
1

Theoretical and Practical Methods for
Consistent Query Answering in the

Relational Data Model
Fabian Pijcke

fabian@pijcke.net

2

Acknowledgments

This document is the outcome of five years of work. During all that time, Jef
Wijsen has been trusting me and encouraging me. In the end I’m very proud
of the result, and all the words I could write here would not express enough
how grateful I am for his support and constant motivation. Thank you, Jef!

When this project started, we were engaged, now we are married for better
and for worse, but especially the better. Thank you Alexia for your happiness,
your positiveness and also your diligent proofreading in the end. Thank you
for making everything else than the thesis itself run smoothly. All this would
have meant nothing without you.

Pierre Hauweele have taken the role of support during this adventure. Not
only at the scientific level, but also for lending me his guest room so many
times that I lost track of the counting, and for always being available when I
needed help. Thank you so much, Pierre!

To my friends who’ve been patient all these years, and yet always present
when I needed to take a break! Romain, Kelly, Émilie, Noémie, Romuald,
Jonathan, Dany, thank you!

I have met many brilliant minds who never hesitated to share ideas, tech-
niques, and advices. Thanks to Alexandre Decan, who shared his desk with
me, Enela Pema, Sergio Greco, Paraschos Koutris, and the members of my
jury; Floris Geerts, Stijn Vansummeren, Christian Michaux and Olivier Del-
grange.

I would also like to address special thanks to one of my professors in college,
Philippe Tilleuil, who transmitted to me his passion for mathematics.

3

4

The last sentences are addressed in French to my family. Chers parents,
frères, sœurs, parrain, marraine, mamy, oncles, tantes, tante (qui se reconnaî-
tra !), vous avez fait de moi qui je suis aujourd’hui. Je suis très fier de mon
parcours et vous doit tout ceci ! Merci !

Contents

1 Introduction 9

2 Consistent Query Answering 17
2.1 Preliminaries . 17

2.1.1 Databases . 17
2.1.2 Queries . 18
2.1.3 Domain Relational Calculus 19
2.1.4 Tuple Relational Calculus 20
2.1.5 Constraints . 22
2.1.6 Primary Keys . 22
2.1.7 Functional dependencies 23
2.1.8 Inclusion Dependencies 25
2.1.9 Join Dependencies . 25

2.2 Data Cleaning . 26
2.3 Repairs . 27

2.3.1 Inclusion-Based Repairs 28
2.3.2 Symmetric Difference-Based Repairs 29
2.3.3 Cardinality-Based Repairs 29
2.3.4 Tuple-Based or Value-Based 30

2.4 Consistent Query Answering . 30

3 CQA in FO 33
3.1 The problem CERTAINTY(Q) 33

5

6 CONTENTS

3.2 Attack Graphs . 40
3.3 Rewriting Function . 44

3.3.1 Expected input/outputs 44
3.3.2 Function Rewrite . 45
3.3.3 Function RewAtom . 46
3.3.4 Function RewEmptyKey 47
3.3.5 Examples . 48

3.4 Related Work . 50

4 Presence of Satisfied Constraints 53
4.1 Motivation . 53
4.2 Problem Statement . 57
4.3 Extending Attack Graph . 59
4.4 Construction of Consistent First-Order Rewritings 69

4.4.1 Attack Graph of (Q,Σ) 69
4.4.2 Free Variables . 72
4.4.3 The Function rewriteΣ(Q) 73

4.5 Conclusion . 80

5 Under-Approximations of Consistent Query Answers 81
5.1 Introduction . 82
5.2 Preliminaries . 86
5.3 A Framework for Divulging Inconsistent Databases 86

5.3.1 The Language CQAFO 87
5.3.2 Restrictions on Data Complexity 89
5.3.3 Strategies . 91

5.4 How to Construct Good Strategies? 92
5.4.1 Post-Processing by Unions Only 92
5.4.2 Post-Processing by Unions and Quantification 95

5.5 Simplifying Strategies . 100
5.5.1 Problem Statement and Motivation 100
5.5.2 Attacks from Atoms to Variables 104

CONTENTS 7

5.5.3 A New Attack Notion 105
5.5.4 Testing containment . 107

5.6 Conclusion . 116

6 On the Syntax of Consistent First-Order Rewritings 119
6.1 Introduction . 120
6.2 Notations and Terminology . 121
6.3 Naive Algorithm . 123
6.4 Reducing the Number of Quantifier Blocks 126
6.5 Reducing the Quantifier Rank 129
6.6 Conclusion . 134

7 Tools 135
7.1 Canswer . 135

7.1.1 Core . 136
7.1.2 Attack Graphs . 138
7.1.3 Rewrite . 140
7.1.4 Under-Approximations 144

7.2 The Canswer Language . 146
7.3 Top level interface . 148
7.4 Cansweb . 148

7.4.1 Cansweb Interface . 148
7.4.2 Cansweb Examples . 150

7.5 Conclusion . 156

8 Conclusion 157

A Notations 161

8 CONTENTS

Chapter 1

Introduction

Inconsistent, incomplete and uncertain data is widespread in the internet and
social media era. This has given rise to a new paradigm for query answering,
called Consistent Query Answering (CQA) [ABC99]. This paradigm starts
with the notion of repair, which is a new consistent database that minimally
differs from the original inconsistent database. In general, an inconsistent
database can have many repairs. In this respect, database repairing is different
from data cleaning which aims at computing a unique cleaned database.

In this work, we assume that the only constraints are primary keys, one
per relation. A repair of an inconsistent database db is a maximal subset of
db that satisfies all primary key constraints. Primary keys will be underlined;
for example, the notation R(a, b, c) for a database fact bears within it the in-
formation that the first two positions of R constitute the primary key. For
example, the database of Figure 1.1 stores information about a company, in
particular license plates of the cars being leased to employees, and the hierar-
chy between its collaborators. We assume that the values in the Employee
andBoss columns uniquely identify persons. Every car is leased to exactly one
employee, and each employee is under orders of exactly one person. However,
distinct tuples may agree on the primary key LicensePlate (in relation Cars)
or Employee (in relation Hierarchy), because there can be uncertainty about
leasing and hierarchy. In the database of Figure 1.1, there is uncertainty about

9

10 CHAPTER 1. INTRODUCTION

Cars LicensePlace Employee

1− 204− OEC No
1− 204− OEC Ante

1− 527− JKL Xiou

Hierarchy Employee Boss

No Ante
No No

Kemily Ante

Figure 1.1: Example database with primary key violations.

the employee using the car with the plate 1− 204− OEC (it can be No or Ante)
and about the manager of No (which is either Ante or No herself). Each re-
lation can be repaired in two ways: delete either Cars(1− 204− OEC,No) or
Cars(1− 204− OEC,Ante) from the Cars relation; and either Hierarchy(No,
Ante) or Hierarchy(No,No) from the Hierarchy relation. This database thus
has four repairs. A maximal set of tuples of the same relation that agree on
their primary key will be called a block; in Figure 1.1, each relation is made
of two blocks, which are separated by dashed lines.

When database repairing results in multiple repairs, CQA shifts from stan-
dard semantics to certainty semantics. Given a query, the consistent answer
(also called certain answer) is defined as the intersection of the answers on all
repairs. That is, for a query Q on an inconsistent database db, CQA replaces
the standard query answer Q(db) with the consistent answer, defined by the
following intersection:

⋂{
Q(r) | r is a repair of db

}
. (1.1)

Thus, the certainty semantics exclusively returns answers that hold true in
every repair. Given a query Q, we will denote by bQc the query that maps a
database to the consistent answer defined by (1.1). In this thesis, Q will al-
ways belong to some syntactically defined query class (e.g., conjunctive queries
without self-joins). On the other hand, bQc is a query in the sense that it is
a mapping that associates to each database a set of answer tuples; this map-

11

ping is semantically defined by (1.1). The mapping bQc, however, may not be
expressible in some common database query language.

A practical obstacle to CQA is that the shift to certainty semantics involves
a significant increase in complexity. When we refer to complexity in this
thesis, we mean data complexity, i.e., the complexity in terms of the size of
the database (for a fixed query) [AHV95, p. 422]. It is known for long [Mar02]
that there exist conjunctive queriesQ that join two relations such that the data
complexity of bQc is already coNP-hard. If this happens, CQA is completely
impracticable.

On the other hand, it is known that for a significant class of queries, the
problem of computing consistent answers belongs to the complexity class FO,
which refers to the descriptive complexity class that captures all queries ex-
pressible in relational calculus [Imm99]. If consistent answers can be computed
in FO, they can be obtained by executing a single SQL query in an existing
RDBMS, taking advantage of its query optimizer.

This thesis focuses on computing consistent answers to conjunctive queries
without self-joins, i.e., without repeated relation names. In SQL, these are
SELECT-FROM-WHERE queries where the SELECT-clause is a list of (table-
qualified) attribute names and constants, the FROM-clause is a list of distinct
relation names, and the WHERE-clause is a conjunction of equalities. We now
outline the different chapters of this thesis.

Chapter 2 recalls important notions of database theory and gives a broad
overlook of what parts of CQA have been addressed lately. In that chapter we
do not restrict ourselves to primary keys only, which leads to different variants
of database repairs and CQA.

Chapter 3 addresses the following problem: Given a query Q, decide
whether the mapping bQc can be expressed by a formula in first-order logic,
and construct such a formula if it exists. A first-order formula that expresses
bQc is commonly called a consistent first-order rewriting for Q. In Chapter 3,
this problem is studied under the restriction that Q is a self-join-free conjunc-
tive query and the only constraints are primary keys. This chapter is based

12 CHAPTER 1. INTRODUCTION

on earlier works by Wijsen [Wij12] and Koutris and Wijsen [KW17]. The idea
of consistent first-order rewriting is illustrated next. Suppose that we want to
retrieve the employees managed by Ante (call this query E). As the database
is uncertain, we use the certainty semantics. That is, we want to retrieve the
employees that are managed by Ante in every repair of the database; that is,
only Kemily.

More formally, our query E can be expressed in relational calculus as

E =
{
n | Employee(n,Ante)

}
.

The consistent answers of this query can be expressed by the following rela-
tional calculus query, which is thus a consistent first-order rewriting for E :

bEc =

n | ∃m(Employee(n,m)∧
∀m(Employee(n,m)⇒ m = Ante)).

 .
This query asks for employees under the management of Ante only. This
relational calculus query can then easily be translated into SQL as shown
in Listing 1.1. The method that computes consistent answers to a query Q
by expressing bQc in first-order logic is denoted by different names in the
literature: first-order [query] rewriting, certain first-order [query] rewriting,
consistent first-order [query] rewriting. Moreover, the word “first-order” is
often omitted if it is clear from the context that the target language is first-
order logic.

Chapters 4-7 form the core of this work, which aims at improving the
method initially proposed by Wijsen [Wij10a]

Chapter 4 tries to take advantage of satisfied functional dependencies and
of a particular form of join dependencies to extend the class of queries that
are rewritable. For example, using our database, suppose we want to find
out whether some employee uses a customized1 license plate showing his/her
superior’s name. This query, denoted by F , can be expressed in relational

1In some countries, one can buy customized license plates for an additional fee.

13

SELECT Employee
FROM Hierarchy b
WHERE NOT EXISTS (

SELECT *

FROM Hierarchy e
WHERE b.Employee = e.Employee

AND e.Boss <> ’Ante’
)

Listing 1.1: bEc in SQL.

calculus as:

F =
{

() | ∃n ∃p
(
Cars(p, n) ∧ Hierarchy(n, p)

)}
.

Queries like F which return a tuple of zero arity are called Boolean: the
empty answer {} is interpreted as false, and the nonempty answer {()} as
true. It is known [Wij10b] that bFc cannot be expressed using relational
calculus. However, if our database is known to always satisfy the functional
dependency Cars : Employee → LicensePlate (that is, if no employee can
have more than one license plate), then bFc can be expressed as the Boolean
query2

∃p(
∃n(Cars(p, n)∧
∀n(Cars(p, n)⇒
∃p′(Hierarchy(n, p′)∧
∀p′(Hierarchy(n, p′)⇒ p = p′))))).

Chapter 5 deals with queries that are not rewritable. For such a query
Q, we know that there exists no relational calculus query that expresses bQc.

2Note that we follow the convention from [End72, p. 78] fixing operator precedence to
(tightest to loosest) negation, quantification, conjunction, disjunction, implication, equiva-
lence (all operators are right-associative).

14 CHAPTER 1. INTRODUCTION

What we can do is build a relational calculus query which computes a subset
as large as possible (in a language CQAFO defined in that chapter) of the
consistent answer of Q. For example, consider again query F but suppose
we have no information about any satisfied functional dependency. There are
three obvious queries which have a non-empty consistent answer only if bFc
returns true (intuitively, because they are more “restrictive” than F):

• {p | ∃n
(
Cars(p, n) ∧ Hierarchy(n, p)

)
};

• {n | ∃p
(
Cars(p, n) ∧ Hierarchy(n, p)

)
}; and

• {() | ∃n
(
Cars(n, n) ∧ Hierarchy(n, n)

)
}.

These three queries, unlike F , do have a consistent first-order rewriting. Let
ϕ be a first-order sentence stating that at least one of these three queries has
a non-empty consistent answer. Obviously, if ϕ evaluates to true on some
database, then so does bFc (but if ϕ evaluates to false, then the consistent
answer to F can still be true). In this case, we will say that ϕ is a first-order
under-approximation of bFc.

Chapter 6 is concerned with queries which are rewritable, and focuses on
simplifying the relational calculus query generated. In particular, we look for
rewritings with low quantifier depth and with few quantifier blocks.

As an example, consider the query G asking whether a car is leased to
employee Xiou and whether some employee is managed by himself:

∃p ∃n
(
Cars(p,Xiou) ∧ Hierarchy(n, n)

)
.

This query can be expressed using a relational calculus query. The algorithm
proposed by Wijsen [Wij10a] would generate the following relational calculus

15

query:
∃p(
∃n(Cars(p, n)∧
∀n(Cars(p, n)⇒ n = Xiou∧
∃n(
∃n′(Hierarchy(n, n′)∧
∀n′(Hierarchy(n, n′)⇒ n = n′)))))).

Our revised algorithm would rather produce the following query, which is the
intersection of two simple queries. The advantage is clear when using modern
computers able to execute several tasks at once on distinct processors, or with
distributed databases.

∃p(
∃n(Cars(p, n))∧
∀n(Cars(p, n)⇒ n = Xiou))∧
∃n(
∃n′(Hierarchy(n, n′))∧
∀n′(Hierarchy(n, n′)⇒ n = n′))

Finally, Chapter 7 presents the tools that have been developed as part of
this thesis, grouped under the Canswer project. These tools allow, among oth-
ers, deciding whether queries (of some restricted query class) have a consistent
first-order rewriting, and constructing such a rewriting if it exists.

The results of this thesis have already resulted in two journal publications
and two international conference publications, as indicated in Table 1.1, which
shows the correspondence between chapters and published articles. The chap-
ters mentioned in the first column of Table 1.1 are to a large extent copies of
the corresponding published articles in the second column. Since these arti-
cles are intended to be self-contained, the chapters derived from them contain
some overlapping content. For reasons of readability, we have nevertheless
uniformized the notation in the different chapters of this thesis, whereas the
published articles exhibit differences in notation.

16 CHAPTER 1. INTRODUCTION

Chapter Publication Venue
Chapter 4 [GPW14] Proceedings of the VLDB Endowment
Chapter 5 [GPW15] Int. Conf. on Scalable Uncertainty

Management (SUM 2015)
[GPW17] Int. Journal of Approximate Reasoning

Chapter 6 [DPW12] Int. Conf. on Scalable Uncertainty
Management (SUM 2012)

Table 1.1: Correspondence between chapters and published articles.

Chapter 2

Consistent Query Answering

The paradigm of Consistent Query Answering (CQA) relies on the notion of
database repair. Different repair notions have been proposed in the literature.
This chapter first introduces notions from database theory (schema, database,
query, constraint), and then gives an overview of existing repair notions. Fi-
nally, the CQA paradigm is introduced and illustrated.

2.1 Preliminaries

2.1.1 Databases

We assume a denumerable set of relation names that is disjoint from a de-
numerable set of attributes. We assume a function schema that maps every
relation name to a finite linearly ordered set of attributes. Let R be a relation
name with schema(R) = {A1,A2, . . . ,An}, where the attributes are listed in
linear order. Then, the arity of R is said to be n. If a1, a2, . . . , an are constants,
then R(a1, a2, . . . , an) is an R-fact. If this R-fact is denoted by F , then ai is
denoted by F [i] or F [Ai].

We assume the existence of a countably infinite set dom of constants. A
relational schema R is a finite set of relation names. Each relation name has
a fixed arity n ∈ N. A relational database db over R is a finite set of facts
using only relation names in R. If R is a relation name in the schema of db,

17

18 CHAPTER 2. CONSISTENT QUERY ANSWERING

Employee Emp Salary Birth Hire

Ed 42000 1989 2007
Smith 24000 1989 2015

Team Team Emp Leader?

accounting Ed Yes
accounting Smith No

Figure 2.1: A relational database composed of two relations Employee and
Team.

then the set of all R-facts of db is denoted Rdb (or simply R if db is clear from
the context) and called the relation R of db. It will always be clear from the
context whether R refers to a relation name or a relation. The set of constants
used in some database db is called its active domain, denoted adom(db).

Example 1. Figure 2.1 shows the hypothetic database of some enterprise
employing two people working in the enterprise’s only team: accounting. This
representation uses the named perspective [AHV95, p. 31]. Two relation names
Employee and Team are used to model these facts. The arity of Employee is
4 while the arity of Team is 3. The cardinality of both relations (recall that
relations are merely sets of facts) is 2.

2.1.2 Queries

A query Q over some schema S is a total mapping from relational databases
over S (seen as sets of facts over dom) to sets of tuples (over dom). We assume
that the reader is familiar with Tuple Relational Calculus (TRC) [Mai83, Sec-
tion 10.2] and Domain Relational Calculus (DRC) [Mai83, Section 10.5]. Both
query languages are based on First-Order Logic (FOL) [End72] and have the
same expressive power [Mai83, Sections 10.6, 10.7]. In this thesis, we denote
by FO the complexity class of problems that take a database as input and
that can be solved in first-order logic. FO is contained in the low circuit com-

2.1. PRELIMINARIES 19

plexity class AC0. We now fix notations and give examples for both DRC
and TRC.

2.1.3 Domain Relational Calculus

We assume a set var of variables having no intersection with the set dom of
constants. The set sym of symbols is var ∪ dom. A DRC atom is either a
Boolean value (true or false), an equality test between two symbols, or an
atom which is a fact where in addition to constants, variables may be used. A
DRC formula is a first-order formula over those atoms (conjunction ∧, disjunc-
tion ∨, negation ¬, implication ⇒, equivalence ⇔, existential quantification ∃
and universal quantification ∀). A query is made of a query tuple and of a
DRC formula. The query tuple is a tuple that can contain constants and that
contains all (and only) the variables that have a free occurrence in the DRC
formula. We require the queries to be domain independent [Top09]. That is,
queries like {x | x = x} are prohibited.

A valuation θ over a set X of variables is a mapping that associates a
constant to each variable in X. Such a valuation over X is often understood
to be the identity on all symbols not in X. Valuations extend to sequences and
sets in the natural way: if ~s = (s1, . . . , sn), then θ(~s) = (θ(s1), . . . , θ(sn)), and
if S is a set, then θ(S) = {θ(s) | s ∈ S}. Given a DRC query Q = {t | φ} and
a database db, the answer Q(db) is the set of tuples ~a, of the same arity as
t, such that for some valuation θ over the free variables of φ, we have θ(t) = ~a

and θ(φ) evaluates to true in db. Here, θ(φ) is the closed formula obtained
from φ by replacing each occurrence of each free variable x by θ(x). A fact
DRC atom has the truth value true if and only if it occurs in db.

Example 2. The query “Give all the employees’ names” can be expressed by
the following DRC query:

Q = {n | ∃x ∃y ∃z (Employee(n, x, y, z))} .

The query asking for the sum of the employees’ salaries cannot be expressed
as a first-order query, because we use first-order logic without arithmetic.

20 CHAPTER 2. CONSISTENT QUERY ANSWERING

Given a set X of symbols, a sequence ~s of symbols, an atom F , a formula φ,
or a queryQ, we write vars(·) to denote the set of variables in these constructs:
vars(X), vars(~s), vars(F), vars(φ), and vars(Q). Given a first-order logic
formula φ, free(φ) denotes the set of free variables of φ and φx→y denotes the
formula φ in which any free occurence of x has been replaced with y.

To alleviate the need of parentheses, we follow a usual convention fix-
ing operator precedence to (tightest to loosest) negation, quantification, con-
junction, disjunction, implication and equivalence. All operators are right-
associative. For example, the formula ∀x∀y¬(x = y)∨ (x = y) is equivalent to
(∀x∀y(¬(x = y))) ∨ (x = y).

An important class of queries is the class of conjunctive queries. In DRC
this class can be characterized as the DRC queries that use only conjunction
and existential quantifiers. It can be easily seen that such query can always
be equivalently written in the following prenex normal form:

{(s1, s2, . . . , sl) | ∃v1 ∃v2 . . . ∃vm (F1 ∧ F2 ∧ · · · ∧ Fn)}

where F1, F2, . . . , Fn are atoms (using only variables s1, s2, . . . , sl, v1, v2, . . . ,

vm).
A conjunctive query Q is self-join-free if each relation name R is used at

most once in Q. We denote by SJFCQ the class of self-join-free conjunctive
queries. A DRC query Q is Boolean if free(Q) = ∅.

2.1.4 Tuple Relational Calculus

We introduce a simple tuple relational calculus (TRC). This TRC is more
restricted than TRCs found in the literature [Mai83], but suffices for our pur-
poses. The main difference between DRC and TRC is that in DRC, variables
range over atomic values, while in TRC, variables range over tuples. Variables
in TRC play the same role as aliases in SQL.

For every relation name R, we assume denumerably many tuple variables
of type R. No tuple variable can be of two distinct types. For every n ∈ {1, 2,
. . .}, we assume a free tuple of arity n. Terms are defined as follows:

2.1. PRELIMINARIES 21

1. every constant is a term;

2. if r is a tuple variable of type R and A ∈ schema(R), then r[A] is a
term;

3. if f is a free tuple of arity n and i ∈ 1, 2, . . . , n, then f [i] is a term.

An atomic formula is an expression t1 = t2 where t1 and t2 are terms. Formulas
are defined as follows:

1. every atomic formula is a formula;

2. if ϕ, ϕ1, and ϕ2 are formulas and r is a tuple variable of type R, then
∃r ∈ R (ϕ), ∀r ∈ R (ϕ), ¬ϕ1, ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 are formulas.

