. Journal of Discrete Algorithms, 6(1):37–50

Hopcroft J.E., Motwani R., and Ullman J.D. 2007. Introduction to Automata
Theory, Languages and Computation. Pearson Addison-Wesley, Upper Saddle River,
NJ, 3. edition

Knuth D.E., Morris J.H., and Pratt V.R. 1977. Fast pattern matching in strings.
SIAM Journal on Computing, 6(2):323–350

Kolaitis P.G. and Pema E. 2012. A dichotomy in the complexity of consistent query
answering for queries with two atoms. Inf. Process. Lett., 112(3):77–85

Kucherov G., Noé L., and Roytberg M.A. 2007. Subset seed automaton. In Pro-
ceedings of the 12th International Conference on Implementation and Application of
Automata (CIAA), pp. 180–191. Springer

133

Bibliography

Libkin L. 2004. Elements of Finite Model Theory. Springer

Lopatenko A. and Bertossi L. 2006. Complexity of consistent query answering in
databases under cardinality-based and incremental repair semantics. In Proceedings of
the 11th international conference on Database Theory, ICDT’07, pp. 179–193. Springer-
Verlag, Berlin, Heidelberg

Lothaire M. 1997. Combinatorics on words. Cambridge University Press

Maier D. 1983. The Theory of Relational Databases. Computer Science Press

Maslowski D. and Wijsen J. 2011. On counting database repairs. In G.H.L. Fletcher
and S. Staworko, eds., LID, pp. 15–22. ACM

Maslowski D. and Wijsen J. 2013. A dichotomy in the complexity of counting database
repairs. J. Comput. Syst. Sci.

McNaughton R. and Papert S. 1971. Counter-free Automata. MIT Press, Cambridge,
MA

Papadimitriou C.H. 1994. Computational complexity. Addison-Wesley

Pin J.É. 1986. Varieties of Formal Languages. North Oxford, London and Plenum,
New-York

Rahman M.S., Iliopoulos C.S., and Mouchard L. 2007. Pattern matching in de-
generate DNA/RNA sequences. In M. Kaykobad and M.S. Rahman, eds., Workshop
on Algorithms and Computation (WALCOM), pp. 109–120. Bangladesh Academy of
Sciences (BAS)

Reiter R. 1982. Towards a logical reconstruction of relational database theory. In On
Conceptual Modelling (Intervale), pp. 191–233

Schützenberger M.P. 1965. On finite monoids having only trivial subgroups. Infor-
mation and Control, 8(2):190–194

Staworko S. and Chomicki J. 2010. Consistent query answers in the presence of
universal constraints. Inf. Syst., 35(1):1–22

Tuzhilin A. and Clifford J. 1990. A temporal relational algebra as a basis for temporal
relational completeness. In Proceedings of the sixteenth international conference on Very
large databases, pp. 13–23. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA

Ullman J.D. 1988. Principles of Database and Knowledge-Base Systems, Volume I.
Computer Science Press

Wijsen J. 2005. Database repairing using updates. ACM Trans. Database Syst.,
30(3):722–768

134

Bibliography

Wijsen J. 2009a. Consistent query answering under primary keys: a characterization
of tractable queries. In Proceedings of the 12th International Conference on Database
Theory, ICDT ’09, pp. 42–52. ACM, New York, NY, USA

Wijsen J. 2009b. On the consistent rewriting of conjunctive queries under primary key
constraints. Inf. Syst., 34(7):578–601

Wijsen J. 2010. On the first-order expressibility of computing certain answers to con-
junctive queries over uncertain databases. In J. Paredaens and D.V. Gucht, eds., PODS,
pp. 179–190. ACM

Wijsen J. 2012. Certain conjunctive query answering in first-order logic. ACM Trans.
Database Syst., 37(2):9:1–9:35

135

List of Figures

1.1 Database db1 of Example 1.1. 2
1.2 An inconsistent database dbinc, the primary key is violated in Comp. 6
1.3 Two potential data sources for relation Comp. 6
1.4 An events planning database dbplan. 6
1.5 The two repairs of dbplan. 8
1.6 Query ϕ is a first-order rewriting for query q. 10

2.1 Join tree and attack graph for Boolean query q1. 20
2.2 Join tree and attack graph for Boolean query q2. 20
2.3 Fuxman-Miller join graph for Boolean query q3. 24

3.1 SQL translations Q3, N3, R3 and B3 of Examples 3.4, 3.11 and 3.14. . . . 32
3.2 A join tree τ for query q of Example 3.9. 38
3.3 Join tree τF . 39
3.4 The attack graph of q in Example 3.14. 42

4.1 From a first-order acyclic SJFC query q to a certain SQL rewriting ϕ′ for q. 48
4.2 SQL translations of queries ρQB

and βQnB
. 59

4.3 Time needed to evaluate QB and its three certain SQL rewritings. 61
4.4 Time needed to evaluate QnB and its three certain SQL rewritings. 62
4.5 Time needed to evaluate T10U and its rewritings. 67
4.6 Time needed to evaluate TmU and its rewritings for 1 ≤ m ≤ 10. 68