We will use f (n) to denote a free tuple of arity n. A TRC query is an expression
of the from {

f (n) | ϕ
}
,

where ϕ is a formula in which no tuple variable has a free occurrence.
For example, “Give names and salaries of all leaders” can be stated in TRC

asf
(2) | ∃t ∈ Team

∃n ∈ Employee


n[Emp] = t[Emp]∧
t[Leader?] = Yes∧
f [1] = n[Emp] ∧ f [2] = n[Sal]





Every conjunctive query can be written as:{
f (n) | ∃r1 ∈ R1 (∃r2 ∈ R2 (. . . ∃rm ∈ Rm (ϕ)))

}
,

where ϕ is a conjunction of atomic formulas.
We briefly discuss one important syntactic restriction of our TRC com-

pared to the literature. In our TRC, each tuple variable is typed by a relation
name and can only range over the tuples in that relation. This restriction will
allow for an easier translation into SQL, in which an alias must also refer to
a single relation. In the literature, one finds TRCs allowing queries like{

f (1) | ∃t ((R(t) ∨ S(t)) ∧ t[1] = f [1])
}
,

22 CHAPTER 2. CONSISTENT QUERY ANSWERING

which associates t to both R and S. In our TRC, this query can be expressed
as: {

f (1) | ∃r ∈ R (r[A] = f [1]) ∨ ∃s ∈ S (s[B] = f [1])
}
,

where it is assumed that A (resp. B) is the first attribute of R (resp. S)
according to the linear order on attributes. Note incidentally that typed vari-
ables are not sufficient to guarantee domain independence [Top09], a property
that should be possessed by all database queries. For example,{

f (2) | ∃r ∈ R (r[A] = f [1]))
}

is not domain independent, because f [2] is not bound to a value. All TRC
queries introduced later on in this thesis can be easily shown to be domain
independent.

Given (linearly ordered) sets X = X1,X2, . . . ,Xn and Y = Y1,Y2, . . . ,

Yn of attributes and two tuple variables s and t, the notation s[X] = t[Y]
stands for s[X1] = t[Y1] ∧ s[X2] = t[Y2] ∧ . . . ∧ s[Xn] = t[Yn].

2.1.5 Constraints

It is nowadays considered fundamental that relational database management
systems, in addition to effectively store and retrieve data, are able to ensure
that some properties hold over the data. These properties are expressed under
the form of Boolean queries. At any time, a database db under some constraint
C has to satisfy C. We introduce next some classes of constraints that play a
central role in database systems.

2.1.6 Primary Keys

Every relation name R is associated with a unique primary key, which is a
nonempty subset of schema(R). If the primary key of a relation name R is
equal to schema(R), then R is called full-key.

An R-relation r is said to satisfy its primary key if no two distinct tuples
in r agree on all attributes of R’s primary key. In other words, assuming that

2.1. PRELIMINARIES 23

K = A1,A2, . . . ,Ak is the key of R, then r satisfies its primary key if the
following formula holds true:

∀s ∈ R ∀t ∈ R (s[K] = t[K]⇒ s = t) .

Henceforth, we will assume without loss of generality that in the linearly
ordered set schema(R), the attributes of the primary key precede all other
attributes. That is, if schema(R) is the linearly ordered set A1,A2, . . . ,An,
then for all 1 ≤ i ≤ j ≤ n, if Aj belongs to R’s primary key, then so does Ai.
It is also common practice to underline primary key attributes to distinguish
them from other attributes.

In the unnamed perspective, every relation name is associated with a pair
[n, k] of positive integers where n = |schema(R)| and k is the cardinality of
the primary key. The primary key of schema(R) then consists of the first k
attributes in the linear order.

2.1.7 Functional dependencies

Functional dependencies (abbreviated FD) are a widespread form of con-
straints. Informally, in a relation R, a set of attributes B is functionally
dependent on another set of attributes A if any pair of facts in R agreeing
on the values of attributes in A also agree on the values of attributes in B.

A functional dependency is an expression of the form R : A → B where
R is a relation name and A,B ⊆ schema(R). We say that a database db
satisfies R : A → B, denoted db |= R : A → B, if it satisfies the following
Boolean query:

∀s ∈ r ∀t ∈ r (s[A] = t[A]⇒ s[B] = t[B]) .

A functional dependency R : A → B is called trivial if it is satisfied by
every R-relation. It can be easily shown that R : A → B is trivial if and only
if B ⊆ A. A functional dependency R : A → B is called a key dependency
if B = schema(R). Obviously, if K is the primary key of R, then an R-

24 CHAPTER 2. CONSISTENT QUERY ANSWERING

Models Id MinimumAge NumberOfParts Motorized

5230 12 272 No
1234 14 4242 No
5243 14 2530 No
2045 16 2025 Yes
3752 16 1527 Yes

Figure 2.2: A relation Models storing data about construction game models.

relation satisfies its primary key if and only it satisfies the key dependency
R : K → schema(R).

Example 3. Consider the relation Models of Figure 2.2. The following func-
tional dependencies are satisfied by the tuples of R:

• R : {Id} → {MinimumAge,NumberOfParts,Motorized};

• R : {NumberOfParts} → {Id};

• R : {MinimumAge} → {Motorized}.

Note that the second functional dependency is satisfied by the relation of Fig-
ure 2.2, but is probably not a constraint that should be satisfied at all times, as
two distinct construction game models could have the same number of parts.

The functional dependency R : {Motorized} → {MimimumAge} does
not hold as the value No for attribute Motorized is associated to two distinct
values for attribute MinimumAge (that are 12 and 14).

Let Σ be a set of functional dependencies and let A → B be a functional
dependency, all over (the attributes of) relation name R. We say that A→ B

is a logical consequence of Σ, denoted by Σ |= A→ B, if every R-relation that
satisfies Σ also satisfies A → B. It is well known that logical implication of
functional dependencies is decidable in polynomial time.

2.1. PRELIMINARIES 25

Licensing Id License

5230 LucasArts
1234 LucasArts
1234 NuclearBlast
2045 Disney

Figure 2.3: A relation Licensing associating models from Figure 2.2 to license
information.

2.1.8 Inclusion Dependencies

Inclusion dependencies express that attribute values found in the tuples of one
relation, must re-occur in the tuples of another relation.

Formally, let R and S be two relation names taken from some schema S
(R and S do not have to be distinct) Let A = {A1,A2, . . . ,An} be a subset
of the attribute names of R and let B = {B1,B2, . . . ,Bn} be a subset of the
attribute names of S (note that |A| = |B|). Let db be a database over S. Then
db satisfies the inclusion dependency from R[A] to S[B], denoted R[A] ⊂ S[B],
if and only if db satisfies the following Boolean query:

∀r ∈ R (∃s ∈ S (s[B] = r[A])) .

Example 4. The relations Models from Figure 2.2 and Licensing from Fig-
ure 2.3 satisfy the inclusion dependency Licensing[{Id}] ⊂ Models[{Id}].

On the other hand, Models[{Id}] ⊂ Licensing[{Id}] does not hold because
model 3752 is not associated to any license.

2.1.9 Join Dependencies

A join dependency involves n subsets of the attributes of some relation. It
expresses that if n tuples over each of these subsets agree on their common
attributes, then there must exist a tuple in the complete relation which agrees
with each of the n tuples.

26 CHAPTER 2. CONSISTENT QUERY ANSWERING

Preferences Name Likes Dislikes

Bart SQL NOSQL
Bart QBE NOSQL
Bart SQL nullvalues
Bart QBE nullvalues
Homer post−its Bart

Figure 2.4: A relation Preferences storing people’s preferences and satisfying
the join dependency Preferences : ./ [{Name,Likes}, {Name,Dislikes}].

Let R be a relation name. Let A1, A2, . . . , An be subsets of (the attributes
of) R. Let r be an R-relation. Then r satisfies the join dependency over A1, A2,

. . . , An, denoted r : ./ [A1, A2, . . . , An], if and only if r satisfies the following
Boolean query:

∀r1 ∈ R . . . ∀rn ∈ R(
(∧1≤i<j≤n ri[Ai ∩Aj] = rj [Ai ∩Aj])⇒
∃t ∈ R (∧ni=1 t[Ai] = ri[Ai])

)

Example 5. Consider the relation Preferences of Figure 2.4. This relation
satisfies the join dependency ./ [{{Name,Likes}, {Name,Dislikes}}]. That
is, if some tuple states that person p likes x, and another tuple states that p
dislikes y, then there must be a tuple 〈p, x, y〉 in Preferences.

A join dependency R : ./ [A1, A2, . . . , An] is called trivial if it is satisfied by
every R-relation. It can be easily shown that R : ./ [A1, A2, . . . , An] is trivial
if and only if for some i ∈ 1, 2, . . . , n, Ai contains all attributes of R.

2.2 Data Cleaning

Given a schema S, a set of constraints Σ over S and a database db over S, db
is said to satisfy Σ, denoted db |= Σ, if for every constraint C ∈ Σ, db satisfies

2.3. REPAIRS 27

C. A set of constraint Σ is satisfiable if there exists at least one database db
such that db |= Σ.

A database may falsify one or more constraints it is supposed to satisfy.
This situation can notably arise from the merging of several conflicting sources
into one single relational databases, or from errors when data is copied. In
such a situation, the usual solution is to ask an expert to change the data in
the database so that it satisfies all the desired constraints. This way of dealing
with inconsistent data is called data cleaning [RD00]. There are situations,
however, where data cleaning is impractical, unaffordable or undesirable. For
example, assume that a client database stores two different dates of birth for
the same client. Data cleaning should restore the correct date of birth for that
client. However, at data cleaning time, an expert may not be able to determine
which date of birth is correct. Contacting the client may be unaffordable, and
guessing the birth date may be undesirable.

2.3 Repairs

When it is not possible or desirable to clean the data, the database user has to
work with inconsistent data. That is, a database for which constraints exist
but are not satisfied. Such a database is called inconsistent. When dealing
with such a database, we want queries to return only answers that hold true
independently of the way the database is cleaned. This approach is called
Consistent Query Answering (CQA) and depends on the constraints to be
satisfied and on a given notion of repair.

Intuitively, a repair r of some inconsistent database db is a consistent
database that minimally differs from db. The notion “minimally differs” can
be defined in several ways, and this gives rise to several notions of repair. In
the introduction of this thesis, we considered only primary key constraints and
repairs that are maximal consistent subsets of the original database. We start
by exploring this notion of repair in more details, then we introduce some
other notions of repairs that have been addressed in the literature.

28 CHAPTER 2. CONSISTENT QUERY ANSWERING

Votes Question Voter Answer

Bestbeer Francis Cornet
Bestbeer Clara MaesRadler
Bestbeer Chris Cornet
Bestwine Francis Chablis
Bestwine Chris Chablis

Cred CredibleVoter

Francis
Clara

Figure 2.5: A database storing votes and credible voters.

The repair semantics in the following sections are relative to a fixed set Σ
of constraints. A database is consistent if it satisfies all constraints in Σ, and
is inconsistent otherwise.

2.3.1 Inclusion-Based Repairs

Let db be a (possibly inconsistent) database. Under the inclusion semantics,
a database r′ ⊆ db is a repair for db if r′ is consistent and there exists
no consistent database r′′ such that r′ (r′′ ⊆ db. Note that a consistent
database has itself as unique repair.

Example 6. Consider the inconsistent database from Figure 2.5. A fact
Votes(a, b, c) means that voter b answered c to question a. Consider the fol-
lowing set of constraints: Σ = {Votes : {Question} → {Answer}}. That is,
a consistent database must associate at most one answer to each question.

In each repair of this inconsistent database, a unique answer is associated
to each of the two questions. As there are two possible answers for the Bestbeer
question and one possible answer for the Bestwine question, there are two
repairs for this database. One of these repairs is shown in Figure 2.6.

2.3. REPAIRS 29

Votes Question Voter Answer

Bestbeer Clara MaesRadler
Bestwine Francis Chablis
Bestwine Chris Chablis

Cred CredibleVoter

Francis
Clara

Figure 2.6: A repair under the inclusion semantics for the database of Fig-
ure 2.5 with Σ = {Votes : {Question} → {Answer}}.

2.3.2 Symmetric Difference-Based Repairs

Given two arbitrary sets A and B, their symmetric difference, noted A∆B,
is the set (A \ B) ∪ (B \ A). Given a (possibly inconsistent) database db, a
database r is a repair for db under the symmetric difference semantics if r is
consistent and there exists no consistent database r′ such that r′∆db (r∆db.

Example 7. Consider again the database from Figure 2.5, but let Σ be the
following set of constraints: {Votes[{Voter}] ⊂ Cred[{CredibleVoter}]}.

Under the symmetric difference semantics, the database has two distinct
repairs, which are obtained by either deleting all tuples about Chris from the
relation Votes, or by inserting 〈Chris〉 into the relation Cred.

2.3.3 Cardinality-Based Repairs

Given a (possibly inconsistent) database db, a database r is a repair for db
under the cardinality semantics if r is consistent and there exists no consistent
database r′ such that |r′∆db| < |r∆db|.

Example 8. Consider again the database and constraints of Example 7. Un-
der the cardinality semantics, there exists only one repair which is obtained by
inserting the tuple 〈Chris〉 into the relation Cred.

30 CHAPTER 2. CONSISTENT QUERY ANSWERING

2.3.4 Tuple-Based or Value-Based

In our three repairs semantics above, databases are repaired by deleting en-
tire tuples from the database or by inserting new tuples. This “tuple-based”
style of repairing may not be desirable in all situations. An employee record,
for example, may contain many correct data fields (first name, family name,
salary, sex, address. . .) together with one incorrect field (e.g., year of birth
2090). In this situation, if we restore consistency by deleting the entire tu-
ple, we also lose the correct data. In this situation, it seems more reasonable
to restore consistency by means of updates, e.g., by changing the birth year
2090 into 1990 or Unknown. Such update-based (or value-based) repairing was
introduced and studied in [Wij05].

As another example, consider again Example 7 about symmetric difference-
based repairs. Under update-based repairing, a new repair pops up, in which
each occurrence of Chris is replaced with Clara. In tuple-based repairing, this
would not be a legal repair because it is “further away” from the original
database than the repair obtained by deleting all tuples about Chris.

2.4 Consistent Query Answering

The paradigm of Consistent Query Answering (CQA) is defined relative to a
fixed repair notion. Let S be a database schema and Σ be a set of constraints
over S. Let db be an inconsistent database over S with respect to Σ. Let Q
be a query over S. We are interested in finding the answers to Q that are true
in every repair of db. Such an answer is called consistent.

Example 9. We work with the inclusion semantics for repairs. Consider
again the database (which we call db) from Figure 2.5 with Σ = {Votes :
Question → Answer}. From Example 6, we know that there exist two dis-
tinct repairs for db. The first repair (which we call r1) is given in Figure 2.6
and the second repair (r2) is given in Figure 2.7. Let Q be the following query:

Q = {(q, r) | ∃v (Votes(q, v, r) ∧ Cred(v))} ,

2.4. CONSISTENT QUERY ANSWERING 31

Votes Question Voter Answer

Bestbeer Francis Cornet
Bestbeer Chris Cornet
Bestwine Francis Chablis
Bestwine Chris Chablis

Cred CredibleVoter

Francis
Clara

Figure 2.7: Another repair under the inclusion semantics for the database of
Figure 2.5 with Σ = {Votes : Question→ Answer}.

expressing “What are the question-answer pairs associated to credible voters?”
Since Q(r1) = {(Bestbeer,MaesRadler), (Bestwine,Chablis)} and Q(r2) =

{(Bestbeer,Cornet), (Bestwine,Chablis)}, the consistent answer to Q on db is
the intersection {(Bestwine,Chablis)}.

In the remaining of this document, we restrict Σ to contain only primary
keys, one per relation. It can be easily seen that under this restriction, differ-
ent repair semantics (based on inclusion, symmetric difference, or cardinality)
coincide.

We conclude this section with another example.

Example 10. We consider the database db shown in Figure 2.8. A fact
Student(n, l) means that student n works in lab l. A fact Lab(l, r) means that
r is the rating of lab l. The primary keys of Student and Lab are {Name}
and {Lab} respectively. The Student-relation has four repairs (because Teemo
and An are associated to two labs), and the Lab-relation has two repairs. Con-
sequently, db has eight repairs in total.

Consider the query “Give the pairs of students and their associated rating,”
formally Q = {(s, r) | ∃l(Student(s, l) ∧ Lab(l, r))}. It can be easily verified
that the consistent answer to Q on db is the set {(Ed,A), (An,A)}.

32 CHAPTER 2. CONSISTENT QUERY ANSWERING

Student Name Lab

Ed SSI
Frank Robotics
Teemo SSI
Teemo Imagery
An SSI
An Hardware

Lab Lab Rating

SSI A
Robotics A
Robotics B
Hardware A

Figure 2.8: A database featuring students working in labs associated to ratings.

Chapter 3

Consistent Query Answering
in First-Order Logic

This chapter first sets the context in which we will work, and then presents
a method for solving the problem of consistent query answering under the
inclusion semantics for repairs with respect to primary keys.

3.1 The problem CERTAINTY(Q)

As indicated in the end of the previous chapter, we fix the repair semantics
to be the inclusion repair semantics. That is, given a database db, the set of
repairs of db, denoted repairs(db), is the set of maximal consistent subsets
of db. We will often use the term uncertain database at places where the term
database would be sufficient and correct. In doing so, we want to emphasize
that databases need not be consistent. In the database literature, the term
uncertain/incomplete database often refers to some representation system that
allows representing a set of possible [database] worlds [AHV95, Chapter 19].
In our setting, an uncertain database can also be seen as the representation
of the set of its repairs.

We also restrict our study to primary key constraints, as stated in Sec-
tion 2.1.6. Each relation name R is associated with a signature [n, k] (1 ≤

33

34 CHAPTER 3. CQA IN FO

k ≤ n) where n is the arity of R, and k is the cardinality of R’s primary key.
If F is an R-atom, then keyvars(F) denotes the set of variables occurring in
F [1], . . . , F [k].

If ϕ is a closed first-order formula (which can express a database constraint
or a Boolean query) and db is a database (which can be a repair), then we
write db |= ϕ to denote that db satisfies ϕ according to standard first-order
logic semantics. For a fixed first-order query Q(~x) (over some fixed schema
S), CERTAINTY(Q(~x)) is the following problem:

Problem CERTAINTY(Q(~x))

Input Uncertain database db over S

Output The consistent answer to Q(~x), i.e., the set of tuples ~a such that
∀r ∈ repairs(db), r |= Q(~a)

Given a first-order query Q(~x), we write bQ(~x)c for the mapping that takes
as input an uncertain database and returns the consistent answer to Q(~x).
Note that bQ(~x)c is a query (in the sense of [Lib04, Definition 2.7]), even
though it may not be expressible in first-order logic or some other common
query language.

In this thesis, we will limit the input queries for CERTAINTY(Q(~x)) to
the class of self-join-free Boolean conjunctive queries. An important classifi-
cation task is the following.

Problem Complexity classification task

Input Self-join-free Boolean conjunctive query Q

Question Give lower and upper complexity bounds for the problem
CERTAINTY(Q)

3.1. THE PROBLEM CERTAINTY(Q) 35

Notice that in the above complexity classification task, we assume that
the input queries Q are Boolean, and that CERTAINTY(Q) asks whether
Q is true in every repair. This allows us to restrict our attention to com-
plexity classes for decision problems (in particular, P and coNP). However,
most of our results extend to non-Boolean queries, as will become clear from
Theorem 2.

Koutris and Wijsen [KW15,KW17] have solved this complexity classifica-
tion task, as follows.

Theorem 1. For every Boolean self-join-free conjunctive query Q,

• CERTAINTY(Q) is either in P or coNP-complete, and it can be
decided in polynomial time (in the size of Q) which of the two cases
applies;

• it can be decided in polynomial time whether or not CERTAINTY(Q)
is in FO; and

• if CERTAINTY(Q) is in FO, then a first-order query that solves
CERTAINTY(Q) can be effectively constructed.

If CERTAINTY(Q(~x)) can be solved in first-order logic, then a first-
order query that solves CERTAINTY(Q(~x)) is called a consistent first-order
rewriting for Q(~x), as defined next.

Definition 1. Let Q(~x) be a first-order query. A first-order query φ(~x) is said
to be a consistent first-order rewriting for Q(~x) if the following are equivalent
for every uncertain database db and tuple ~a:

1. Q(~a) is true in every repair of db; and

2. φ(~a) is true in db.

The usage of the term “rewriting” is common in the literature on CQA,
but can be considered a misnomer because in most cases Q and φ are not
logically equivalent. As a matter of fact fact, in other applications (like query

36 CHAPTER 3. CQA IN FO

rewriting under views or ontologies), “rewriting” commonly means “equiva-
lent rewriting.” Consistent first-order rewritings are of practical importance
because, as illustrated next, they can be translated into SQL and executed on
any SQL DBMS.

Example 11. Consider again the database db from Figure 2.8 (where Name
is the key of relation Student and Lab is the key of relation Lab) and the
query Q(s, r) = ∃l(Student(s, l) ∧ Lab(l, r)).

It can be verified that the following query φ(s, r) is a consistent first-order
rewriting for Q:

φ(s, r) = ∃l(Student(s, l)∧
∀l(Student(s, l)⇒ (

Lab(l, r)∧
∀r′(Lab(l, r′)⇒ r′ = r)))

.

This chapter aims at giving a systematic way of constructing consistent
first-order rewritings for self-join-free conjunctive queries whenever they exist.
We will first argue why in the study of CERTAINTY(Q) for self-join-free
conjunctive queries Q, we can treat free variables as constants, and, as a
consequence, restrict our attention to Boolean queries.

Definition 2. Let φ(x1, . . . , xn), with n ≥ 0, be a first-order formula with free
variables x1, . . . , xn. Let c1, . . . , cn be distinct constants. Then φx1,...,xn 7→c1,...,cn

denotes the formula obtained from φ by replacing each free occurrence of
xi by ci (for each 1 ≤ i ≤ n). Obviously, for every database db, db |=
φx1,...,xn 7→c1,...,cn if and only if db |= φ(c1, . . . , cn).

The following definition, borrowed from [KW17], introduces typing in
databases. Intuitively, in the technical treatment of self-join-free conjunctive
queries Q, one can assume that if two positions in Q contain distinct variables,
then the corresponding “columns” in any database instance have no values in
common. Furthermore, it can be assumed that these columns contain no con-
stant that also occurs in Q. For example, for the query Q = {R(x, y), S(y),

3.1. THE PROBLEM CERTAINTY(Q) 37

T(0)}, where 0 is a constant, it can be assumed that whenever a database
contains R(a, b) and S(c), then it will be the case that a 6= b and a 6= c (but it
may be that b = c). Furthermore, it can be assumed that a 6= 0, b 6= 0, and
c 6= 0. This simplifying assumption is no longer valid if self-joins are allowed
(see Example 12 for an example), and is a major reason why most proofs of
this thesis do not carry over to conjunctive queries with self-joins.

Definition 3 (Typed uncertain databases [KW17]). For every variable x, we
assume an infinite set of constants, denoted type(x), such that x 6= y implies
type(x)∩ type(y) = ∅. Let Q be a self-join-free conjunctive query and let db
be an uncertain database. We say that db is typed relative to Q if for every
atom R(x1, . . . , xn) in Q, for every i ∈ {1, . . . , n}, if xi is a variable, then
for every fact R(a1, . . . , an) in db, ai ∈ type(xi) and the constant ai does not
occur in Q.

An uncertain database db can be trivially transformed into an uncertain
database db′ that is typed relative to Q such that CERTAINTY(Q) yields
the same answer on problem instances db and db′. Indeed, we can take db′

to be the smallest database such that for every atom R(x1, . . . , xn) in Q, if
db contains R(a1, . . . , an), then db′ contains R(ax1

1 , . . . , axn
n). Here, each cs

denotes a constant such that 1. cs1
1 = cs2

2 if and only if both c1 = c2 and
s1 = s2, and 2. cs = c if and only if c = s. Further, if x is a variable,
then type(x) contains all (and only) constants of the form cx. Intuitively,
occurrences of constants in db are “tagged” by the variable or constant that
occurs at the same position in Q, and these tags are unique because Q is
self-join-free. Because of this transformation, the assumption that uncertain
databases are typed can be made without loss of generality in the complexity
classification task of CERTAINTY(Q) for self-join-free conjunctive queries.
This assumption is useful because it simplifies the technical treatment.

In this thesis, most theoretical results on consistent first-order rewriting
are stated for self-join-free conjunctive queries that are Boolean, i.e., that
contain no free variables. We will now argue that this restriction is not a
severe one, because free variables can be treated as constants. In the following

38 CHAPTER 3. CQA IN FO

theorem, the notation x/a means “the variable symbol x interpreted as the
constant symbol a.” Before giving the theorem, we illustrate why the absence
of self-joins is significant for the results in this thesis, and for Theorem 2 in
particular.

Example 12. Let Q(x) = R(x, 0)∧R(c, 1), where c, 0, 1 are distinct constants.
This query has a self-join. When we search for valuations θ of x that make Q
true in every repair of some uncertain database, it is significant to distinguish
between θ(x) = c and θ(x) 6= c. Obviously, Q(c) = R(c, 0) ∧ R(c, 1) evaluates
to false on every consistent database. It follows that Q(c) evaluates to false
on every repair of any uncertain database, and thus c cannot be a consistent
answer. On the other hand, for any constant a distinct from c, Q(a) = R(a,
0) ∧ R(c, 1) can evaluate to true on a consistent database. It is correct to
conclude that c 6= c is a consistent first-order rewriting for Q(c), but x 6= x is
not a consistent first-order rewriting for Q(x).

Theorem 2. Let Q(x, ~y) be a self-join-free conjunctive query and let φ(x, ~y)
be a first-order query such that no constant of type(x) occurs in Q or φ. Let
a be a constant of type(x). Then, the following are equivalent:

1. φ(x, ~y) is a consistent first-order rewriting for Q(x, ~y); and

2. φ(x/a, ~y) is a consistent first-order rewriting for Q(x/a, ~y).

Proof. It is obvious that 1 implies 2 . For the opposite implication, assume
that, when x is interpreted by the constant a, then φ(x, ~y) is a consistent
first-order rewriting for Q(x, ~y). The desired result then holds by genericity
of constants of type(x). In particular, if φ(x, ~y) contains an equality x = c,
then, since c /∈ type(x) by the hypothesis of the theorem, the equality x = c
evaluates to false for every valuation of x by some constant in type(x).

Theorem 2 suggests the following method to compute a consistent first-
order rewriting φ for some non-Boolean self-join-free conjunctive query Q:

3.1. THE PROBLEM CERTAINTY(Q) 39

• let x1, . . . , xn be the free variables of Q;

• letQ′ beQ(x1/a1, . . . , xn/an), where each ai is a fresh constant in type(xi);

• let φ′ be a consistent first-order rewriting for Q′;

• let φ be φ′ in which each occurrence of each constant ai is replaced back
to xi.

Then φ is a consistent first-order rewriting for Q.
This allows us to restrict our results to Boolean self-join-free conjunctive

queries, without loss of generality. Note that φ does not depend on the con-
stants a1, . . . , an. An example follows.

Example 13. Consider again the query from Example 11:

Q =
{

(s, r) | ∃l
(
Student(s, l) ∧ Lab(l, r)

)}
.

The problem of finding a consistent first-order rewriting for Q now reduces
to finding a consistent first-order rewriting for Q′ where every free variable is
replaced with a constant:

Q′ =
{

() | ∃l
(
Student(cs, l) ∧ Lab(l, cr)

)}
.

This is enough thanks to Theorem 2 which allows us to build a consistent first-
order rewriting for Q given a consistent first-order rewriting for Q′, which has
the particularity of being Boolean.

Consider the following consistent first-order rewriting φ′ for Q′:

φ′() = ∃l(Student(cs, l)∧
∀l(Student(cs, l)⇒ (

Lab(l, cr)∧
∀r′(Lab(l, r′)⇒ r′ = cr)))).

Then a consistent first-order rewriting for Q is

φ′(s, r) = ∃l(Student(s, l)∧
∀l(Student(s, l)⇒ (

Lab(l, r)∧
∀r′(Lab(l, r′)⇒ r′ = r)))).

40 CHAPTER 3. CQA IN FO

3.2 Attack Graphs

The construct of attack graph weas first introduced in [Wij10a] and is the main
tool for establishing Theorem 1. Let Q be a self-join-free Boolean conjunctive
query (denoted by its set of atoms). We define K(Q) as the following set of
functional dependencies:

K(Q) := {keyvars(F)→ vars(F) | F ∈ Q} .

For every atom F ∈ Q, we define F+,Q as the following set of variables:

F+,Q := {x ∈ vars(Q) | K(Q \ {F}) |= keyvars(F)→ x} .

Here, the symbol |= denotes standard logical entailment. The attack graph
of Q, denoted attackgraph(Q), is a directed graph whose vertices are the
atoms of Q. There is a directed edge from F to G (F 6= G) if there exists a
sequence

F0
z1_ F1

z2_ F2 . . .
zn_ Fn (3.1)

where

• F0, . . . , Fn are atoms of Q;

• F0 = F and Fn = G; and

• for all i ∈ {1, 2, . . . , n}, zi ∈ vars(Fi−1) ∩ vars(Fi) and zi 6∈ F+,Q.

A directed edge from F to G in the attack graph of Q is also called an attack
from F to G, denoted by F Q

 G. The sequence (3.1) is called a witness for
the attack F Q

 G. If F Q
 G, then we also say that F attacks G (or that G

is attacked by F).

Example 14. Let Q = {R(x, y), S(y, z), T(z, x), U(x, u), V(x, u, v)}. We have
R+,Q = {x, u, v}. A witness for R Q

 T is R y
_ S z

_ T. Note that, by an abuse
of notation, we write R to mean the R-atom of Q. The complete attack graph
is shown in Figure 3.1.

3.2. ATTACK GRAPHS 41

R(x, y)

T(z, x) S(y, z)

U(x, u)

V(x, u, v)

Figure 3.1: Attack graph of the query in Example 14.

The notion of attack graph is a syntactic notion. We now give some in-
tuition behind the semantics of attacks, relative to some fixed self-join-free
Boolean conjunctive query Q. It is instructive to start with the meaning of
unattacked atoms, i.e., atoms with zero indegree in the attack graph. One can
show that if some atom F ofQ is unattacked, then for every uncertain database
db, the following property holds true: if Q is true in every repair of db, then
there exists a valuation θ over keyvars(F) (where θ depends on db) such that
θ(Q) is true in every repair of db. In other words, if F is unattacked and Q
is true in every repair of db, then Q is true in every repair of db for some
fixed value of F ’s primary key. Furthermore, one can show that this property
precisely characterizes unattacked atoms, i.e., the property never holds true
for attacked atoms. 1 Take, for example, the query Q0 = {R(x, y), S(y)}. Let
db = {R(a, 1), R(a, 2), S(1), S(2)}, which has two repairs: r1 = {R(a, 1), S(1),
S(2)} and r2 = {R(a, 2), S(1), S(2)}. Both repairs satisfy Q0, but this is no
longer true if we would fix the primary key of S: the first repair falsifies Q0y 7→2

1This observation led to the term “attack” [Wij]: atoms undergoing no attack can fix a
primary key value independent of other atoms; attacked atoms, on the other hand, depend
on the values chosen by their attackers.

42 CHAPTER 3. CQA IN FO

and the the second repair falsifies Q0y 7→1. It is then correct to conclude that
the S-atom is attacked. On the other hand, the primary key of R can be fixed
in this example: both repairs satisfy Q0x 7→a. Moreover, it is not hard to see
that if all repairs of some uncertain database db′ satisfy Q0, then there exists
some value a′ (which depends on db′) such that all repairs satisfy Q0x 7→a′ .
In view of this, it is correct to conclude that the R-atom is unattacked. A
consistent first-order rewriting for Q0 is

∃x
(
∃yR(x, y) ∧ ∀y

(
R(x, y) =⇒ S(y)

))
.

The leading existential quantification (∃x in this example) captures that if all
repairs of some uncertain database db satisfy Q0, then there exists a value a
such that all repairs of db satisfy Q0x 7→a.

Attack graphs allow us to determine whether a self-join-free Boolean con-
junctive query has a consistent first-order rewriting and to compute such a
rewriting if it exists.

Theorem 3 ([KW17]). For every Boolean self-join-free conjunctive query Q,
the problem CERTAINTY(Q) is in FO if and only if Q’s attack graph is
acyclic. Moreover, if CERTAINTY(Q) is in FO, then a consistent first-
order rewriting for Q can be effectively constructed.

The if-part of the proof of Theorem 3, which can be found in [KW17], is
constructive: if Q’s attack graph is acyclic, then we can effectively construct
a consistent first-order rewriting for Q. In what follows, we explain the main
ideas underlying this construction. To this extent, let Q be a Boolean self-join-
free conjunctive query with an acyclic attack graph. We show, by induction
on the number |Q| of atoms in Q, the existence and the construction of a
consistent first-order rewriting for Q.

The proof of the if-part of Theorem 3 is obvious if |Q| = 0; this is the base
case of the induction. For the induction step, assume that Q with |Q| ≥ 1
has an acyclic attack graph. Then Q’s attack graph must contain an atom
with zero indegree. Let id denote the identity substitution. We distinguish
two cases.

3.2. ATTACK GRAPHS 43

Case RewEmptyKey. The following is obvious. If Q contains R(~a, ~y) with
vars(~a) = ∅, then for every uncertain database db, the following are
equivalent:

1. Q is true in every repair of db; and

2. db contains an R-fact R(~a,~b) such that for every atom R(~a,~c) in
db, id~y 7→~c is well-defined and id~y 7→~c(Q′) is true in every repair of
db, where Q′ = Q \ {R(~a, ~y)}.

Note that the atom R(~a, ~y) with vars(~a) = ∅ will always have zero inde-
gree in Q’s attack graph.

Case RewAtom. The following result has been proven in [KW17]. If Q’s
attack graph contains an unattacked atom R(~x, ~y) with vars(~x) 6= ∅,
then for every uncertain database db, the following are equivalent:

1. Q is true in every repair of db; and

2. there exists ~a such that id~x7→~a is well-defined and id~x7→~a(Q) is true
in every repair of db. Note that the R-atom in id~x7→~a(Q) contains no
variable at a primary-key position, and hence Case RewEmptyKey
applies.

Assume that the attack graph of Q contains an unattacked atom R(~a, ~y)
or R(~x, ~y). Let ~z be a sequence of variables that contains exactly once each
variable of this atom, and let~c be a sequence of distinct constants not occurring
in Q. It has been shown in [KW17] that Q′~z 7→~c has an acyclic attack graph,
hence by Theorem 2 and the induction hypothesis, Q′(~z) has a consistent
first-order rewriting (call it φ′(~z)).

From what precedes, it is correct to conclude that if the attack graph ofQ is
acyclic, then we can construct a consistent first order-rewriting forQ. Roughly,
Case RewAtom results in an existential quantification expressing the existence
of ~a, and Case RewEmptyKey then results in a universal quantification over
all the R-facts of the form R(~a,~c).

44 CHAPTER 3. CQA IN FO

For example, if the unattacked atom is R(a, x, x, x, y, y, b), then the follow-
ing is a consistent first-order rewriting:

∃x ∃y(R(a, x, x, x, y, y, b)∧
∀u∀v ∀w(R(a, x, x, u, y, v, w)⇒ u = x ∧ v = y ∧ w = b ∧ φ′(x, y))).

The conjunction u = x∧ v = y ∧w = b captures that id~y 7→~c in Case RewEmp-
tyKey must be well-defined. The following section studies in more depth the
construction of consistent first-order rewritings.

3.3 Rewriting Function

In this section, we describe a function that takes as input a self-join-free
conjunctive query Q with an acyclic attack graph and outputs a consistent
first-order rewriting for Q. The function is split up in several subfunctions
constructed according to the proof of Theorem 3. As the functions recursively
call themselves, we first give the expected input and outputs of the functions.

3.3.1 Expected input/outputs

Function Rewrite

Input Q is a query in SJFCQ that has a consistent first-order rewrit-
ing.

Output A consistent first-order rewriting for Q.

Function RewAtom

Input Q is a Boolean self-join-free conjunctive query with an acyclic
attack graph.

Input R is a relation name such that there exists an R-atom in Q which
is not attacked in the attack graph of Q.

Output A consistent first-order rewriting for Q.

Function RewEmptyKey

3.3. REWRITING FUNCTION 45

Input Q is a Boolean self-join-free conjunctive query with an acyclic
attack graph.

Input R is a relation name such that there exists an R-atom in Q whose
primary key contains no variables.

Output A consistent first-order rewriting for Q.

We now introduce these three functions and argue that they are correct.

3.3.2 Function Rewrite

This function is the entry point of our rewriting process. Its role is just to find
an atom that is not attacked and to call Function RewAtom. It also handles
the case in which Q is empty.

Input: Q is a n-ary query in SJFCQ that has a consistent first-order
rewriting.

Result: A consistent first-order rewriting φ for Q.
if Q is empty then

return true;
else

Let x1, . . . , xn be the free variables of Q;
Let Q′ be Qx1,...,xn→ax1 ,...,axn ;
Let F be an unattacked R-atom of Q′;
Let φ be RewAtom(Q′, R);
return φax1 ,...,axn→x1,...,xn ;

Function Rewrite(Q)

It is clear that true is a consistent rewriting for the empty query. When
a non-empty query Q is given as parameter to Function Rewrite, a non-
attacked atom is randomly picked from Q—note that the existence of such an
atom is ensured by the acyclicity condition on the attack graph—and passed
to the Function RewAtom.

46 CHAPTER 3. CQA IN FO

The valuations idxi 7→axi and their inverses idaxi 7→xi implement the rewriting
strategy for non-Boolean queries outlined in the paragraph after the proof of
Theorem 2. The constants axi are as described in Definition 3.

3.3.3 Function RewAtom

This function removes the variables in the primary key of the selected unattacked
atom, producing a query meeting the preconditions of Function RewEmptyKey,
which requires that the primary key of the selected unattacked atom contains
no variables.

Input: Q is a Boolean self-join-free conjunctive query with an acyclic
attack graph.

Input: R is a relation name such that Q contains an R-atom that is
unattacked in the attack graph of Q.

Result: A consistent first-order rewriting φ for Q.
Let F be the R-atom of Q;
if keyvars(F) is empty then

return RewEmptyKey(Q, R);
else

Let x be a variable from keyvars(F);
Let Q′ be Qx→ax ;
Let φ be RewAtom(Q′, R);
return ∃x (φax→x);

Function RewAtom(Q, R)

It is obvious that the function terminates because the number of variables
in the primary key of the R-atom decreases at each recursive call (until it
reaches zero, at which point Function RewEmptyKey is called, whose execu-
tion will remove the R-atom).

The correctness of Function RewAtom is supported by Case RewAtom
of Theorem 3.

3.3. REWRITING FUNCTION 47

3.3.4 Function RewEmptyKey

This last function is to be applied on an R-atom whose primary key is a
sequence ~a without variables. It constructs a first-order formula in which a
universal quantification ranges over all R-facts with primary key value ~a.

Input: Q is a Boolean self-join-free conjunctive query with an acyclic
attack graph.

Input: R such that Q contains an R-atom F = R(x1, x2, . . . , xk, xk+1,

xk+2, . . . , xn) satisfying keyvars(F) = ∅.
Result: A consistent first-order rewriting for Q.
C ← true;
V ← ∅;
Q′ ← Q \ {F};
for i = k + 1 to n do
Q′ ← Q′xi→axi ;
if xi is a variable that does not occur in {xk+1, xk+2, . . . , xi−1} then

yi is xi;
V ← V ∪ {xi};

else
yi is the fresh variable vR

i ;
C ← C ∧ vR

i = xi;
Let φ′ be Rewrite(Q′);
foreach xi ∈ V do

φ′ ← φ′axi→xi
;

Let φ be ∀yk+1 . . . ∀yn(R(x1, . . . , xk, yk+1, . . . , yn)⇒ C ∧ φ′);
return ∃V (F) ∧ φ;

Function RewEmptyKey(Q, R)

The correctness of this function is supported by Case RewEmptyKey
of Theorem 3. The main idea can be illustrated by taking R(~a, x, x, c) as an
example. In this case, the rewriting must verify that whenever an uncertain

48 CHAPTER 3. CQA IN FO

database contains R(~a, x, y2, y3), then it must be the case that y2 = x and
y3 = c:

∀x∀y2∀y3
(
R(~a, x, y2, y3)⇒ (y2 = x ∧ y3 = c)

)

Note that we introduce two fresh variables y2 and y3, but we must keep the
variable x (i.e., there is no fresh variable y1), because x can re-occur in the
atoms that have not yet been rewritten. Thus, Function RewEmptyKey
traverses the non-primary-key positions of F from left to right, and whenever
it finds a variable that has been encountered before or a constant, it adds an
appropriate equality to C.

3.3.5 Examples

We now illustrate the application of Function Rewrite by means of an example.

Let Q = {R(x, x, y, y, z, v, a), S(v, w)}. We name the R-atom F and the
S-atom G. Note that we can give Q as input to Function Rewrite as its attack
graph is acyclic (it is contains a single attack from F to G).

The initial call to Function Rewrite(Q) recognizes that Q is not empty,
finds out that F is not attacked, and returns the result of RewAtom(Q, R).
At this point Function RewAtom will call itself recursively as the key of F
contains the variable x. The query argument will be {R(ax, ax, y, y, z, v, a),
S(v, w)}.

In turn, this will trigger the execution of Function RewEmptyKey, which
will finish the treatment of the R-atom.

3.3. REWRITING FUNCTION 49

bQc = Rewrite(Q)
= RewAtom(Q, R)
= ∃x(φax→x), where

φ = RewAtom(R(ax, ax, y, y, z, v, a) ∧ S(v, w), R)
= RewEmptyKey(R(ax, ax, y, y, z, v, a) ∧ S(v, w), R)
= ∃y ∃z ∃v(R(ax, ax, y, y, z, v, a)∧

∀vR
1 ∀y ∀vR

3 ∀z ∀v ∀vR
6 (R(ax, vR

1 , y, v
R
3 , z, v, v

R
6)⇒ (

vR
1 = ax ∧ vR

3 = y ∧ vR
6 = a ∧ ψay ,az ,av→y,z,v))), where

ψ = Rewrite(S(av, w))

The expansion of the subquery goes as follows:

ψ = Rewrite(S(av, w))
= RewAtom(S(av, w), S)
= RewEmptyKey(S(av, w), S)
= ∃w(S(av, w)∧

∀w(S(av, w)⇒ (
Rewrite(∅)))).

Summing everything up and applying remaining substitutions, we obtain

ψ = ∃w(S(av, w)) ∧ ∀w(S(av, w)⇒ true)
φ = ∃y ∃z ∃v(R(ax, ax, y, y, z, v, a)) ∧ ∀vR

1 ∀y ∀vR
3 ∀z ∀v ∀vR

6 (
R(ax, vR

1 , y, v
R
3 , z, v, v

R
6)⇒ vR

1 = ax ∧ vR
3 = y ∧ vR

6 = a∧
∃w(S(v, w)) ∧ ∀w(S(v, w)⇒ true))

bQc = ∃x(
∃y ∃z ∃v(R(x, x, y, y, z, v, a)) ∧ ∀vR

1 ∀y ∀vR
3 ∀z ∀v ∀vR

6 (
R(x, vR

1 , y, v
R
3 , z, v, v

R
6)⇒ vR

1 = x ∧ vR
3 = y ∧ vR

6 = a∧
∃w(S(v, w)) ∧ ∀w(S(v, w)⇒ true))).

Obviously, further syntactic simplifications can be applied. For example,
∀w(S(v, w) ⇒ true) can be replaced by true. Such syntactic simplifications
will be studied in Chapter 6.

50 CHAPTER 3. CQA IN FO

Non-Boolean queries can be treated as explained in the paragraph follow-
ing the proof of Theorem 2. Take, for example, Q(x) = R(x, x). Only Func-
tion Rewrite is concerned with free variables. The function call Rewrite(R(x,
x)) will expand to RewAtom(R(ax, ax), R)ax→x. The final output will then be
R(x, x) ∧ ∀vR

1 (R(x, vR
1)⇒ vR

1 = x), which is the expected output.

3.4 Related Work

The investigation of the problem CERTAINTY(Q) was pioneered by Fux-
man and Miller [FM05,FM07], who defined a large subclass of SJFCQ such
that every query Q in the subclass possesses a consistent first-order rewriting.
This result has later on been improved by Wijsen [Wij10a,Wij12], who de-
veloped an effective method to decide, given an acyclic query Q in SJFCQ,
whether Q has a consistent first-order rewriting. Finally, decidability of the
existence of consistent first-order rewritings for the entire class SJFCQ was
settled by Koutris and Wijsen [KW17].

In their conclusion of [FM07], Fuxman and Miller [FM05,FM07] raised the
question whether SJFCQ contains queries Q such that CERTAINTY(Q) is
in P but not first-order expressible. This question was answered affirmatively
by Wijsen [Wij10b].