7.1 MSO definition of CERTAIN(ab) for alphabet Σ = {a, b}. 82
7.2 Illustration of the construction in Lemma 7.3. 87

8.1 Rims for aab and abab. 93
8.2 Situation in the proof of Lemma 8.3. 94
8.3 `-decomposition (x, y) of w at position π. 97
8.4 Two maximal `-decompositions. 97
8.5 Two v-factorizations. 99
8.6 x has period r. 99
8.7 Synchronization of words x and y. 100
8.8 Decompositions in the proof of Sublemma 8.3, case |x| < |v|. 101
8.9 Decompositions in the proof of Sublemma 8.4. 102
8.10 Decompositions in the proof of Theorem 8.2, represented in terms of v. . . 103

137

List of Figures

8.11 Case |ŷ| < β − γ. 103
8.12 Case |ŷ| ≥ β − γ. 104
8.13 Situation in the proof of Sublemma 8.5. 105
8.14 Situation in the proof of Theorem 8.3. 106
8.15 Case j ≥ 1 in the proof of Sublemma 8.6. 106
8.16 Case x′ ava in the proof of Theorem 8.4. 107
8.17 Size of the families for words over alphabet {a, b}. 110
8.18 Size of the families for words over alphabet {a, b, c}. 111
8.19 Size of the families for different sizes of alphabet. 112

9.1 Example of a DFA over Σ = {a, b}. 114
9.2 Construction of the minimal automaton KMP(abb). 115
9.3 The automaton A(abb) over Σ = {a, b}. 117
9.4 A minimal automaton recognizing CERTAIN(aabb). 118
9.5 Number of words w in function of |Amin(w)|, |w| = 14. 119
9.6 Number of words w in function of |Amin(w)|, |w| ranges from 2 to 16. . . . 120
9.7 Number of words w in function of |Amin(w)|, |w| = 8, |Σ| ranges from 2 to 5.122
9.8 Number of words w in function of |Amin(w)|, |w| ranges from 17 to 28. . . . 123
9.9 A minimal automaton for CERTAIN(abb). 124
9.10 Automaton A(w) for w = ak+2bakb. 127

138

List of Tables

4.1 Main rules to translate a query from TRC to SQL. 55
4.2 Database schema of the first experiment. 57
4.3 Execution times for the first experiment. Time is in milliseconds. 60
4.4 Execution times for the second experiment. Time is in milliseconds. 66

8.1 Summary of the membership to different families of words. 96

9.1 The number of states of Amin(w) can vary for words w in the same family. 122

139

	Databases and Uncertainty
	Databases Fundamentals
	The Relational Model
	First-Order as Query Language

	Inconsistency and Uncertainty in Databases
	Integrity Constraints
	Inconsistency by Constraints Violations
	Repairs and Consistent Answers
	Certain First-Order Rewriting

	I Certain Conjunctive Query Answering in SQL
	The Problem of Certain Answers
	The Problem CERTAINTY(q)
	Certain FO Rewriting for Acyclic SJFC Queries
	Preliminaries
	The Attack Graph
	Deciding the First-Order Definability

	Certain FO Rewriting for Some Cyclic SJFC Queries

	Certain Conjunctive Query Answering in First-Order Logic
	Computation of Certain First-Order Rewritings
	Syntactic Simplifications
	Preliminaries
	Reduction of the Quantifier (Block) Rank
	Reduction of the Number of Quantifier Blocks

	Certain Conjunctive Query Answering in SQL
	From First-Order to SQL
	Tuple Relational Calculus
	Encoding from TRC to SQL

	Experiments
	Performances on a Practical Database
	Query and Data Complexities
	Conclusions

	Conclusions

	II A Pattern Matching Problem for Multiwords
	A Variant of the Pattern Matching Problem
	Words with don't-care Symbols
	Definitions and Preliminaries
	Application in Uncertain Database Histories

	The Problem CERTAIN(w)
	Problem Statement
	Deciding Membership of CERTAIN(w)

	Aperiodicity of CERTAIN(w)
	The Case of CERTAIN(w)
	Four Families of Words
	Comparisons of the Four Families
	Decomposition Lemma
	Family Frep.3 of Repeated (3) Words
	Family Fp.unb. of Powers of Unbordered Words
	Family Fanch. of Anchored Words
	Family Funr. of Unrimmed Words
	Coverage of the Families of Words

	Automata Recognizing CERTAIN(w)
	Preliminaries
	Automata Recognizing CERTAIN(w)
	Automata Recognizing CERTAIN(w)
	Number of States of Amin(w)
	Families of words w minimizing |Amin(w)|
	Families of words w maximizing |Amin(w)|

	Conclusions
	Bibliography
	List of Figures
	List of Tables