Kolaitis and Pema [KP12] showed that for every Boolean query Q in
SJFCQ with exactly two atoms, CERTAINTY(Q) is either in P or coNP-
complete, and it is decidable which of the two is the case. More recently,
for all Boolean queries Q in SJFCQ, an effective complexity classification of
CERTAINTY(Q) into three classes (FO, P, coNP-complete) was estab-
lished by Koutris and Wijsen [KW17].

All aforementioned results assume queries without self-join. For queries Q
with self-joins, only fragmentary results about the complexity of the problem
CERTAINTY(Q) are known [CM05,Wij09].

The counting variant of CERTAINTY(Q), written]CERTAINTY(Q),
takes as input an uncertain database db and asks to determine the number of

3.4. RELATED WORK 51

repairs of db that satisfy Boolean query Q. As shown in [Wij13], this problem
is intimately related to query answering in block-independent-disjoint (BID)
probabilistic databases [DRS09,DRS11]. Maslowski and Wijsen [MW13] have
proved that for every Boolean query Q in SJFCQ, the counting problem
]CERTAINTY(Q) is either in FP or]P-complete, and it is decidable which
of the two is the case.

In the past, the paradigm of CQA has been implemented in expressive for-
malisms, such as Disjunctive Logic Programming [GGZ03] and Binary Integer
Programming (BIP) [KPT13]. In these formalisms, it is relatively easy to
express an algorithm that computes consistent answers to conjunctive queries
under primary key constraints. The drawback is that these algorithms may,
in the worst case, take exponential time in cases where, in theory, consis-
tent answers are computable in polynomial time or expressible in first-order
logic. In the latter case, the consistent answer can be computed by a single
SQL query using standard database technology, including query optimization.
In [Ber11, page 38], the author mentions that logic programs for CQA can-
not compete with solutions in first-order logic when they exist. Likewise, in
an experimental comparison of EQUIP [KPT13] and ConQuer [FFM05], the
authors of the former system found that BIP never outperformed solutions in
SQL.

52 CHAPTER 3. CQA IN FO

Chapter 4

Presence of Satisfied
Constraints

In this chapter, we introduce the problem CERTAINTY(Q) in the presence
of a set Σ of dependencies. The problem CERTAINTY(Q,Σ) takes as input
an uncertain database db that satisfies Σ, and asks whether every repair of
db satisfies Q.

This chapter extends our article [GPW14] in the following way: while the
results in [GPW14] assume that the input conjunctive query Q is acyclic (in
the sense of [BFMY83]), no such assumption is made in the current chapter.

4.1 Motivation

Consider the relations Employee and Place in Figure 4.1. Employees are
uniquely identified by their first and last name. The relation Place gives
touristic appreciations for cities in terms of Michelin stars. There is uncer-
tainty about the salary and city of Ed Smith, about the touristic value of the
city of Acri, and about the country of Mons.

All existing works on CERTAINTY(Q) have assumed that primary keys
are the only integrity constraints involved, and that they can be violated
at any one time. However, in practice, some primary keys or some other

53

54 CHAPTER 4. PRESENCE OF SATISFIED CONSTRAINTS

Employee First Last Birth Salary City Country

Ed Smith 1960 50 000 Acri Italy
Ed Smith 1960 60 000 Mons Belgium
An Allen 1970 40 000 Mons Belgium

Place City Country Stars

Acri Italy ∗∗
Acri Italy ∗ ∗ ∗
Mons Belgium ∗ ∗ ∗
Mons France ∗ ∗ ∗

Figure 4.1: Uncertain database satisfying Employee : City→ Country.

constraints may well be satisfied. This happens, for example, when some (but
not all) constraints are enforced by the database system. In this chapter, we
study the problem CERTAINTY(Q) in the presence of a set Σ of functional
and join dependencies. The problem CERTAINTY(Q,Σ) takes as input an
uncertain database db that satisfies Σ, and asks whether Q evaluates to true
on every repair of db. We next illustrate the interest of this problem by two
examples.

Example 15. Although the relation Employee in Figure 4.1 violates its pri-
mary key, it can be observed that birth years are unique for each employee,
and that the functional dependency (FD) Employee : City → Country (call
it σ15) holds (but Place : City→ Country is violated).

Consider the conjunctive query Q15 asking whether some employees live in
three-star cities:

Q15 = ∃u∃v ∃w ∃x ∃y ∃z
(
Employee(u, v, x, y, z) ∧ Place(y, z, ∗ ∗ ∗)

)
From Theorem 3, it follows that CERTAINTY(Q15) is not in FO (and
from [KW17, Theorem 3.2], it follows that the problem is coNP-complete).

4.1. MOTIVATION 55

Nevertheless, the results developed in the current chapter will demonstrate
that CERTAINTY(Q15, {σ15}) is first-order expressible and hence in the low
complexity class FO. In practice, this means that the problem can be solved
by a single SQL query, which is shown near the end of the chapter in List-
ing 4.1. This example shows that in the presence of an FD that is satisfied,
the complexity of consistent query answering can significantly decrease, from
intractable to highly tractable, even if that FD is not a key dependency.

Example 16. The relation Employee of Figure 4.1 contains two tuples about
Ed Smith. One may want to consider that the first tuple contains the correct
salary (50 000), and the second tuple the correct domicile (Mons). This is
possible in value-based repairing but impossible in tuple-based repairing, where
either the first or the second tuple has to be selected in a repair.

As advocated in [Wij06], to simulate value-based repairing, we may want to
chase uncertain databases with join dependencies (JDs) to “distribute” uncer-
tain values. Figure 4.2 shows the result of chasing Employee with the following
JD (call it σ16):

Employee :./


{First,Last,Birth},
{First,Last,Salary},
{First,Last,City,Country}

 .
The effect is that we obtain for each employee all combinations of salaries and
cities. A repair can now select the third tuple, stating that Ed earns 50 000
and lives in Mons.

On the other hand, the attributes City and Country are considered as one
composite attribute in σ16, that is, even though Ed is associated with both city
Acri (first row of Employee) and country Belgium (second row of Employee),
we do not want to consider the combination Acri Belgium.

The three components of the above JD σ16 share the primary key {First,
Last} of Employee. We will use the term key join dependency (KJD) for
JDs in which all two distinct components share the primary key (and share
no other attribute). In general, if we chase a database with a KJD σ prior to

56 CHAPTER 4. PRESENCE OF SATISFIED CONSTRAINTS

First Last Birth Salary City Country

Ed Smith 1960 50 000 Acri Italy
Ed Smith 1960 60 000 Acri Italy
Ed Smith 1960 50 000 Mons Belgium
Ed Smith 1960 60 000 Mons Belgium
An Allen 1970 40 000 Mons Belgium

Figure 4.2: Relation that results from the chase of Employee with JD σ16.

consistent query answering, we obtain a database that satisfies σ. This means
that for any Boolean query Q, we shift from CERTAINTY(Q) to the problem
CERTAINTY(Q, {σ}), using the information that σ holds.

In this chapter, we study the complexity of CERTAINTY(Q,Σ) when
Q is an acyclic Boolean conjunctive query without self-join, and Σ is a set of
FDs and KJDs, containing at most one KJD per relation name. In particu-
lar, we show that it is decidable to determine whether CERTAINTY(Q,Σ)
is first-order expressible (and hence in the low complexity class FO). This
contribution is of practical relevance, because it allows us to decide which
cases of CERTAINTY(Q,Σ) can be solved by standard “first-order” SQL
capabilities.

Conceptually, our work adds a new flavor to consistent query answer-
ing [ABC99, Ber11]. Existing works in this field have always assumed that
all constraints can be potentially violated. In our approach, we distinguish
two classes of constraints: those that may be violated (primary keys in our
setting), and those that are known to be satisfied. In practice, one may learn
the satisfied constraints in various ways: one may simply look at the data
and “mine” dependencies that hold; one may know that the database system
enforces some constraints; or one may apply a KJD to simulate value-based
repairing [Wij06], as illustrated by Example 16. In any way, the knowledge
about satisfied constraints can be favorably exploited in consistent query an-
swering.

4.2. PROBLEM STATEMENT 57

This chapter is organized as follows. Section 4.2 first introduces some
theoretical notions, and then states the problem. Section 4.3 extends the
notion of attack graph to deal with FDs and KJDs, and shows that it is de-
cidable, given Q and Σ, whether CERTAINTY(Q,Σ) is first-order express-
ible. Section 4.4 explains how to effectively construct a first-order definition of
CERTAINTY(Q,Σ) if it exists. Finally, Section 4.5 concludes the chapter.

4.2 Problem Statement

Let R be a relation name with signature [n, k]. A key join dependency (KJD)
has the form R :./ [K1,K2, . . . ,Kl] with l ≥ 1 such that

1. for 1 ≤ i ≤ l, Ki ⊆ {1, 2, . . . , n};

2. K1 ∪K2 ∪ . . . ∪Kl = {1, 2, . . . , n};

3. for every 1 ≤ i < j ≤ l, we have Ki 6= Kj and Ki ∩Kj = {1, 2, . . . , k}.

A functional dependency (FD) has the form

R : i1, i2, . . . , im → l

where 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n and 1 ≤ l ≤ n, l /∈ {i1, i2, . . . , im}. We
will assume m ≥ 1, although the technical treatment can be easily extended to
treat FDs with an empty left-hand side. The following definition of satisfaction
of KJDs and FDs is standard (see, e.g., [AHV95, page 159]). Let db be an un-
certain database with some relation R. We say that two R-facts R(a1, a2, . . . , ak,
ak+1, ak+2, . . . , an) and R(b1, b2, . . . , bk, bk+1, bk+2, . . . , bn) agree on position i
if ai = bi, where i ∈ {1, 2, . . . , n}. We say that db satisfies the KJD R : ./ [K1,

K2, . . . ,Kl] if whenever A1, A2, . . . , Al are key-equal R-facts of db, then there
exists an R-fact B ∈ db such that for all i ∈ {1, 2, . . . , l}, B and Ai agree on
all positions in Ki. We say that db satisfies R : i1, i2, . . . , im → l if for all
R-facts A,B ∈ db, if A and B agree on all positions among i1, i2, . . . , im, then
they agree on position l. If σ is an FD or a KJD, then we write db |= σ to
denote that db satisfies σ.

58 CHAPTER 4. PRESENCE OF SATISFIED CONSTRAINTS

We say that a set Σ of KJDs and FDs is jd-singular if it does not contain
two distinct KJDs with the same relation name; the number of FDs per relation
name is not restricted.

Let Q be a Boolean query in SJFCQ. Let Σ be a jd-singular set of KJDs
and FDs. The problem of consistent query answering in the presence of con-
straints is the following.

Problem CERTAINTY(Q,Σ)

Input Uncertain database db such that db |= Σ

Question Does every repair of db satisfy Q?

If Σ = ∅, then CERTAINTY(Q,Σ) and CERTAINTY(Q) are the same
problem. On the other extreme, if Σ captures all primary key constraints, then
input databases contain no primary key violations, and CERTAINTY(Q,Σ)
asks, given consistent database db, whether Q evaluates to true on db. The
problem CERTAINTY(Q,Σ) is in coNP, because if CERTAINTY(Q,Σ)
has “no” as its answer, then a “no”-certificate is a repair of db that satisfies
Σ and falsifies Q. We are interested in deciding its complexity for varying Q
and Σ, in particular, given Q and Σ:

1. Is it decidable to determine whether CERTAINTY(Q,Σ) is first-order
expressible?

2. Is it decidable to determine whether CERTAINTY(Q,Σ) is in P?

3. Is it decidable to determine whether CERTAINTY(Q,Σ) is coNP-
hard?

Saying that CERTAINTY(Q,Σ) is first-order expressible is tantamount to
saying that there exists a first-order sentence ϕ such that for every uncertain
database db that satisfies Σ, the following are equivalent:

4.3. EXTENDING ATTACK GRAPH 59

• every repair of db satisfies Q;

• db |= ϕ.

As in Chapter 3 for CERTAINTY(Q), we call such a first-order sentence ϕ
a first-order definition of CERTAINTY(Q,Σ), or alternatively, a consistent
first-order rewriting of Q relative to Σ. Again its practical interest is obvious:
ϕ can be encoded in SQL and executed on any uncertain database by means
of standard database technology.

The following Theorem is the main result of this chapter.

Theorem 5. Given Q and Σ, it is decidable whether CERTAINTY(Q,Σ)
is first-order expressible, where

• Q is a Boolean self-join-free conjunctive query, and

• Σ is a jd-singular set of KJDs and FDs.

Moreover, if CERTAINTY(Q,Σ) is first-order expressible, then a first-order
definition of CERTAINTY(Q,Σ) can be effectively constructed.

Theorem 5 is a fairly deep result of practical interest. Its proof will be
developed from Section 4.3 on. The proof relies on the hypothesis that Σ
contains at most one KJD per relation name. Nevertheless, for the intended
purpose of simulating update-based repairing (cf. Example 16), one KJD per
relation suffices.

4.3 Extending Attack Graph

Attack graphs have been defined in Section 3.2. In this section, given a Boolean
query Q in SJFCQ and a set Σ of dependencies, we compute a new query
denoted Q ⊗ Σ. This new query will be conjunctive and self-join-free. The
main result will be that CERTAINTY(Q,Σ) is first-order expressible if and
only if the attack graph of Q⊗ Σ is acyclic (this is Theorem 4).

The operator ⊗ transforms query atoms and database facts according to
FDs and KJDs. We provide an example before giving the technical definition.

60 CHAPTER 4. PRESENCE OF SATISFIED CONSTRAINTS

Example 17. Assume an atom F = R(a1, a2, a3, a4, a5) with signature [5, 2].

• An FD R : 2, 3 → 4 (call it σ) will add to F two new atoms Rσ1 (a2, a3,

a4) and Rσ2 (a2, a3, a4). Here, Rσ1 and Rσ2 are two new relation names
which depend on σ. The two atoms differ in their relation names but are
otherwise identical.

• A KJD R : ./ [{1, 2, 3}, {1, 2, 4, 5}] will replace the atom F with three
atoms R./◦ (a1, a2, a3, a4, a5), R./1 (a1, a2, a3), and R./2 (a1, a2, a4, a5). Here,
R./◦ is a new relation name that is all-key, and R./1 , R./2 are new relation
names corresponding to the first and the second component of the KJD.

In the following, we denote by qschema(Q) the set of relation names used
in Q.

Definition 4. Let Q be a Boolean query in SJFCQ. Let db be an uncertain
database such that all relation names of db belong to qschema(Q).

Let Σ = Σ1 ∪ Σ2 where Σ1 is a jd-singular set of KJDs and Σ2 is a set of
FDs (with zero or more FDs per relation name). The Boolean self-join-free
conjunctive query Q ⊗ Σ and the uncertain database db ⊗ Σ are defined as
follows.

For every atom F = R(s1, s2, . . . , sk, sk+1, sk+2, . . . , sn) of Q:

1. If Σ1 contains no KJD for R, then Q⊗Σ contains F and db⊗Σ contains
all R-facts of db.

2. If Σ1 contains a KJD for R, then R./◦ (s1, s2, . . . , sn) is an atom of Q⊗Σ
where R./◦ is a new relation name with signature [n, n]. That is, R./◦ is
all-key.

For every R(a1, a2, . . . , ak, ak+1, ak+2, . . . , an) of db, it is the case that
db⊗ Σ contains R./◦ (a1, a2, . . . , an).

3. If Σ1 contains KJD R : ./ [K1,K2, . . . ,Kl], then for each i ∈ {1, 2, . . . ,
l}, the query Q⊗ Σ contains a new R./i -atom.

4.3. EXTENDING ATTACK GRAPH 61

R(x, y, z)

S(y, u, x, z)

R./◦ (x, y, z)R./1 (x, y) R./2 (x, z)

S(y, u, x, z)

Sσ1
1 (x, z, y) Sσ1

2 (x, z, y)

Figure 4.3: Attack graphs of Q1 (left) and Q1 ⊗ Σ1 (right).

If Ki = {1, 2, . . . , k, j1, j2, . . . , jm} with 1 < 2 < · · · < k < j1 < j2 <

· · · < jm ≤ n then the new R./i -atom is R./i (s1, s2, . . . , sk, sj1 , sj2 , . . . ,

sjm), where R./i is a new relation name of signature [k +m, k].

For every R(a1, a2, . . . , ak, ak+1, ak+2, . . . , an) of db, it is the case that
db⊗ Σ contains R./i (a1, a2, . . . , ak, aj1 , aj2 , . . . , ajm).

4. If Σ2 contains some FD R : i1, i2, . . . , im → l (call it σ), then Q ⊗ Σ
contains two new atoms Rσ1 (si1 , si2 , . . . , sim , l) and Rσ2 (si1 , si2 , . . . , sim , l),
where Rσ1 and Rσ2 are two new relation names with signature [m+ 1,m].

For every R(a1, a2, . . . , ak, ak+1, ak+2, . . . , an) ∈ db, it is the case that
db⊗ Σ contains Rσ1 (ai1 , ai2 , . . . , aim , al) and Rσ2 (ai1 , ai2 , . . . , aim , al).

5. Q ⊗ Σ contains no other atoms than those specified in this definition;
db⊗ Σ contains no other facts than those specified in this definition.

We refer to relation names R./◦ , R./i , Rσ1 , and Rσ2 as spurious relation names.
Atoms with a spurious relation name are called spurious atoms.

Example 18. Let Q1 = {R(x, y, z), S(y, u, x, z)}. Let Σ1 be the set of depen-
dencies containing KJD R : ./ [{1, 2}, {1, 3}] and FD S : 3, 4→ 1 (call it σ1).
The query Q1 ⊗ Σ1 contains the following atoms:

62 CHAPTER 4. PRESENCE OF SATISFIED CONSTRAINTS

• R./◦ (x, y, z) where R./◦ has signature [3, 3];

• R./1 (x, y) where R./1 has signature [2, 1] and corresponds to the first com-
ponent of the KJD;

• R./2 (x, z) where R./2 has signature [2, 1] and corresponds to the second
component of the KJD;

• S(y, u, x, z). Notice that Σ1 contains no KJD for S; and

• Sσ1
1 (x, z, y) and Sσ1

2 (x, z, y), both of signature [3, 2].

The attack graphs of Q1 and Q1 ⊗ Σ1 are shown on Figure 4.3.

The following lemma states that the operator ⊗ is first-order expressible.

Lemma 1. Let Q be a Boolean query in SJFCQ. Let Σ be a jd-singular
set of KJDs and FDs. For every spurious relation name S in Q ⊗ Σ, there
exists a first-order query ψS such that for every uncertain database db over
qschema(Q), the set of S-facts of db⊗ Σ is equal to ψS(db).

Proof. For every spurious relation name S, the query ψS is (by Definition 4)
a projection.

Lemma 2. Let Q be a Boolean query in SJFCQ. Let Σ = Σ1 ∪Σ2 where Σ1

is a jd-singular set of KJDs and Σ2 is a set of FDs. The following statements
are equivalent for every uncertain database db over qschema(Q) that satisfies
Σ:

1. every repair of db satisfies Q;

2. every repair of db⊗ Σ satisfies Q⊗ Σ.

Proof. For every uncertain database db over qschema(Q), let Jdb⊗ΣK be the
smallest subset of db⊗Σ such that Jdb⊗ΣK contains all facts with spurious
relation names of the form R./◦ or Rσi , where R ∈ qschema(Q), σ ∈ Σ2, and
i ∈ {1, 2}. Note that Jdb ⊗ ΣK does not contain facts with relation names of
the form R./i .

4.3. EXTENDING ATTACK GRAPH 63

Let f be the function with domain repairs(db) mapping each repair r of
db to f(r) := (r⊗Σ)∪ Jdb⊗ΣK. We show that for every uncertain database
db over qschema(Q) such that db |= Σ,

repairs(db⊗ Σ) = {f(r) | r ∈ repairs(db)} (4.1)

⊇ Let r be a repair of db with db |= Σ. We need to show that f(r) is
a repair of db⊗Σ. Since relation names of the form R./◦ are all-key and since
db |= Σ2, it follows that Jdb ⊗ ΣK is consistent. Consequently, it suffices to
show that f(r)\Jdb⊗ΣK is a maximal consistent subset of (db⊗Σ)\Jdb⊗ΣK.
The set f(r) \ Jdb ⊗ ΣK = (r ⊗ Σ) \ Jdb ⊗ ΣK contains two types of relation
names.

Relation names R ∈ qschema(Q) ∩ qschema(Q⊗ Σ).

Then, Σ1 contains no KJD for R. Then db and db⊗Σ contain the same
set of R-facts. Likewise, for every repair r of db, we have that r and
r⊗Σ contain the same set of R-facts. Clearly, the set of R-facts in r⊗Σ
is a repair of the set of R-facts in db⊗ Σ.

Relation names R./i ∈ qschema(Q⊗ Σ) with R ∈ qschema(Q).

Assume R has signature [n, k]. We can assume a KJD ./ [K1,K2, . . . ,Kl]
in Σ1 such that Ki = {1, 2, . . . , k, j1, j2, . . . , jm} with 1 < 2 < · · · < k <

j1 < j2 < · · · < jm ≤ n. Assume db⊗Σ contains R./i (a1, a2, . . . , ak, bk+1,

bk+2, . . . , bm). Then, db contains some fact F = R(a1, a2, . . . , ak, ak+1,

ak+2, . . . , an) such that for i ∈ {1, 2, . . . ,m}, we have aji = bi. Since r
contains exactly one R-fact that is key-equal to F , it follows that r ⊗ Σ
contains exactly one R./i -fact that is key-equal to R(a1, a2, . . . , ak, bk+1,

bk+2, . . . , bm). Consequently, the set of R./i -facts in r ⊗ Σ is a repair of
the set of R./i -facts in db⊗ Σ.

We conclude that f(r) is a repair of db⊗ Σ.
⊆ Let r′ be a repair of db⊗Σ with db |= Σ. We specify the construction

of a (unique) repair r of db such that r′ = f(r). For every relation name

64 CHAPTER 4. PRESENCE OF SATISFIED CONSTRAINTS

R ∈ qschema(Q) we proceed as follows. If Σ1 contains no KJD for R, then
we include in r all R-facts of r′. Assume next that Σ1 contains a KJD R : ./
[K1, . . . ,Kl] (call it σ), where the signature of R is [n, k]. Since db |= σ, it is
the case that for every i ∈ {1, . . . , l}, for every R./i -fact Ai of r′, there exists a
(unique) R-fact A in db such that Ai ∈ {A}⊗{σ} ⊆ r′; we include every such
A in r. Note that {A} ⊗ {σ} contains a number l of distinct facts that agree
on positions {1, . . . , k} and whose join is A. Since Σ is jd-singular, the set r
so constructed is consistent. It is now obvious that r is a repair of db such
that r′ = f(r). This concludes the proof of (4.1).

To conclude the proof, it suffices to note the following easy equivalences
for every r ∈ repairs(db):

r |= Q ⇔ r ⊗ Σ |= Q⊗ Σ

r ⊗ Σ |= Q⊗ Σ ⇔ f(r) |= Q⊗ Σ.

The following examples illustrate that in the proof of Lemma 2, it is im-
portant to require that db |= Σ.

Example 19. Let Q = {R(x, y, z)} and let Σ be the singleton containing KJD
R : ./ [{1, 2}, {1, 3}]. We have Q⊗ Σ = {R./◦ (x, y, z), R./1 (x, y), R./2 (x, z)}.

Let db = {R(a, b, b′), R(a, c, c′)}, which falsifies the KJD in Σ. We have
db⊗ Σ = {R./◦ (a, b, b′), R./◦ (a, c, c′), R./1 (a, b), R./1 (a, c), R./2 (a, b′), R./2 (a, c′)}.

Clearly, every repair of db satisfies Q. However, {R./◦ (a, b, b′), R./◦ (a, c, c′),
R./1 (a, b), R./2 (a, c′)} is a repair of db⊗ Σ that falsifies Q⊗ Σ.

Example 20. Let Q = {R(x, y, z)} and let Σ be the singleton containing the
FD R : 2→ 3 (call it σ). We have Q⊗ Σ = {R(x, y, z), Rσ1 (y, z), Rσ2 (y, z)}.

Let db = {R(a, c, d), R(b, c, e)}, which falsifies σ. We have db⊗Σ = {R(a,
c, d), R(b, c, e), Rσ1 (c, d), Rσ1 (c, e), Rσ2 (c, d), Rσ2 (c, e)}.

Clearly, every repair of db satisfies Q. However, {R(a, c, d), R(b, c, e), Rσ1 (c,
d), Rσ2 (c, e)} is a repair of db⊗ Σ that faslifies Q⊗ Σ.

4.3. EXTENDING ATTACK GRAPH 65

Theorem 4. Let Q be a Boolean query in SJFCQ. Let Σ be a jd-singular set
of KJDs and FDs. The following statements are equivalent:

1. CERTAINTY(Q,Σ) is first-order expressible.

2. The attack graph of Q⊗ Σ is acyclic.

Proof. 1⇒ 2 Proof by contraposition. Assume the attack graph of Q⊗Σ is
cyclic. By [KW17, Lemma 3.6], the attack graph of Q⊗Σ contains two atoms,
say F̃ and G̃, that mutually attack each other. It can be easily verified that:

1. if F̃ is an S./i -atom and G̃ a T./j -atom, where relation names S./i and T./j
come from KJDs for S and T respectively, then S 6= T;

2. the attack graph of Q ⊗ Σ contains no attacks starting from an R./◦ -
atom, where the relation name R./◦ comes from a KJD for R, because R./◦
is all-key; and

3. the attack graph of Q⊗ Σ contains no attacks starting from Rσi -atoms,
where the relation name Rσi comes from an FD σ ∈ Σ and i ∈ {1, 2}.

Consequently, we can assume distinct relation names S, T and positive integers
i, j such that F̃ is either an S-atom or an S./i -atom, and G̃ is either a T-atom
or a T./j -atom.

Let F and G be the S-atom and T-atom of Q respectively. Notice that
F and F̃ agree on all primary-key positions. Likewise, G and G̃ agree on all
primary-key positions.

Note incidentally that from F+,Q ⊆ F̃+,Q⊗Σ and G+,Q ⊆ G̃+,Q⊗Σ, it
follows that F and G mutually attack each other in the attack graph of Q.

We will show that CERTAINTY(Q,Σ) is L-hard (and hence not in FO).
The proof is a first-order reduction from CERTAINTY(Q0), with Q0 =
{R0(x, y), S0(y, x)}, to CERTAINTY(Q,Σ). The result then follows from
L-hardness of CERTAINTY(Q0) [KW17, Lemma 4.2].

We denote by f the first-order reduction from CERTAINTY(Q0) to
CERTAINTY(Q⊗ Σ), as specified in the proof of [KW17, Lemma 4.2]. If

66 CHAPTER 4. PRESENCE OF SATISFIED CONSTRAINTS

db is a legal input to CERTAINTY(Q0), then f(db) is a legal input to
CERTAINTY(Q⊗ Σ) with the following properties:

• The only relations in f(db) that can be inconsistent are the relations
corresponding to F̃ and G̃.

• For every KJD R : ./ [K1, . . . ,Kl] in Σ, among all relations R./1 , . . . , R./l in
f(db),1 our construction ensures that at most one will be inconsistent,
which happens if F̃ or G̃ has a relation name in R./1 , . . . , R./l . Since we can
always renumber indexes, we can assume without loss of generality that
for every i ∈ {1, . . . , l−1}, R./i is consistent (but R./l may be inconsistent).
It is straightforward to show the following variant of Heath’s theorem:
if K,A1, A2, . . . , Al are mutually disjoint sets of attributes, then {K →
A1,K → A2, . . . ,K → Al−1} |=./ [KA1,KA2, . . . ,KAl−1,KAl]. Note
that the set of functional dependencies does not contain K → Al. It
follows that the relation R./◦ in f(db) will satisfy the KJD ./ [K1, . . . ,Kl].

• Whenever Σ contains an FD σ on R, then Rσ1 and Rσ2 are both distinct
from F̃ and distinct from G̃, and thus their relations will be consistent
in f(db).

It is now straightforward to construct, in FO complexity, a database db0 that
satisfies Σ such that that db0 ⊗ Σ = f(db). Indeed, db0 deletes from f(db)
all Rσi -facts where σ is an FD, deletes from f(db) all R./i -facts with i ≥ 1,
and replaces every fact R./◦ (a1, . . . , an) with R(a1, . . . , ak, ak+1, . . . , an) where
the signature of R is [n, k]. From Lemma 2, it follows that the following are
equivalent:

1. every repair of f(db) = db0 ⊗ Σ satisfies Q⊗ Σ;

2. every repair db0 satisfies Q.

Since first-order reductions compose, it is correct to conclude that there exists
a first-order reduction from CERTAINTY(Q0) to CERTAINTY(Q,Σ).

1By an abuse of terminology, when we refer to relation R./
1 in f(db), we mean the set of

R./
1 -facts in f(db).

4.3. EXTENDING ATTACK GRAPH 67

2⇒ 1 Assume the attack graph of Q ⊗ Σ is acyclic. By Theorem 4,
CERTAINTY(Q⊗ Σ) is first-order expressible. We can assume a first-order
formula ψ such that for every uncertain database d̃b over qschema(Q⊗ Σ),
we have that ψ evaluates to true on d̃b if and only if every repair of d̃b satisfies
Q⊗ Σ.

For every uncertain database db over qschema(Q), it is the case that
db ⊗ Σ is an uncertain database over qschema(Q ⊗ Σ). It is correct to
conclude that for every uncertain database db over qschema(Q), we have
that ψ evaluates to true on db ⊗ Σ if and only if every repair of db ⊗ Σ
satisfies Q⊗ Σ.

By Lemma 1, db ⊗ Σ is first-order computable from db. Consequently,
there exists a first-order formula ψ̃ such that for every uncertain database db
over qschema(Q), we have that ψ̃ evaluates to true on db if and only if every
repair of db ⊗ Σ satisfies Q ⊗ Σ. In particular, for every uncertain database
db that satisfies Σ, the following are equivalent:

1. ψ̃ evaluates to true on db.

2. Every repair of db⊗ Σ satisfies Q⊗ Σ.

Then, by Lemma 2, for every uncertain database db that satisfies Σ, the
following are equivalent:

1. ψ̃ evaluates to true on db.

2. Every repair of db satisfies Q.

Consequently, CERTAINTY(Q,Σ) is first-order expressible.

Importantly, it happens that the attack graph of Q is cyclic, and the attack
graph of Q⊗Σ is acyclic. Thus, by Theorem 3 and Theorem 4, there are cases
where CERTAINTY(Q,Σ) is first-order expressible, but CERTAINTY(Q)
is not. We illustrate this by two examples.

Example 21. Figure 4.4 shows the cyclic attack graph of Q2. Figure 4.5
shows the acyclic attack graph of Q2 ⊗ {σ2} where σ2 = R : 5 → 6. By

68 CHAPTER 4. PRESENCE OF SATISFIED CONSTRAINTS

R(u, v, w, x, y, z)

S(y, z, ∗ ∗ ∗)

Figure 4.4: Attack graph of Q2.

R(u, v, w, x, y, z) S(y, z, ∗ ∗ ∗)

Rσ2
1 (y, z) Rσ2

2 (y, z)

Figure 4.5: Attack graph Q2 ⊗ {σ2} with σ2 = R : 5→ 6.

Theorem 3 and Theorem 4, CERTAINTY(Q2) is not first-order expressible,
but CERTAINTY(Q2, {σ2}) is first-order expressible.

Example 22. Consider again the query Q1 = {R(x, y, z), S(y, u, x, z)} intro-
duced in Example 18. The attack graph of Q1 is cyclic (as shown in Fig-
ure 4.3 (left)). Figure 4.3 (right) shows the attack graph of Q1 ⊗ Σ1 with
Σ1 = {R : ./ [{1, 2}, {1, 3}], S : 3, 4→ 1}. The latter attack graph is acyclic.

Incidentally, one can easily verify that if we delete the KJD and/or the FD
from Σ1, then the attack graph remains cyclic. That is, both the KJD and the
FD are needed to attain an acyclic attack graph.

The proof of Theorem 5 can now be given.

Theorem 5. Given Q and Σ, it is decidable whether CERTAINTY(Q,Σ)
is first-order expressible, where

• Q is a Boolean self-join-free conjunctive query, and

4.4. CONSTRUCTION OF CONSISTENT FO REWRITINGS 69

• Σ is a jd-singular set of KJDs and FDs.

Moreover, if CERTAINTY(Q,Σ) is first-order expressible, then a first-order
definition of CERTAINTY(Q,Σ) can be effectively constructed.

Proof. By Theorem 4, CERTAINTY(Q,Σ) is first-order expressible if and
only if the attack graph of Q ⊗ Σ is acyclic. Acyclicity of attack graphs can
be tested in quadratic time [KW17, Lemma 3.3]. Furthermore, the proof of
Theorem 4 is constructive, meaning that it constructs a first-order definition
of CERTAINTY(Q,Σ) if it exists.

4.4 Construction of Consistent First-Order Rewrit-
ings

Assume CERTAINTY(Q,Σ) is first-order expressible. The proof of The-
orem 4 implies that a first-order definition of CERTAINTY(Q,Σ) can be
constructed in two steps: start by constructing a first-order definition ψ of
CERTAINTY(Q⊗ Σ), and then substitute away from ψ all atoms with spu-
rious relation names. In this section, we develop a simpler approach in which
there is no need for these spurious relation names.

4.4.1 Attack Graph of (Q, Σ)

The following definition extends the notion of attack graph to deal with the
presence of KJDs and FDs.

Definition 5. Let Q be a Boolean query in SJFCQ. Let Σ be a jd-singular
set of KJDs and FDs. The attack graph of (Q,Σ) is a directed graph whose
vertices are the atoms of Q. If the attack graph of Q⊗ Σ contains an attack
F
Q⊗Σ
 G where F is an R-atom or an R./i -atom, and G is an S-atom or an

S./j -atom, then the attack graph of (Q,Σ) contains a directed edge from the
R-atom of Q to the S-atom of Q. Notice that spurious relation names Rσ1 , Rσ2 ,
Sσ1 , Sσ2 , originating from some FD σ, play no role in the construction of the
attack graph of (Q,Σ).

70 CHAPTER 4. PRESENCE OF SATISFIED CONSTRAINTS

Example 23. This example continues Example 22. From the attack graph
of Q1 ⊗ Σ1 in Figure 4.3 (right), one finds that the attack graph of (Q1,Σ1)
consists of a single directed edge from S(y, u, x, z) to R(x, y, z).

Clearly, if Σ = ∅, then the attack graph of (Q,Σ) is the same graph as
the attack graph of Q. The following lemma states that the attack graphs of
Q⊗ Σ and (Q,Σ) are either both cyclic or both acyclic.

Lemma 3. Let Q be a Boolean query in SJFCQ. Let Σ be a jd-singular set
of KJDs and FDs. The following are equivalent:

1. the attack graph of (Q,Σ) is acyclic;

2. the attack graph of Q⊗ Σ is acyclic.

Proof. 1 =⇒ 2 Proof by contraposition. Assume that the attack graph of
Q⊗Σ is cyclic. By [KW17, Lemma 3.6], the attack graph ofQ⊗Σ must contain
a cycle of size 2. So we can assume two atoms F,G such that F Q⊗Σ

 G
Q⊗Σ
 F .

For every FD σ defined on R, the corresponding atoms Rσ1 (~x, ~y) and Rσ2 (~x, ~y)
contain no outgoing attacks. We can assume without loss of generality that
for some R ∈ qschema(Q), it is the case that F is an R-atom or an R./i -atom.
Since no R./i -atom attacks an R./j -atom, it must be the case that G is an S-atom
or an S./k -atom for some S 6= R (S ∈ qschema(Q)). Then the attack graph of
(Q,Σ) contains a cycle involving the R-atom and S-atom of Q.

2 =⇒ 1 Assume that the attack graph of Q ⊗ Σ is acyclic. By [KW17,
Lemma 3.5], the attack graph of Q ⊗ Σ is transitive. Assume towards a
contradiction that the attack graph of (Q,Σ) contains a directed cycle. Then
it must be the case that the attack graph of Q ⊗ Σ contains an elementary
path from some R./i -atom (call it F̃) to some R./j -atom (call it G̃) where R ∈
qschema(Q) and i 6= j. Since the attack graph ofQ⊗Σ is transitive, it follows
F̃
Q⊗Σ
 G̃. This contradicts the obvious observation that the attack graph of

Q⊗ Σ contains no directed edge from an R./i -atom to some R./j -atom.

The following lemma is technical. It states that if R(~x, ~y) is unattacked in
the attack graph of (Q,Σ) and if Σ contains a KJD R : ./ [K1,K2, . . . ,Kl],

4.4. CONSTRUCTION OF CONSISTENT FO REWRITINGS 71

then in the attack graph of Q⊗ Σ,

1. each R./i -atom is unattacked (i ∈ {1, 2, . . . , l});

2. the R./◦ -atom can only be attacked by some R./i -atom; and

3. if σ is an FD of Σ, then the Rσ1 -atom and the Rσ2 -atom can only be
attacked by some R./i -atom.

Lemma 4. Let Q be a Boolean query in SJFCQ. Let Σ be a jd-singular set
of KJDs and FDs. Assume that Σ contains a KJD R : ./ [K1,K2, . . . ,Kl]. Let
F be the R-atom of Q. Let F̃ be the R./◦ -atom of Q⊗Σ, and for i ∈ {1, 2, . . . ,
l}, let Fi be the R./i -atom of Q⊗ Σ. If F is unattacked in the attack graph of
(Q,Σ), then

1. {F1, F2, . . . , Fl} are unattacked in the attack graph of Q⊗ Σ;

2. for every atom G ∈ Q⊗ Σ, if G Q⊗Σ
 F̃ , then G ∈ {F1, F2, . . . , Fl}; and

3. if Q⊗Σ contains an atom H with relation name Rσi for some FD σ ∈ Σ,
then for each G ∈ Q⊗ Σ, if G Q⊗Σ

 H, then G ∈ {F1, F2, . . . , Fl}.

Proof. Assume F is unattacked in the attack graph of (Q,Σ).
1 Assume towards a contradiction that for some atom G ∈ Q ⊗ Σ, we

have G Q⊗Σ
 Fi (for some i ∈ {1, 2, . . . , l}). Then F is attacked in the attack

graph of (Q,Σ), a contradiction.
2 Assume towards a contradiction that for some G ∈ (Q ⊗ Σ) \ {F1,

F2, . . . , Fl}, we have G Q⊗Σ
 F̃ . Since G Q⊗Σ

 F̃ , we can assume a variable
x ∈ vars(F̃) such that x /∈ G+,Q⊗Σ. Since there exists i ∈ {1, 2, . . . , l} such
that x ∈ vars(F̃) ∩ vars(Fi), it follows G Q⊗Σ

 Fi, contradicting property 1
shown above.

3 Let H be an atom of Q⊗Σ with relation name Rσi . Assume G ∈ Q⊗Σ
such that G Q⊗Σ

 H. Obviously, G 6= F̃ . From vars(H) ⊆ vars(F̃), it follows
G
Q⊗Σ
 F̃ . By property 2 shown above, G ∈ {F1, F2, . . . , Fl}.

72 CHAPTER 4. PRESENCE OF SATISFIED CONSTRAINTS

4.4.2 Free Variables

So far, we have assumed that all queries are Boolean. In the construction
of first-order definitions, we will have to treat queries with free variables.
In virtue of Theorem 2, it is possible to construct a consistent first-order
rewriting of a non-Boolean self-join-free conjunctive query if we can build
such a rewriting for the same query in which every free variable is replaced by
some constant. However it is not immediate that this theorem also applies to
the setting of this chapter.

In the following, the notation Q(u1, u2, . . . , ul), where u1, u2, . . . , ul are
distinct variables, indicates that the variables in u1, u2, . . . , ul are free in the
query Q. The problem of consistent query answering in the presence of satis-
fied constraints naturally extends to queries with free variables. Definition 6
straightforwardly extends the definition of CERTAINTY(Q(~x)) given in Sec-
tion 3.1 by adding a set Σ of constraints.

Definition 6. Let Q(u1, u2, . . . , ul) be a conjunctive query with free variables
u1, u2, . . . , ul. Let Σ be a set of first-order constraints.

We define CERTAINTY(Q(u1, u2, . . . , ul),Σ) as the function problem
that takes as input an uncertain database db and that returns as output all
sequences (a1, . . . , al) of constants, of length l, such that every repair of db
satisfies Q(a1, . . . , al).

A first-order definition of CERTAINTY(Q(u1, u2, . . . , ul),Σ) is a first-
order formula ϕ(u1, u2, . . . , ul) such that for every sequence a1, a2, . . . , al of
constants, for every uncertain database db that satisfies Σ, the following are
equivalent:

1. every repair of db satisfies Q(a1, a2, . . . , al);

2. db |= ϕ(a1, a2, . . . , al).

The addition of free variables is not fundamental. Assume we are asked
to determine a first-order definition of CERTAINTY(Q(u1, u2, . . . , ul),Σ)
where Q is a self-join-free conjunctive query. Let c1, c2, . . . , cl be distinct

4.4. CONSTRUCTION OF CONSISTENT FO REWRITINGS 73

constants not occurring in Q. Let Qu1,u2,...,ul→c1,c2,...,cl
be the query obtained

from Q by replacing each occurrence of ui with ci, for i ∈ {1, 2, . . . , l}. Let ϕ
be a first-order definition of CERTAINTY(Qu1,u2,...,ul→c1,c2,...,cl

,Σ). Clearly,
the query Qu1,u2,...,ul→c1,c2,...,cl

is Boolean. Since first-order definitions treat
all constants in a generic fashion, one can obtain a first-order definition of
CERTAINTY(Q(u1, u2, . . . , ul),Σ) by replacing each ci with ui in ϕ. This is
tantamount to saying that free variables are treated as constants. Likewise, in
the computation of attack graphs, free variables are to be treated as constants.

4.4.3 The Function rewriteΣ(Q)

In this section, we extend Function Rewrite introduced in Chapter 3 to
take into consideration jd-singular sets of KJDs and FDs. The function
rewriteΣ(Q) is almost identical to rewrite(Q) introduced in Chapter 3. The
only difference is that rewriteΣ(Q) rewrites atoms in a topological order
of the attack graph of (Q,Σ). We nevertheless give a detailed definition of
rewriteΣ(Q) so that we can rely upon it in the proof of Theorem 6.

Definition 7. Let Q(~u) be a query in SJFCQ. Let Σ be a jd-singular set of
KJDs and FDs such that the attack graph of (Q(~u),Σ) is acyclic. We define
rewriteΣ(Q(~u)) recursively as follows.

Case |Q| = 0. Then rewriteΣ(Q(~u)) = true.

Case |Q| > 0. Choose an atom F = R(~x, y1, . . . , ym) that is unattacked in
the attack graph of (Q,Σ). Let z1, . . . , zm be distinct variables and let C be a
conjunction of equalities constructed as follows. For i ∈ {1, . . . ,m},

• if yi is a variable that does not occur in ~u nor in 〈~x, y1, . . . , yi−1〉, then
zi is the same variable as yi;

• otherwise zi is a new variable and C contains zi = yi. Notice that this
case applies if yi is a constant, if yi is a (free) variable in ~u, or if yi is
a variable occuring in 〈~x, y1, . . . , yi−1〉.

74 CHAPTER 4. PRESENCE OF SATISFIED CONSTRAINTS

Let ~v be a sequence of variables that contains exactly once each variable
that occurs in 〈~x, y1, . . . , yi−1〉 and that does not occur in ~u. Then

rewriteΣ(Q(~u)) = ∃~v(R(~x, y1, . . . , yn)∧
∀z1 · · · ∀zm(R(~x, z1, . . . , zm)⇒
C ∧ rewriteΣ(Q′(~u,~v)))),

where Q′ = Q\{R(~x, y1, . . . , ym)}. Notice that the variables ~u that are free
in Q(~u) are also free in rewriteΣ(Q(~u)).

Notice that by [KW17, Lemma 3.7] and Lemma 3, the attack graph of
(Q′(~u,~v),Σ) is acyclic and hence the recursive call rewrite(Q′(~u,~v),Σ) is
well defined.

Theorem 6. Let Q and Σ be as in Definition 7. If CERTAINTY(Q,Σ) is
first-order expressible, then a first-order definition of it is given by rewriteΣ(Q).

Proof. Assume CERTAINTY(Q(~u),Σ) is first-order expressible. By Theo-
rem 4, the attack graph of Q(~u)⊗Σ is acyclic. By Lemma 3, the attack graph
of (Q(~u),Σ) is acyclic. Consequently, the rewrite function of Definition 7
applies to (Q(~u),Σ) and to (Q(~u)⊗ Σ, ∅). Let

ϕ(~u) = rewriteΣ(Q(~u));

ψ(~u) = rewrite∅(Q(~u)⊗ Σ).

It is known [KW17] that ψ(~u) is a consistent first-order rewriting for Q(~u)⊗Σ.
By Lemma 2, it suffices to show that for every uncertain database db such
that db |= Σ, for every sequence ~a of constants (where ~a has the same length
as ~u),

db |= ϕ(~a)⇔ db⊗ Σ |= ψ(~a).

The proof runs by induction on the number |Q| of atoms in Q. The result is
obvious if |Q| = 0. For the induction step, assume |Q| > 0.

Assume that the attack graph of (Q(~u),Σ) contains an unattacked atom
R(~x, y1, . . . , ym), as in Definition 7. In the proof, we will assume that Σ contains
a KJD R : ./ [K1, . . . ,Kl] (call it σ) for R. This assumption is without loss of

4.4. CONSTRUCTION OF CONSISTENT FO REWRITINGS 75

generality, because if Σ contained no KJD for R, we can always add a trivial
KJD R : ./ [{1, . . . , n}] where n is the arity of R. We have

∃~v(R(~x, y1, . . . , ym)∧
ϕ(~u) = ∀z1 · · · ∀zm(R(~x, z1, . . . , zm)⇒

(C ∧ ϕ′(~u,~v)))),
(4.2)

where

• ~v, z1, . . . , zm, C are as in Definition 7; and

• ϕ′(~u,~v) = rewriteΣ(Q′(~u,~v)) with Q′ = Q \ {R(~x, y1, . . . , ym)}.

By Lemma 4, no R./i -atom (1 ≤ i ≤ l) is attacked in the attack graph of Q⊗Σ.
Let

∃~v(R./1 (~x, ~y1) ∧ · · · ∧ R./l (~x, ~yl)∧
ψ̃(~u) = ∀z1 · · · ∀zm(R./1 (~x, ~z1) ∧ · · · ∧ R./l (~x, ~zl)⇒

(C ∧ ψ′(~u,~v)))),
(4.3)

where

• {R./i (~x, ~yi)}li=1 = {R(~x, y1, . . . , ym)} ⊗ {σ};

• {R./i (~x, ~zi)}li=1 = {R(~x, z1, . . . , zm)} ⊗ {σ}; and

• ψ′(~u,~v) = rewrite∅(Q′(~u,~v)⊗ Σ).

That is, ψ̃(~u) rewrites the R./i -atoms, but completely ignores the R./◦ -atom
and the Rδi -atoms for any functional dependency δ ∈ Σ. It is not hard to
convince oneself (see also Example 26 and syntactic simplifications introduced
in Chapter 6) that for every uncertain database db such that db |= Σ, for
every sequence ~a of constants (where ~a has same length as ~u),

db⊗ Σ |= ψ̃(~a)⇔ db⊗ Σ |= ψ(~a).

In particular, we argue next why we can safely ignore in (4.3) conjuncts that
result from “rewriting” R./◦ -atoms and Rδi -atoms for any functional dependency
δ ∈ Σ.

76 CHAPTER 4. PRESENCE OF SATISFIED CONSTRAINTS

Rationale for omitting R./◦ -atoms. Assume F = R./◦ (~x, y1, . . . , ym) is an
unattacked atom of Q′ where all variables in ~x, y1, . . . , ym are free. We have
rewrite∅(Q′) = R./◦ (~x, y1, . . . , ym) ∧ rewrite∅(Q′ \ {F}). By the construction
in Definition 4, if db ⊗ Σ contains facts R./1 (~x, ~y1), . . . , R./l (~x, ~yl), then it con-
tains R./◦ (~x, y1, . . . , ym). So the conjunct R./◦ (~x, y1, . . . , ym) can be omitted in
rewrite∅(Q′).

Rationale for omitting Rδi -atoms. Assume F = Rδi (~s, w) is an unattacked
atom of Q′ where all variables in ~s, w are free. We have

rewrite∅(Q′) = Rδi (~s, w) ∧ ∀z
(
Rδi (~s, z)⇒

(
z = w ∧ rewrite∅(Q′ \ {F})

))
.

For every uncertain database db such that db |= Σ, it will be the case that
db⊗Σ contains no two facts Rδi (~a, b), Rδi (~a, c) with b 6= c. The equality z = w

in the above rewriting will thus always evaluate to true. Consequently, there
is no need to rewrite the atom Rδi , which can thus be omitted.

From [KW17, Lemma 3.7], it follows that the attack graph of Q′(~u,~v)⊗Σ is
acyclic. From Theorem 4, it follows that CERTAINTY(Q′(~u,~v),Σ) is first-
order expressible. By the induction hypothesis, for every uncertain database
db such that db |= Σ, for all sequences ~a,~b of constants,

db |= ϕ′(~a,~b)⇔ db⊗ Σ |= ψ′(~a,~b).

From the form (4.2) and (4.3), it is correct to conclude that for every uncertain
database db such that db |= Σ, for every sequence ~a of constants (where ~a
has same length as ~u),

db |= ϕ(~a)⇔ db⊗ Σ |= ψ̃(~a).

This concludes the proof.

Example 24. We can now explain all technical details behind Example 15
introduced in Section 4.2. Figure 4.4 on page 68 shows the attack graph

4.4. CONSTRUCTION OF CONSISTENT FO REWRITINGS 77

R(u, v, w, x, y, z) S(y, z, ∗ ∗ ∗)

Figure 4.6: The attack graph of (Q2, {R : 5→ 6}).

R First Last Birth Sal City Country

Ed Smith 1960 50K Mons Belgium
An Allen 1970 40K Mons France

S City Country Stars

Mons Belgium ∗ ∗ ∗
Mons France ∗ ∗ ∗

Figure 4.7: Uncertain database falsifying R : City → Country.

of Q2. Since the attack graph is cyclic, we conclude (by Theorem 4) that
CERTAINTY(Q2) is not first-order expressible. Figure 4.5 on page 68 shows
the attack graph of Q2 ⊗ {R : 5 → 6}. Since the attack graph is acyclic, we
conclude (by Theorem 4) that CERTAINTY(Q2, {R : 5 → 6}) is first-order
expressible.

The attack graph of (Q2, {R : 5 → 6}) is shown in Figure 4.6. Based on
this attack graph, rewrite{R :5→6}(Q2) yields the following first-order sentence.

ϕ2 =
∃u∃v ∃w ∃x ∃y ∃z(R(u, v, w, x, y, z)∧
∀w ∀x ∀y ∀z(R(u, v, w, x, y, z)⇒

(S(y, z, ∗ ∗ ∗)∧
∀z′ ∀s(S(y, z′, s)⇒
z′ = z ∧ s = ∗ ∗ ∗))))

By Theorem 6, ϕ2 is a first-order definition of CERTAINTY(Q2, {R :
5→ 6}). Thus, for every uncertain database db that satisfies R : 5→ 6, it is
the case that ϕ2 evaluates to true on db if and only if Q2 evaluates to true on
every repair of db.

78 CHAPTER 4. PRESENCE OF SATISFIED CONSTRAINTS

SELECT ’yes’ FROM R AS R1
WHERE NOT EXISTS (

SELECT * FROM R AS R2
WHERE R2.FIRST = R1.FIRST

AND R2.LAST = R1.LAST

AND NOT EXISTS (

SELECT * FROM S AS S1
WHERE S1.CITY = R2.CITY
AND S1.COUNTRY = R2.COUNTRY
AND S1.STARS = ’***’
AND NOT EXISTS (

SELECT * FROM S AS S2
WHERE S2.City = S1.CITY
AND (

S2.Country <> S1.Country
OR S2.Stars <> ’***’))));

Listing 4.1: Certain SQL rewriting.

Unsurprisingly, ϕ2 does not provide consistent answers on uncertain databases
that falsify R : 5 → 6. For example, ϕ2 evaluates to false on the uncertain
database of Figure 4.7, even though all repairs of this database satisfy Q2.

Translating a first-order definition of CERTAINTY(Q,Σ) into SQL is
fairly straightforward. The performance of such SQL queries has been studied
in [DPW12].

Example 25. The first-order sentence ϕ2 of Example 24 translates into the
SQL query of Listing 4.1.

Example 26. Let Q = {R(x, y, y)} and let Σ be the singleton containing KJD

4.4. CONSTRUCTION OF CONSISTENT FO REWRITINGS 79

./ [{1, 2}, {1, 3}]. We have Q⊗Σ = {R./◦ (x, y, y), R./1 (x, y), R./2 (x, y)}. We have

rewriteΣ(Q) =
∃x ∃y(R(x, y, y)∧
∀y ∀z(R(x, y, z)⇒
y = z)).

Let ψ = rewrite∅(Q⊗ Σ), i.e.,

ψ =
∃x ∃y(R./1 (x, y)∧
∀y(R./1 (x, y)⇒

(R./2 (x, y)∧
∀z(R./2 (x, z)⇒

(z = y ∧ R./◦ (x, y, y)))))).

Let ψ̃ be the following sentence:

ψ̃ =
∃x ∃y((R./1 (x, y) ∧ R./2 (x, y))∧
∀y ∀z((R./1 (x, y) ∧ R./2 (x, z))⇒
y = z)).

ψ and ψ̃ both express that there exist facts R./1 (a, b), R./2 (a, b) for which there
exist no key-equal distinct facts.

For every uncertain database db that satisfies Σ, we have that the following
are equivalent:

1. db |= rewriteΣ(Q);

2. db⊗ Σ |= ψ; and

3. db⊗ Σ |= ψ̃.

This is no longer true for uncertain databases that violate Σ. For example, let
db0 = {R(a, b, b), R(a, c, c)}. We have db0 ⊗ Σ = {R./◦ (a, b, b), R./1 (a, b), R./2 (a,
b), R./◦ (a, c, c), R./1 (a, c), R./2 (a, c)}. Then, db0 |= rewriteΣ(Q), but db0 ⊗ Σ 6|=
ψ and db0 ⊗ Σ 6|= ψ̃.

80 CHAPTER 4. PRESENCE OF SATISFIED CONSTRAINTS

4.5 Conclusion

The problem of consistent query answering under primary keys, also known
as CERTAINTY(Q), has attracted much research attention in recent years.
This problem takes as its input an uncertain database db and asks whether
the Boolean query Q evaluates to true on every repair of db. In practical
situations, however, one may know that input databases satisfy some set Σ
of constraints, i.e., that the input databases are partially consistent. The
problem CERTAINTY(Q,Σ) takes as its input an uncertain database db
that satisfies Σ and asks whether the query Q evaluates to true on every repair
of db. The knowledge that some constraints be satisfied brings a new flavor
of practical interest to consistent query answering.

We studied CERTAINTY(Q,Σ) in case Q is a Boolean query in SJFCQ
and Σ is a set of FDs and KJDs, containing at most one KJD per relation
name. The main result is that it is decidable whether CERTAINTY(Q,Σ)
is first-order expressible. This allows to solve CERTAINTY(Q,Σ) by means
of standard SQL database technology.

Chapter 5

Under-Approximations of
Consistent Query Answers

Consistent Query Answering (CQA) is a principled approach for answering
queries on inconsistent databases. The consistent answer to a query Q on an
inconsistent database db is the intersection of the answers to Q on all repairs,
where a repair is any consistent database that is maximally close to db. Recall
from Chapter 1 that we write bQc for the query that maps every database to
the consistent answer to Q. Unfortunately, there exist simple conjunctive
queries Q and primary key constraints such that bQc has exponential data
complexity—which is completely impracticable—and cannot be expressed in
some standard database language (like SQL or Datalog).

In this chapter, we propose a new framework for divulging an inconsistent
database to end users, which adopts two postulates. The first postulate com-
plies with CQA and states that inconsistencies should never be divulged to
end users. Therefore, end users should only get consistent query answers. The
second postulate states that only those queries whose consistent answers can
be obtained with low data complexity (i.e., by a polynomial-time algorithm
or even a first-order logic query) can be answered. User queries that exhibit
a higher data complexity will be rejected.

A significant problem in this framework is as follows: given a rejected

81

82 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

M N A C

Ed 48 Mons
Ed 48 Paris
Dirk 29 Mons

F N A C

An 37 Mons
Iris 37 Paris

Figure 5.1: Example database with primary key violations.

query, find other queries, called under-approximations, that are accepted and
whose consistent answers are contained in those of the rejected query. We
provide solutions to this problem for the special case where the constraints
are primary keys and the queries are self-join-free conjunctive queries.

The results of this chapters have been published in [GPW15,GPW17].

5.1 Introduction

This chapter adopts the notion of uncertain database defined in Chapter 3. In
particular, we assume that the only constraints are primary keys, one per re-
lation. A repair of an inconsistent database db is a maximal subset of db that
satisfies all primary key constraints. Our running example given in Figure 5.1
stores ages and cities of residence of male and female persons. For simplic-
ity, assume that persons have unique names (attribute N). Every person has
exactly one age (attribute A) and city (attribute C). In the database of Fig-
ure 5.1, there is uncertainty about the city of Ed (it can be Mons or Paris).
The database can be repaired in two ways: delete either M(Ed, 48,Mons) or
M(Ed, 48,Paris). A maximal set of tuples that agree on their primary key will
be called a block; in Figure 5.1, blocks are separated by dashed lines.

A practical obstacle to CQA is that the shift to certainty semantics involves
a significant increase in (data) complexity. It is known for long [Mar02] that
there exist conjunctive queries Q that join two relations such that the data
complexity of bQc is already coNP-hard. If this happens, CQA is completely

5.1. INTRODUCTION 83

impracticable.
This chapter investigates ways to circumvent the high data complexity of

CQA in a realistic setting, which is based on the following assumptions:

• If a query returns an answer to a user, then every tuple in that answer
should belong to the consistent answer. In Libkin’s terminology [Lib15],
query answers must not contain false positives, i.e., tuples that do not
belong to the consistent answer.

• The only queries that can be executed in practice are those with data
complexity in FP or, even better, in FO. Here, FO refers to the descrip-
tive complexity class that captures all queries expressible in relational
calculus [Imm99]. FP is the class of function problems solvable in poly-
nomial time.

Therefore, if the data complexity of a query bQc is not in FP, then the best
we can go for is an approximation without false positives (also called under-
approximation), computable in polynomial time. The term strategy will be
used for queries that compute such approximations. Intuitively, a strategy
can be regarded as a two-step process in which one starts by issuing a number
of well-behaved queries bQic, for i ∈ {1, 2, . . . , l}, which can then be subject
to a post-processing step. In this chapter, well-behaved queries are those that
are accepted by a query interface, e.g., self-join-free conjunctive queries Qi
such that bQic is in FO, and post-processing is formalized as queries built-up
from the bQic’s.

We next illustrate our setting by an example. Consider the following sce-
nario with two persons, called Bob and Alice. The person called Bob owns
a database that is publicly accessible only via a query interface which re-
stricts the syntax of the queries that can be asked. Our main results concern
the case where the interface is restricted to self-join-free conjunctive queries.
The database schema including all primary key constraints is publicly avail-
able. However, Bob is aware that his database contains many mistakes which
should not be divulged. Therefore, whenever some end user asks a query Q,

84 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

Bob will actually execute the query bQc. That is, end users will get exclusively
consistent answers. But, for feasibility reasons, Bob will reject any query Q
for which the data complexity of bQc is too high. In this chapter, we assume
that Bob considers that data complexity is too high when it is not in FO. The
person called Alice interrogates Bob’s database, and she will be happy to get
exclusively consistent answers. Unfortunately, her query Q will be rejected
by Bob if the data complexity of bQc is too high (i.e., not in FO). If this
happens, Alice has to change strategy. Instead of asking Q, she can ask a fi-
nite number of queries Q1,Q2, . . . ,Ql such that for every i ∈ {1, 2, . . . , l}, the
data complexity of bQic is in FO, and hence the query Qi will be accepted by
Bob. No restriction is imposed on the number l of queries that can be asked.
The best Alice can hope for is that she can compute herself the answer to
bQc (or even to Q) from Bob’s answers to bQ1c, . . . , bQlc by means of some
post-processing. The question addressed in this chapter is: Given that Alice
wants to answer Q, what queries should she ask to Bob?

Here is a concrete example. Assume Bob owns the database of Figure 5.1.
Interested in stable couples1, Alice submits the query Q1 which asks “Get pairs
of ages of men and women living in the same city”:

Q1 =
{

(y, w) | ∃x ∃u∃z
(
M(x, y, z) ∧ F(u,w, z)

)}
.

The consistent answer is {(48, 37), (29, 37)}. However, the query bQ1c that
returns the consistent answer is known to have coNP-hard data complex-
ity [KW17]. Therefore, Bob will reject Q1. Alice changes strategy and submits
the query Q2 which asks “Get pairs of ages and city of men and women living
in the same city”:

Q2 =
{

(y, w, z) | ∃x ∃u
(
M(x, y, z) ∧ F(u,w, z)

)}
. (5.1)

Since the data complexity of bQ2c is known to be in FO [KW17], Bob will
execute bQ2c. The query Q2 returns {(29, 37,Mons), (48, 37,Mons)} on one re-
pair, and {(29, 37,Mons), (48, 37,Paris)} on the other repair, so the consistent

1According to [CFG+10], marital stability is higher when the wife is 5+ years younger
than her husband.

5.1. INTRODUCTION 85

answer is {(29, 37,Mons)}. This in turn allows Alice to derive a consistent
answer to the original query: since (29, 37,Mons) belongs to the answer to
bQ2c, it is correct to conclude that (29, 37) belongs to the answer to bQ1c. An
interesting question is whether Alice has a better strategy that divulges even
more answers to bQ1c.

Our work can also be regarded as querying “consistent views,” in the sense
that Bob returns exclusively consistent answers. It has been observed long
ago [Wij04] that consistent views are not closed under relational calculus.
In other words, the position of the b·c construct in a query does matter.
For example, for the database of Figure 5.1, the query {x | ∃y ∃z(bM(x, y,
z)c)} returns only (Dirk), while b{x | ∃y ∃z(M(x, y, z))}c returns both (Ed)
and (Dirk). Bertossi and Li [BL13] have used views to protect the secrecy of
data in a database. In our setting, the query answers that are to be hidden
from end users are those that are not true in every repair.

The technical contributions of this chapter are as follows. We first show
that the following problem is undecidable: Given a relational calculus query
Q, is bQc in FO? In view of this undecidability result, we then limit our
attention to strategies that are first-order combinations (using disjunction and
existential quantification) of queries bQc that are known to be in FO. We show
how to build optimal strategies under such syntax restrictions.

This chapter is organized as follows. Section 5.2 provides some additional
mathematical definitions. Section 5.3 introduces our new framework for study-
ing consistent query answering under primary key constraints, and introduces
the problem OPTSTRATEGY. Intuitively, OPTSTRATEGY asks, given
a query Q, to find a new query Q′ that gets the largest subset of consistent
answers while still obeying the restrictions imposed by our framework. Sec-
tion 5.4 provides ways to solve OPTSTRATEGY in restricted settings. Sec-
tion 5.5 studies a novel query containment problem that is intimately related
to the simplification of strategies. Finally, Section 5.6 concludes the chapter.

86 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

5.2 Preliminaries

Given two m-ary queries Q1 and Q2, we say that Q1 is contained in Q2,
denoted by Q1 v Q2 if for every database db, Q1(db) ⊆ Q2(db). We write
Q1 @ Q2, if Q1 v Q2 and Q2 6v Q1. We say that Q1 and Q2 are equivalent,
denoted by Q1 ≡ Q2, if Q1 v Q2 and Q2 v Q1.

A 0-ary query is called Boolean. If Q is a Boolean query, then Q maps any
database to either {()} or {}, corresponding to true and false respectively.

Recall that a conjunctive query is a relational calculus query of the form
{~z | ∃~y (B)} where B is a conjunction of atoms. By a slight abuse of notation,
we denote by B also the set of conjuncts that occur in B. For example, if
B1 = R(~x) ∧ R(~y) and B2 = R(~x) ∧ R(~y) ∧ R(~z), then we may write B1 ⊆ B2.
Finally, if Q is a self-join-free conjunctive query with an R-atom, then, by an
abuse of notation, we write R to mean the R-atom of Q.

5.3 A Framework for Divulging Inconsistent Databases

In this section, we formalize the setting that was described and illustrated
in Section 5.1. The setting is captured by the language called CQAFO,
which consists of first-order quantification and Boolean combinations of atomic
formulas of the form bQc, whereQ is any relational calculus query. The atomic
formulas bQc capture that the database owner Bob only returns consistent
answers. Subsequently, the end user Alice, who interrogates Bob’s database,
can do some post-processing on Bob’s outputs. In our setting, we assume
that Alice uses first-order quantification and Boolean combinations of Bob’s
consistent answers to the atomic formulas bQc.

Example 27. The scenario in Section 5.1 is captured by the CQAFO query{
(y, w) | ∃Z

(⌊
∃x ∃u

(
M(x, y, Z) ∧ F(u,w,Z)

)⌋)}
.

The formula within b·c is the query (5.1). The quantification ∃Z corresponds
to Alice projecting away the cities column returned by Bob. For readability, we

5.3. A FRAMEWORK FOR INCONSISTENT DATABASES 87

will often use upper case letters for variables that are quantified outside the
range of b·c.

Example 28. The following query allows Alice to find the names of men with
at least two cities in the database:{

x |
⌊
∃y ∃z

(
M(x, y, z)

)⌋
∧ ¬∃Z

(⌊
∃y
(
M(x, y, Z)

)⌋)}
.

To understand this query, it may be helpful to notice that{
(x, Z) |

⌊
∃y M(x, y, Z)

⌋}
returns tuple (n, c) whenever c is the only city of residence recorded for the
person named n. Interestingly, even though Alice gets only consistent answers,
she can still infer that the database contains inconsistencies. In particular,
since the foregoing query returns Ed on the example database of Figure 5.1,
Alice can infer that there is uncertainty about the city of Ed. This example
shows, maybe somewhat unexpectedly, that end users who only get consistent
query answers may still be able to infer that the database is inconsistent.

5.3.1 The Language CQAFO

We next describe the syntax and semantics of the language CQAFO used for
postprocessing.

Syntax The following are formulas in CQAFO:

• if Q is a relational calculus query, then bQc is a CQAFO formula with
the same free variables as Q;

• if ϕ1 and ϕ2 are CQAFO formulas, then ϕ1 ∧ϕ2, ϕ1 ∨ϕ2, and ¬ϕ1 are
CQAFO formulas;

• if ϕ is a CQAFO formula, then ∃Y (ϕ) and ∀Y (ϕ) are CQAFO for-
mulas.

88 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

If ϕ is a CQAFO formula, then free(ϕ) denotes the set of free variables of ϕ
(i.e., the variables not bound by a quantifier). If ~x is a tuple containing the
free variables of ϕ, we write ϕ(~x).

A CQAFO query is an expression of the form {~u | ϕ}, where ~u is a
sequence of symbols containing each variable of free(ϕ). If ~n contains no
constants and no double occurrences of the same variable, then such query is
also denoted ϕ(~t).

Semantics Let db be an uncertain database. Let ϕ(~x) be a CQAFO for-
mula, and ~a be a sequence of constants (of the same length as ~x). We induc-
tively define db |= ϕ(~a).

• If ϕ(~x) = bQ(~x)c for some relational calculus query Q(~x), then db |=
ϕ(~a) if for every repair r of db, r |= Q(~a); 2

• db |= ¬ϕ(~a) if db 6|= ϕ(~a);

• db |= ϕ1 ∧ ϕ2 if db |= ϕ1 and db |= ϕ2;

• db |= ϕ1 ∨ ϕ2 if db |= ϕ1 or db |= ϕ2;

• if ψ(~x) = ∃Y (ϕ(Y, ~x)), then db |= ψ(~a) if db |= ϕ(a′,~a) for some a′;

• if ψ(~x) = ∀Y (ϕ(Y, ~x)), then db |= ψ(~a) if db |= ϕ(a′,~a) for all a′.

Let q = {~n | ϕ(~x)} be a CQAFO query. The answer q(db) is the smallest
set containing θ(~n) for every valuation θ over vars(~n) such that for some ~a,
θ(~x) = ~a and db |= ϕ(~a). By definition, we have vars(~n) = vars(~x), but ~n,
unlike ~x, can contain constants and multiple occurrences of the same variable.
If ~t contains no variables, then q is Boolean.

Domain independence is a desirable property of queries that emerges in
CQAFO in the same way as in relational calculus [AHV95, p. 79]. For
example, consider the CQAFO query

q0 =
{
x |
⌊
∃y ∃z

(
M(x, y, z)

)⌋
∨
⌊
F(Iris, 37,Paris)

⌋}
2r |= Q(~a) is defined in the standard way.

5.3. A FRAMEWORK FOR INCONSISTENT DATABASES 89

on the example database of Figure 5.1. Since F(Iris, 37,Paris) holds true in
every repair, the query is true for any value of x. The query q0 is thus not
domain independent. Nevertheless, domain independence will not be an issue
in this chapter, because we will only deal with syntactic fragments of CQAFO
that guarantee domain independence.

5.3.2 Restrictions on Data Complexity

The language CQAFO of Section 5.3.1 captures our first postulate which
states that the database owner Bob returns exclusively consistent answers. But
we do not prohibit that end user Alice does some post-processing on Bob’s an-
swers. In this section, we will add our second postulate which states that Bob
rejects queries Q if the data complexity of bQc is not in FO. Unfortunately,
Bob has to face the following undecidability result.

Theorem 7. The following problem is undecidable. Given a relational calculus
query Q, is bQc in FO?

Proof. Let Q1 = {() | ∃x ∃y ∃z(R(x, z) ∧ S(y, z) ∧ ϕ)} where ϕ is a closed
relational calculus formula, i.e., a formula with no free variables, such that all
relation names in ϕ are all-key. Observe that this implies that the relation
names in ϕ are distinct from R and S. We show hereinafter that bQc is in FO
if and only if ϕ is unsatisfiable. The desired result then follows by [AHV95,
Theorem 6.3.1], which states that (finite) satisfiability of relational calculus
queries is undecidable.

Obviously, if ϕ is unsatisfiable, then bQ1c ≡ false, and hence bQ1c is in
FO.

We show next that if ϕ is satisfiable, then bQ1c is not in FO. Assume that
ϕ is satisfiable. Let Q0 = ∃x ∃y ∃z(R(x, z)∧S(y, z)) and consider the following
two problems:

• CERTAIN0: Given a database db, determine whether every repair of
db satisfies Q0.

90 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

• CERTAIN1: Given a database db, determine whether every repair of
db satisfies Q1.

We now show a polynomial-time many-one reduction between CERTAIN0
and CERTAIN1. Let db0 be a database that is input to CERTAIN0. Let
S be the database schema that contains the relation names occurring in ϕ. An
algorithm can consider systematically every finite database db′ over S and test
db′ |= ϕ, until a database db′ is found such that db′ |= ϕ. The algorithm
terminates because ϕ is satisfiable. Since the computation of db′ does not
depend on db0, it takes O(1) time. Since all relation names in db′ are all-key,
we have that db′ is consistent. Clearly, Q0 is true in every repair of db0 if
and only if Q1 is true in every repair of db0 ∪ db′. This follows from the fact
that the relation names in ϕ are distinct from R and S. So we have established
a polynomial-time many-one reduction from CERTAIN0 to CERTAIN1.
Since CERTAIN0 is coNP-hard [KW17], it follows that CERTAIN1 is
coNP-hard. Since FO (coNP [Imm99], it follows that CERTAIN1 is not
in FO.

By Theorem 7, there exists no algorithm that allows Bob to decide whether
he has to accept or reject a relational calculus query. In general, little is known
about the complexity of bQc for relational calculus queries Q. Of course,
Theorem 3 implies the following result.

Theorem 8 ([KW17]). The following problem is decidable in polynomial time.
Given a self-join-free conjunctive query Q, is bQc in FO? Moreover, if bQc
is in FO, then a relational calculus query equivalent to bQc can be effectively
constructed.

In view of Theorem 7 and of Theorem 8, the following scenario is the best
we can go for with the current state of art.

1. The database owner Bob only accepts self-join-free conjunctive queries
Q such that bQc is in FO. Thus, Bob rejects every query that is not
self-join-free conjunctive, and rejects a self-join-free conjunctive query Q
if bQc is not in FO.

5.3. A FRAMEWORK FOR INCONSISTENT DATABASES 91

2. As before, Alice can do some first-order post-processing on the answers
obtained from Bob.

Under these restrictions, we focus on the following problem: given that Alice
wants to answer a self-join-free conjunctive query Q on a database owned by
Bob, develop a strategy for Alice to get a subset (the greater, the better) of
the consistent answer to Q. Our framework applies to Boolean queries by
representing true and false by {()} and {} respectively. A formal definition
follows.

5.3.3 Strategies

Strategies for a query Q are defined next as relational calculus queries that
can be expressed in CQAFO and that are contained in bQc.

Definition 8. Let Q be a self-join-free conjunctive query. A strategy for Q
is a CQAFO query ϕ such that ϕ v bQc and for every atomic formula bQ′c
in ϕ, we have that Q′ is a self-join-free conjunctive query such that bQ′c is in
FO.

A strategy ϕ for Q is optimal if for every strategy ψ for Q, we have ψ v ϕ.
The problem OPTSTRATEGY takes in a self-join-free conjunctive query Q
and asks to determine an optimal strategy for Q.

Some observations are in place.

• If the input to OPTSTRATEGY is a self-join-free conjunctive Q such
that bQc is in FO, then the CQAFO query bQc is itself an optimal
strategy.

• Every strategy ϕ is in FO, because all atomic formulas bQ′c are required
to be in FO. Therefore, if Alice wants to answer a query Q such that
bQc is not in FO, then there is no strategy ϕ such that ϕ ≡ bQc.

• We require that the input query to OPTSTRATEGY belongs to the
class of self-join-free conjunctive queries. The reason for this requirement

92 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

is that this is the largest class of queries for which the existence (or not)
of consistent first-order rewritings is known to be decidable.

We will not investigate the problem OPTSTRATEGY in its most general
form in the remainder of this chapter. Instead, we will confine our investigation
to strategies that can be expressed and effectively constructed in a syntactic
fragment of CQAFO. We will explain how such strategies can be constructed,
but leave open the computational complexity of the construction.

5.4 How to Construct Good Strategies?

Let Q be a self-join-free conjunctive query. In this section, we investigate ways
for constructing good (if not optimal) strategies for Q of a particular syntax.
In Section 5.4.1, we take the most simple approach: take the union of queries
bQic contained in bQc, where Qi is self-join-free conjunctive and bQic is in
FO. We then show that the strategies obtained in this way cannot be optimal.
Therefore, an enhanced approach is developed in Section 5.4.2.

5.4.1 Post-Processing by Unions Only

Assume that the input to OPTSTRATEGY is a self-join-free conjunctive
query Q(~z). In this section, we look at strategies of the form

l⋃
i=1
bQic , (5.2)

where each Qi is of the form {~zi | ∃~yi (Bi)} in which ~zi has the same length as ~z
and Bi is a self-join-free conjunction of atoms. Speaking strictly syntactically,
b{~zi | ∃~yi (Bi)}c is not a CQAFO query, as it is not of the form {~u | ϕ} for
some CQAFO formula ϕ as defined in Section 5.3.1. However, it can be
easily verified that b{~zi | ∃~yi (Bi)}c ≡ {~zi | b∃~yi (Bi)c}, and the latter query is
a CQAFO query.

We use union (with its standard semantics) instead of disjunction to avoid

5.4. HOW TO CONSTRUCT GOOD STRATEGIES? 93

notational difficulties. For example, the union{
(x, a) |

⌊
R(x, a)

⌋}
∪
{

(x, y) |
⌊
S(x, y)

⌋}
,

where a is a constant, is semantically clear, and is equivalent to{
(x, y) |

⌊
R(x, y) ∧ y = a

⌋
∨
⌊
S(x, y)

⌋}
,

in which equality is used. It would be wrong to write {(x, y) | bR(x, a)c∨bS(x,
y)c}, an expression that is not domain independent [AHV95, p. 79], because
if some fact R(c, a) holds true in every repair, then bR(x, a)c ∨ bS(x, y)c is true
when c is assigned to x, no matter what value is assigned to y. On the other
hand, a CQAFO formula of the form (5.2) is domain independent if each
bQic is domain independent.

Furthermore, a formula of the form (5.2) is a strategy if for every i ∈ {1,
2, . . . , l}, bQic is in FO and bQic v bQc. The latter condition is equivalent to
Qi v Q as is shown next.

Lemma 5. Let Q and Q′ be self-join-free m-ary conjunctive queries. Then,
Q v Q′ if and only if bQc v bQ′c.

Proof. Let Q = {~z | ∃~y (B)} and Q′ = {~z0 | ∃~y0 (B′)}, where ~z and ~z0 both
have the same length m.

=⇒ Straightforward. ⇐= Assume bQc v bQ′c. Let µ be an injective
mapping with domain vars(B) that maps each variable to a fresh constant
not occurring elsewhere. Since µ is injective, its inverse µ−1 is well defined.
Let db = µ(B). Clearly, db is consistent and Q(db) = {µ(~z)} = bQc (db).
From bQc v bQ′c, it follows µ(~z) ∈ bQ′c (db) = Q′(db). Then, there exists
a valuation θ over vars(B′) such that θ(B′) ⊆ db and θ(~z0) = µ(~z). Then
µ−1 ◦ θ(B′) ⊆ B and µ−1 ◦ θ(~z0) = ~z. Since µ−1 ◦ θ is a homomorphism
from Q′ to Q, it follows Q v Q′ by the Homomorphism Theorem [AHV95,
Theorem 6.2.3].

Lemma 5 does not hold for conjunctive queries with self-joins, as shown
next.

94 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

Example 29. Let Q = {() | R(a, b) ∧ R(a, c)}. For every uncertain database
db, we have bQc (db) = {}. Let Q′ be a query such that Q 6v Q′ (such query
obviously exists). Then, bQc v bQ′c and Q 6v Q′.

Lemma 5 allows us to construct strategies of the form (5.2), as follows.
Assume that the input to OPTSTRATEGY is a self-join-free conjunctive
query Q(~z). For some positive integer l, generate self-join-free conjunctive
queries Q1, . . . ,Ql such that for each i ∈ {1, 2, . . . , l}, Qi v Q and bQic is
in FO. The condition Qi v Q is decidable by [AHV95, Theorem 6.2.3]; the
condition that bQic is in FO is decidable by Theorem 8. Then by Lemma 5,⋃l
i=1 bQic is a strategy for Q.
Unfortunately, Theorem 9 given hereinafter states that there are cases

where no strategy of the form (5.2) is optimal. We first generalize Lemma 5
to unions.

Lemma 6. Let Q0, Q1, . . .Ql be self-join-free m-ary conjunctive queries.
Then, bQ0c v

⋃l
i=1 bQic if and only if for some i ∈ {1, 2, . . . , l}, Q0 v Qi.

Proof. ⇐= Straightforward. =⇒ Assume bQ0c v
⋃l
i=1 bQic. Let Q0 =

{~z0 | ∃~y0 (B0)}, where B0 is self-join-free. Let µ be an injective mapping with
domain vars(B0) that maps each variable to a fresh constant not occurring
elsewhere. Since µ is injective, its inverse µ−1 is well defined. Let db =
µ(B0). Clearly, db is consistent and Q0(db) = {µ(~z0)} = bQ0c (db). From
bQ0c v

⋃l
i=1 bQic, it follows that we can assume i ∈ {1, 2, . . . , l} such that

µ(~z0) ∈ bQic (db) = Qi(db). Let Qi = {~zi | ∃~yi (Bi)}. Then, there exists
a valuation θ over vars(Bi) such that θ(Bi) ⊆ db and θ(~zi) = µ(~z0). Then
µ−1 ◦ θ(Bi) ⊆ B0 and µ−1 ◦ θ(~zi) = ~z0. Since µ−1 ◦ θ is a homomorphism from
Qi to Q0, it follows Q0 v Qi.

Theorem 9. There exists a self-join-free conjunctive query Q such that for
every strategy ϕ of the form (5.2) for Q, there exists another strategy ψ of the
form (5.2) for Q such that ϕ @ ψ.

Proof. Let Q = {() | ∃x ∃y ∃z(R(x, z) ∧ S(y, z))}. Then bQc is not in FO
by Theorem 3 (which is subsumed by Theorem 3.2 in [KW17]). For every

5.4. HOW TO CONSTRUCT GOOD STRATEGIES? 95

constant c, let Qc be the query defined by

Qc :=
{

() | ∃y ∃z
(
R(c, z) ∧ S(y, z)

)}
.

For every constant c, we have that bQcc v bQc by Lemma 5, and again by
Theorem 3, bQcc is in FO.

Let ϕ be a strategy for Q of the form (5.2). Let A be the greatest set of
constants such that for all c ∈ A, there exists some i ∈ {1, 2, . . . , l} such that
Qi ≡ Qc. Let b be a constant such that b 6∈ A. Clearly ϕ v ϕ ∪ bQbc v bQc.
It suffices to show that ϕ @ ϕ ∪ bQbc, meaning that ϕ is not optimal.

Assume towards a contradiction that bQbc v ϕ. By Lemma 6, there exists
i ∈ {1, 2, . . . , l} such that Qb v Qi v Q. We can assume (not necessarily
distinct) variables s, t, u, v such thatQi is the existential closure of R(s, t)∧S(u,
v). From Qi v Q, it follows that t = v. From Qb v Qi and b 6∈ A, it follows
that s, t, u are pairwise distinct variables. But then Qi ≡ Q, contradicting
that bQic is in FO. We conclude by contradiction that ϕ @ ϕ ∪ bQbc.

5.4.2 Post-Processing by Unions and Quantification

The proof of Theorem 9 indicates that strategies of the form (5.2) lack expres-
siveness because the number of constants in such strategies is bounded. An
obvious extension is to look for strategies that replace constants with existen-
tially quantified variables. The following example shows how such extension
solves the lack of expressiveness that underlies the proof of Theorem 9.

Example 30. Let Q = {() | ∃x ∃y ∃z(R(x, z) ∧ S(y, z))} and consider the
CQAFO formula ϕ defined by ϕ := ∃X(b∃y ∃z(R(X, z) ∧ S(y, z))c). From
Lemma 7 and Theorem 3, it follows that ϕ is a strategy for Q, i.e., ϕ v bQc
and b∃y ∃z(R(X, z) ∧ S(y, z))c is in FO. Recall from Example 27 that the use
of upper case X is for readability.

Assume that the input to OPTSTRATEGY is a self-join-free conjunctive
query Q(~z). We next investigate strategies of the form

l⋃
i=1

qi, (5.3)

96 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

where for each i ∈ {1, 2, . . . , l}, qi is a CQAFO query of the form{
~zi | ∃ ~Xi (b∃~yi (Bi)c)

}
, (5.4)

in which ~zi has the same length as ~z, and Bi is a self-join-free conjunction
of atoms. It is understood that ~zi, ~Xi, and ~yi have, pairwise, no variables in
common, and that vars(~zi)∪vars(~Xi)∪vars(~yi) = vars(Bi). For readability,
we will use lower case q to refer toCQAFO queries of the form (5.4). The main
tools for constructing strategies of the form (5.3) are provided by Theorem 10
and Theorem 11.

Theorem 10. The following problem is decidable in polynomial time. Given
a CQAFO query q of the form (5.4), is q in FO? Moreover, if q is in FO,
then a relational calculus query equivalent to q can be effectively constructed.

Proof. Let B be a self-join-free conjunction of atoms, and let

q =
{
~z | ∃ ~X (b∃~y (B)c)

}
;

q′ =
{
~z ~X | b∃~y (B)c

}
.

Obviously, if q′ is in FO, then so is q. We show next that if q′ is not in
FO, then q is not in FO.

For every variable x, we assume an infinite set of constants, denoted
type(x), such that x 6= y implies type(x) ∩ type(y) = ∅. Let db be an
uncertain database. We say that db is typed relative to B if for every atom
R(x1, . . . , xn) in B, for every i ∈ {1, 2, . . . , n}, if xi is a variable, then for every
fact R(a1, . . . , an) in db, ai ∈ type(xi) and the constant ai does not occur
in B. Significantly, since B is self-join-free, we can assume without loss of
generality that q and q′ are executed on databases that are typed relative to
B.

From the complexity proofs in [KW17], it follows that if q′ is not in FO,
then q′ is not in FO even if for every variable v ∈ vars(~z)∪ vars(~X) (i.e., for
every free variable v of q′), type(v) is a singleton. This means that if q′ is not
in FO, it is not in FO even on uncertain databases db such that for every

5.4. HOW TO CONSTRUCT GOOD STRATEGIES? 97

atom R(x1, . . . , xn) in B and i ∈ {1, 2, . . . , n}, if xi ∈ vars(~z)∪ vars(~X), then
all R-facts of db agree on position i. It is then obvious that if q′ is not in FO,
it must be the case that q is not in FO (because there is only one valuation
for vars(~z) ∪ vars(~X) that can make b∃~y (B)c true).

By Theorem 8, it can be decided whether q′ is in FO. A relational calcu-
lus query equivalent to q can be straightforwardly obtained from a relational
calculus query equivalent to q′.

We will be concerned with testing containment between CQAFO queries
of the form (5.4). The following lemma generalizes Lemma 5 by allowing
(restricted forms of) existential quantification outside b·c.

Lemma 7. Let B1 and B2 be self-join-free conjunctions of atoms in the fol-
lowing CQAFO queries:

q1 =
{
~z1 | ∃ ~X1 (b∃~y1 (B1)c)

}
;

q2 =
{
~z2 | ∃ ~X2 (b∃~y2 (B2)c)

}
.

Let Q1 and Q2 be the queries obtained from respectively q1 and q2 by omitting
b·c, that is,

Q1 =
{
~z1 | ∃ ~X1 (∃~y1 (B1))

}
;

Q2 =
{
~z2 | ∃ ~X2 (∃~y2 (B2))

}
.

1. If q2 v q1, then Q2 v Q1.

2. If X1 is empty and Q2 v Q1, then q2 v q1.

Proof. The proof of 1 is analogous to the proof of the if-direction of Lemma 5.
For 2 , assume X1 is empty and Q2 v Q1. By the Homomorphism The-

orem [AHV95, Theorem 6.2.3], there exists a valuation θ over vars(B1) such
that θ(~z1) = ~z2 and θ(B1) ⊆ B2. Let db be a database and ~a a sequence
of constants such that ~a ∈ q2(db). Then, there exists a valuation γ over
vars(~z2) ∪ vars(~X2) with γ(~z2) = ~a such that for every repair r of db, γ can
be extended into a valuation Γr over vars(B2) such that Γr(B2) ⊆ r. Let r0

98 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

be an arbitrary repair of db. The result ~a ∈ Q1(r0) follows because Γr0 ◦ θ
is a valuation over vars(B1) such that Γr0 ◦ θ(B1) ⊆ r0 and Γr0 ◦ θ(~z1) = ~a.
Since r0 be an arbitrary repair, from ~a ∈ Q1(r0) and X1 empty, it follows
~a ∈ q1(db).

Theorem 11. Given a self-join-free conjunctive query Q1 and a CQAFO
query q2 of the form (5.4), it can be decided whether q2 v bQ1c.

Proof. Immediate from Lemma 7 and the decidability of containment for con-
junctive queries.

We point out that Theorem 11 is interesting in its own right. It is well
known [AHV95, Corollary 6.3.2] that containment of relational calculus queries
is undecidable. A large fragment for which containment is decidable is the
class of unions of conjunctive queries. Notice, however, that the queries in the
statement of Theorem 11 need not be monotonic (and even not first-order),
and that decidability of containment for such queries is not obvious. We next
provide an example of such a non-monotonic query.

Example 31. Let q = {x | ∃Y (bR(x, Y)c)}. Let db = {R(a, 1)} and db′ =
{R(a, 1), R(a, 2)}. Then db ⊆ db′, but q(db) = {(a)} is not contained in
q(db′) = {}. Hence q is not monotonic. As a note aside, we observe that q is
equivalent to the following relational calculus query:{

x | ∃y
(
R(x, y) ∧ ∀y′

(
R(x, y′)⇒ y = y′

))}
.

Assume that the input to OPTSTRATEGY is a self-join-free conjunctive
query Q(~z). Theorem 11 allows us to build a strategy ϕ of the form (5.3) for
Q as follows. Let A be the set of constants that occur in Q. Let ϕ be
the disjunction of all (up to variable renaming) CQAFO formulas qi of the
form (5.4) that use exclusively constants from A such that qi v bQc and qi is
in FO. Clearly, there are at most finitely many such formulas (up to variable
renaming). Containment of qi in bQc is decidable by Theorem 11. Finally, the
condition that qi is in FO is decidable by Theorem 10. The following theorem
remedies the negative result of Theorem 9.

5.4. HOW TO CONSTRUCT GOOD STRATEGIES? 99

Theorem 12. For every self-join-free conjunctive query Q, there exists a
computable strategy ϕ of the form (5.3) for Q, such that for every strategy ψ
of the form (5.3) for Q, ψ v ϕ.

Proof. Assume that the input to OPTSTRATEGY is a self-join-free con-
junctive query Q(~z). Let ϕ be the strategy defined in the paragraph preceding
this theorem. Let q = {~z0 | ∃ ~X (b∃~y (B)c)} be a query of the form (5.4) where
B is a self-join-free conjunction of atoms such that q is in FO and q v bQc.
If all constants that occur in B also occur in Q, then q is already contained
in some disjunct of ϕ (by construction of ϕ). Assume next that B contains
some constants that do not occur in Q, and let these constants be a1, . . . , am.
For i ∈ {1, 2, . . . ,m}, let Xi be a new fresh variable. Let B′ be the conjunc-
tion obtained from B by replacing each occurrence of each ai with Xi. Let
q′ = {~z0 | ∃ ~X (∃Xi ∃Xi . . . ∃Xi (b∃~y (B′)c))}.

From q v bQc and Lemma 7, it follows that {~z0 | ∃ ~X ∃~y (B)} v Q.
By the Homomorphism Theorem [AHV95, Theorem 6.2.3], we can assume
a homomorphism θ from Q to {~z0 | ∃ ~X ∃~y (B)}. Notice that if θ(t) = ai for
some symbol t that occurs in Q and i ∈ {1, 2, . . . ,m}, then it must be the case
that t is a variable (because ai does not occur in Q). Let θ′ be the substitution
obtained from θ such that for every variable v in Q and i ∈ {1, 2, . . . ,m},

θ′(v) =

 Xi if θ(v) = ai
θ(v) otherwise.

Obviously θ′ is a homomorphism fromQ to {~z0 | ∃ ~X (∃X1 ∃X2 . . . ∃Xm (B′))}.
From the Homomorphism Theorem and Lemma 7, it follows q′ v bQc. It can
be easily seen that q v q′. Furthermore, q′ is in FO because q is in FO
and it can be easily argued that membership in FO is preserved if constants
are replaced with free variables. Notice here that each variable Xi is free in
b∃~y (B′)c. Since all constants that occur in B′ also occur in Q, we have that
q′ is already contained in some disjunct of ϕ (by construction of ϕ).

To conclude, whenever q = {~z0 | ∃ ~X (b∃~y (B)c)} is a query of the form (5.4)
where B is a self-join-free conjunction of atoms such that q is in FO and

100 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

q v bQc, we have that ϕ ∪ q v ϕ.

So far, we have imposed no restrictions on the size of the computable
strategy ϕ in the statement of Theorem 12. From a practical point of view, it
is interesting to construct, among all optimal strategies ϕ of the form (5.3), the
one with the smallest number l of disjuncts. This problem will be addressed
in the next section.

5.5 Simplifying Strategies

In Section 5.4.2, we considered strategies that are unions ofCQAFO queries of
the form (5.4). A natural question is whether such strategies can be simplified.
One obvious simplification is to remove any component of the union that is
contained in another component, which requires an effective procedure for
deciding containment between queries of the from (5.4). Developing such a
procedure turns out to be a challenging problem. In Section 5.5.1, we illustrate
this problem and introduce some simplifying assumptions. We will tackle this
problem by using an existing tool, called attack graph, which was defined
in Section 3.2 and which we generalize to account for the two queries involved
in a containment test (Section 5.5.3). In Section 5.5.4, we provide an algorithm
ContainedIn that decides containment of CQAFO queries of the form (5.4)
under some additional restrictions.

5.5.1 Problem Statement and Motivation

We consider strategies q1∪ q2∪ · · ·∪ ql consisting of CQAFO queries qi of the
form {

~zi | ∃ ~Xi (b∃~yi (Bi)c)
}
.

Clearly, if some qi is contained in another qj (i.e., qi v qj with i 6= j), then
the presence of qi in the strategy is vacuous and qi is redundant. That is, an
equivalent shorter strategy is obtained by removing qi from the union. This
raises an important and interesting research question:

5.5. SIMPLIFYING STRATEGIES 101

Given two CQAFO queries q1 and q2 of the form (5.4), decide
whether q1 v q2.

Theorem 11 settles containment of q2 v bQ1c. In this containment, the
right-hand side bQ1c is restricted to have no quantifier outside the scope of
b·c. The opposite containment bQ1c v q2 turns out to be more difficult to
handle, as illustrated next.

Example 32. Consider the following two Boolean queries:

Q2 = ∃u∃v ∃w
(
R(u,w) ∧ S(v, w)

)
;

q2 = ∃U
(⌊
∃v ∃w

(
R(U,w) ∧ S(v, w)

)⌋)
,

and consider a database (call it db) with the following tables, where for read-
ability, columns are named by variables, and blocks are separated by dashed
lines.

R u w

a 1
b 2

S v w

a 1
b 2

The database db has two repairs, each satisfying Q2, hence db |= bQ2c.
However, db 6|= q2, because the two repairs of db use different values for u (a
and b) to make the query true. So it is correct to conclude bQ2c 6v q2.

Consider furthermore the following query Q1:

Q1 = ∃x ∃y
(
R(x, y) ∧ S(x, y)

)
.

By means of the Homomorphism Theorem [AHV95, p. 117], it can be verified
that Q1 v Q2, hence bQ1c v bQ2c by Lemma 5. It takes some effort to see
that if a database satisfies bQ1c, then it must contain two singleton blocks of
the form {R(d, e)} and {S(d, e)}, as follows.

102 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

R x y

d e
...

S x y

d e
...

Such database will necessarily satisfy q2, hence bQ1c v q2.

It turns out that the containment problem for queries of the form (5.4)
is quite challenging. To ease the technical treatment, we make the following
simplifications:

• We will only deal with Boolean conjunctive queries (i.e., henceforth, all
variables are assumed to be quantified). By Proposition 1, the restriction
to Boolean queries does not compromise generality. At some places, it
will be convenient (and unambiguous) to denote a Boolean conjunctive
query by its set of atoms. For example, Q1 = {() | ∃x ∃y ∃z(R(x, z)∧S(y,
z))} can be denoted by the set {R(x, z), S(y, z)}.

• Let Q be a self-join-free conjunction of atoms. Let ~X be a sequence of
distinct variables such that vars(~X) ⊆ vars(Q). We write ∃ ~X (bQc) for
the query

∃ ~X (b∃~u (Q)c) ,

where vars(~u) = vars(Q) \ vars(~X). That is, we only show the quanti-
fiers that are outside the scope of b·c.

• Our results concerning containment ∃ ~X1 (bQ1c) v ∃ ~X2 (bQ2c) will of-
ten require a homomorphism from Q2 to Q1 (which is tantamount to
requiring Q1 v Q2, by the Homomorphism Theorem [AHV95, p. 117]).
This requirement is reasonable, because if no such homomorphism ex-
ists, then ∃ ~X1 (bQ1c) 6v ∃ ~X2 (bQ2c) by Lemma 7. For completeness, we
recall here that a homomorphism from Q2 to Q1 is a mapping h with
domain vars(Q2) such that for every atom R(s1, s2, . . . , sl) in Q2, we
have that R(h(s1), h(s2), . . . , h(sl)) belongs to Q1.

5.5. SIMPLIFYING STRATEGIES 103

Proposition 1. Let q2 and q1 be two CQAFO queries of the form (5.4). One
can compute in polynomial time two Boolean CQAFO queries q′2 and q′1, both
of the form (5.4), such that q1 v q2 if and only if q′1 v q′2.

Proof. We can assume self-join-free conjunctions of atoms, B1 and B2, such
that:

q1 =
{
~z1 | ∃ ~X1 (b∃~y1 (B1)c)

}
;

q2 =
{
~z2 | ∃ ~X2 (b∃~y2 (B2)c)

}
.

Let Q1 and Q2 be the queries obtained from respectively q1 and q2 by omitting
b·c, that is,

Q1 =
{
~z1 | ∃ ~X1 (∃~y1 (B1))

}
;

Q2 =
{
~z2 | ∃ ~X2 (∃~y2 (B2))

}
.

If Q1 6v Q2, then q1 6v q2 by Lemma 7. In this case, pick two distinct key-equal
facts A and B and let q′1 = A and q′2 = B. Clearly, q′1 6v q′2. Notice that the
test Q1 v Q2 can be performed in polynomial time in the absence of self-joins.

Assume next Q1 v Q2. By the Homomorphism Theorem [AHV95, Theo-
rem 6.2.3], we can assume a valuation θ over vars(B2) such that θ(B2) ⊆ B1

and θ(~z2) = ~z1. Let µ be a valuation over vars(~z1) that maps distinct variables
to distinct fresh constants. Let q′1 := {µ(~z1) | ∃ ~X1 (b∃~y1 (µ(B1))c)}, the query
obtained from q1 by replacing each occurrence of each variable z1 ∈ vars(~z1)
with µ(z1). Intuitively, q′1 is the Boolean query obtained from q1 by treating
free variables as constants. Since B1 is self-join-free, it can be seen that q1 v q2

if and only if q′1 v q2.
For example, for q1 = {z | ∃X(b∃y(R(X, y, b) ∧ S(X, y, z))c)} with b a

constant and distinct relation names R and S, we would have that q′1 = {(c) |
∃X(b∃y(R(X, y, b) ∧ S(X, y, c))c)}, where c is a fresh constant. Notice that
the above construction would make no sense in the presence of self-joins. In
particular, if R = S, then any answer to q′1 would be empty (because b 6= c).

Since the answer to q′1 is either empty or the singleton {µ(~z1)}, the contain-
ment q′1 v q2 holds if q2 returns {µ(~z1)} whenever q′1 does. Let q′2 be the query

104 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

obtained from q2 by replacing each occurrence of each variable z2 ∈ vars(~z2)
with µ ◦ θ(z2). That is, the free tuple in q′2 is equal to µ(~z1). It is now obvious
that q′1 v q2 if and only if q′1 v q′2. This concludes the proof.

To sum up, we start with two Boolean conjunctive queries Q1 and Q2

such that Q1 v Q2 (and hence bQ1c v bQ2c by Lemma 5), and we want to
know which existential quantification can be moved “outside the scope of b·c”
while preserving the containment bQ1c v bQ2c. For the left-hand side (i.e.,
bQ1c), this is easy because, by Lemma 7, ∃ ~X1 (bQ1c) v bQ2c if and only if
bQ1c v bQ2c. For the right-hand side (i.e., bQ2c), our major result will be
an algorithm for deciding the containment bQ1c v ∃ ~X2 (bQ2c) (Theorem 14),
albeit by imposing some further restrictions on Q1. We leave the design of a
general containment test for future work.

To explain how the containment test works, we rely on the notion of attack
graph which is defined relative to a single query (Section 5.5.2) and then
introduce a new notion of attack that takes into account two queries Q1 and
Q2 related by a homomorphism (Section 5.5.3).

5.5.2 Attacks from Atoms to Variables

Attack graphs were defined in Section 3.2. The attacks defined there are from
an atom to another atom. Attacks from an atom to a variable are defined as
follows:

F
Q
 x if F

Q∪{N(x)}
 N(x),

where N is a new relation name with signature [1, 1]. That is, F Q
 x if

there is an attack from F to the “dummy” atom N(x) in the attack graph of
Q ∪ {N(x)}. The following lemma gives an important semantic property of
unattacked variables.

Lemma 8. Let Q be a self-join-free Boolean conjunctive query. Let x ∈
vars(Q) such that for every atom F of Q, F 6Q x. Then for every database
db such that db |= bQc, there exists a constant c such that db |= bQx→cc.

5.5. SIMPLIFYING STRATEGIES 105

Proof. Let Q′ = Q∪{N(x)} where N is a fresh relation name. The attack graph
of Q′ can be obtained from the attack graph of Q by adding the isolated vertex
N(x). The desired result then follows from [KW17, Lemma 4.4].

The proof of the following lemma is analogous to the proof of Lemma C.1
in [Wij12]. Intuitively, it states that no new attacks emerge if we replace a
variable with a constant in a Boolean self-join-free conjunctive query.

Lemma 9. Let Q be a self-join-free Boolean conjunctive query. Let c be a
constant and let Q′ = Qx→c. For every F ∈ Q, let F ′ be the atom in Q′ with
the same relation name as F . For all F,G ∈ Q, if F ′ Q

′
 G′, then F Q

 G.

Let Q be a self-join-free Boolean conjunctive query such that the attack
graph ofQ is acyclic. To avoid non-determinism in some definitions and results
to follow, assume a lexicographic order on the atoms of Q. We write head(Q)
to denote the first (in lexicographic order) atom of Q that has no incoming
attacks in the attack graph of Q.

5.5.3 A New Attack Notion

We now define a generalized attack notion, which refers to two Boolean con-
junctive queries, Q1 and Q2, such that there exists a homomorphism from Q2

to Q1. This new attack notion, denoted by the symbol · Q2Q1 ·, turns out to
be a useful tool in the study of the containment problem for queries of the
form (5.4).

Definition 9. Let Q1 and Q2 be self-join-free Boolean conjunctive queries
such that there exists a homomorphism (call it h) from Q2 to Q1. Notice that
such a homomorphism, if it exists, is unique (because the queries are self-join-
free). Let G and H be distinct atoms of Q2. We write

G
Q2Q1 H

if there exists a sequence

G0
u1_ G1

u2_ G2 . . .
ul_ Gl (5.5)

106 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

such that

1. G0, G1, . . . , Gl are atoms of Q2 such that G0 = G and Gl = H;

2. for all i ∈ {1, 2, . . . , l}, ui ∈ vars(Gi−1) ∩ vars(Gi);

3. for all i ∈ {1, 2, . . . , l}, h(ui) is a variable that does not belong to
(h(G0))+,Q1.

Let u ∈ vars(Q2). We write

G
Q2Q1 u

if

G
Q′

2Q
′
1 N(u)

where

1. N is a new relation name with signature [1, 1];

2. Q′2 = Q2 ∪ {N(u)}; and

3. Q′1 = Q1 ∪ {N(h(u))}.

Notice that if h(u) is a constant, then G 6Q2Q1 u. Note also that for every atom
F of Q1, F+,Q1 = F+,Q′

1.

Intuitively, G Q2Q1 H holds true if there exists a sequence of the form (5.5)
whose image under the homomorphism h is a witness for h(G) Q1 h(H). The
notion Q2Q1 is a proper generalization of Q1 , because for Q1 = Q2, the rela-
tionship Q2Q1 is the same as Q1 . That is, F Q1Q1 F ′ if and only if F Q1 F ′.

Example 33. Let Q2 = {R(u, x)} and Q1 = {R(y, z), S(z)}. Then, R(u,

x) Q2Q1 x because R(u, x)
Q′

2Q
′
1 N(x), where Q′2 = {R(u, x), N(x)} and Q′1 =

{R(y, z), S(z), N(z)}. Indeed, note that R(u, x) and N(x) share the variable x,
and h(x) = z does not belong to R+,Q′

1 = {y}.

5.5. SIMPLIFYING STRATEGIES 107

Example 34. Consider the following two queries:

Q2 =
{

R(a, u), S(u, x), T(x′)
}

;

Q1 =
{

R(a, y), S(y, z), T(z)
}
,

and let h be the (unique) homomorphism from Q2 to Q1. Notice that h(x) =
h(x′) = z. Since keyvars(R) = ∅ in Q1, but keyvars(S) 6= ∅ 6= keyvars(T),
we have R+,Q1 = ∅. Hence, R(a, u) Q2Q1 x and R(a, u) Q2Q1 u trivially hold.
Note, however, that R(a, u) 6Q2Q1 x′. This is because the atom T(x′) shares no
variable with any other atom of Q2.

5.5.4 Testing containment

The following theorem expresses a significant relationship between Q2Q1 and
query containment for queries of the form (5.4). Paraphrasing somewhat, if
bQ1c v bQ2c and u ∈ vars(Q2) such that G Q2Q1 u for some G ∈ Q2, then
query containment is lost if the quantification of the variable u is moved outside
the scope of b·c. It is an open question whether the inverse of Theorem 13
also holds.

Theorem 13. Let Q1 and Q2 be self-join-free Boolean conjunctive queries
such that there exists a homomorphism (call it h) from Q2 to Q1. Let u ∈
vars(Q2). If G Q2Q1 u for some G ∈ Q2, then bQ1c 6v ∃u (bQ2c).

Proof. We first fix some notations. Let G0 ∈ Q2 such that G0
Q2Q1 u. Let

h(G0) = F0 and h(u) = w. Assume that R0 is the relation name of G0 (which is
necessarily equal to the relation name of F0). We show that bQ1c 6v ∃u (bQ2c)
by constructing a database instance db such that db |= bQ1c but db 6|=
∃u (bQ2c).

To define db, let θ, µ be two valuations over vars(Q1) such that for every
x ∈ vars(Q1), θ(x) = µ(x) if and only if x ∈ F+,Q1

0 . Assume that Q1 =
{() | ∃~y (B1)}. Let db = θ(B1) ∪ µ(B1). We next show that db has only two

108 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

repairs, denoted by r and s, where

r = db \ {µ(F0)} ;

s = db \ {θ(F0)} .

To see that these are repairs, we first show that for every F ∈ Q1 \ {F0},
the facts θ(F) and µ(F) are either equal or not key-equal, i.e., they never
constitute two distinct facts of a same block. Indeed, for every F ∈ Q1 \{F0},
two cases are possible:

Case keyvars(F) ⊆ F+,Q1
0 . Then, vars(F) ⊆ F+,Q1

0 , and thus θ and µ agree
on all variables of vars(F). That is, θ(F) = µ(F).

Case keyvars(F) 6⊆ F+,Q1
0 . Then, by the definition of θ and µ, for some vari-

able x ∈ keyvars(F), θ(x) 6= µ(x), hence θ(F) and µ(F) are not key-
equal.

Furthermore, when considering F0, θ(F0) and µ(F0) are distinct and key-equal
(hence, r contains θ(F0) and s contains µ(F0)). The facts θ(F0) and µ(F0) are
key-equal because keyvars(F0) ⊆ F+,Q1

0 is obvious. Further, from G0
Q2Q1 u,

we can assume some variable y ∈ vars(F0) such that F0
Q1 y, hence y 6∈ F+,Q1

0 .
Since θ and µ disagree on y, we have θ(F0) 6= µ(F0). Clearly, r and s are the
only repairs of db, since {θ(F0), µ(F0)} is the only block of db with more than
one fact.

It is obvious that r |= Q1 and s |= Q1, hence db |= bQ1c since r and s
are the only repairs of db. We now show that db 6|= ∃u (bQ2c), or in other
words, that there is no constant c such that both r |= Q2u→c and s |= Q2u→c.
First, we show that if r |= Q2u→c and s |= Q2u→c for some constant c, then
it must be the case that either c = µ(w) or c = θ(w). Indeed, for every
valuation α over vars(Q2) such that α(Q2) ⊆ r, we have α(u) ∈ {µ(w),
θ(w)}. Likewise, for every valuation β over vars(Q2) such that β(Q2) ⊆ s,
we have β(u) ∈ {µ(w), θ(w)}. Second, we show that µ(w) 6= θ(w). Indeed,
from G0

Q2Q1 u, it is correct to conclude w 6∈ F+,Q1
0 . To see this, consider

a sequence G0
u1_ G1

u2_ G2 . . .
u
_ N(u) witnessing that G0

Q2Q1 u. Then,

5.5. SIMPLIFYING STRATEGIES 109

h(u) = w 6∈ (h(G0))+,Q′
1 = F+,Q1

0 . From the definition of µ and θ, it is correct
to conclude that µ(w) 6= θ(w). Finally, we show that r 6|= Q2u→µ(w) and
s 6|= Q2u→θ(w). This suffices to show that db 6|= ∃u (bQ2c).

We show r 6|= Q2u→µ(w) (the proof of s 6|= Q2u→θ(w) is symmetrical). More
specifically, we show that any valuation α over vars(Q2) such that α(Q2) ⊆ r
satisfies α(u) = θ(w). Hence, α(u) 6= µ(w) for any such valuation α and it is
correct to infer that r 6|= Q2u→µ(w).

It is easily verified that from G0
Q2Q1 u, it follows that for some l ≥ 0,

there exists a sequence

G0
u1_ G1

u2_ G2 . . .
ul_ Gl (5.6)

such that

1. G0, G1, . . . , Gl are atoms of Q2;

2. u ∈ vars(Gl);

3. for all i ∈ {1, 2, . . . , l}, ui ∈ vars(Gi−1) ∩ vars(Gi); and

4. for all i ∈ {1, 2, . . . , l}, h(ui) is a variable such that µ(h(ui)) 6= θ(h(ui)).

Observe that the latter condition is equivalent to h(ui) 6∈ h(G0)+,Q1 = F+,Q1
0

(for all i ∈ {1, 2, . . . , l}). For every i ∈ {1, 2, . . . , l}, define wi := h(ui).
Let α be a valuation over vars(Q2) such that α(Q2) ⊆ r. Based on the
sequence (5.6), we show by induction on increasing i that for i ∈ {0, 1, . . . , l},
α(Gi) = θ(Fi). This suffices since if this holds, then α(Gl) = θ(Fl) and since
u ∈ vars(Gl), α(u) = θ(w).

The induction hypothesis trivially holds for i = 0. Indeed, as argued above,
θ(F0) is the only R0-fact of r.

For the induction step, i 7→ i + 1, the induction hypothesis is that for all
j ∈ {0, 1, . . . , i}, α(Gj) = θ(Fj). Clearly, since ui+1 ∈ vars(Gi), we have that
α(ui+1) = θ(ui+1). Then, since ui+1 ∈ vars(Gi+1) and θ(wi+1) 6= µ(wi+1), it
must be the case that α(Gi+1) = θ(Fi+1).

So we obtain α(Gl) = θ(Fl), hence α(u) = θ(w). This concludes the
proof.

110 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

As already mentioned, it is an open question whether the inverse of The-
orem 13 also holds:

From bQ1c v bQ2c, u ∈ vars(Q2), and G 6Q2Q1 u for all G ∈ Q2,
is it correct to conclude bQ1c v ∃u (bQ2c)?

Theorem 14 provides a positive answer to this question under restrictions on
Q1. The theorem is stated in the form of the function ContainedIn, which
recursively checks whether the variable u has an incoming Q2Q1 -attack. The
function will be called once for every atom of Q2. We briefly discuss the
restrictions imposed on Q1 by Theorem 14.

• The restriction that Q1 and Q2 have the same cardinality can be easily
met, because we can always add “dummy” atoms to a conjunctive query
without affecting query containment. For example, if Q1 contains an
R-atom with signature [n, k], but Q2 contains no R-atom, then we can
add to Q2 the dummy atom R(u1, u2, . . . , uk, uk+1, uk+2, . . . , un), where
each ui is a fresh variable not occurring elsewhere.

• The restriction that bQ1c is in FO is not problematic for the application
we have in mind, which, as explained in Section 5.5.1, is the simplification
of strategies, which are unions of queries of the form (5.4) that are in
FO. Notice that no such restriction is imposed on bQ2c, which can thus
be a query not in FO.

• The more technical restriction is F+,Q1 ⊆ vars(F). This restriction
is met, for example, by the queries Q11 = ∃x ∃y(R(x, y) ∧ S(x, y)) and
Q12 = ∃x ∃y ∃z(R(x, y)∧S(y, z)), but not by the query Q13 = ∃x ∃y(R(x,
y) ∧ S(x, z)) (because R+,Q13 = {x, z} and z 6∈ vars(R)). This restric-
tion excludes some queries, but is not overly prohibitive. It is an open
question whether Theorem 14 can be proved without relying on this
restriction.

Theorem 14. Let Q1 and Q2 be self-join-free Boolean conjunctive queries, of
the same cardinality, such that there exists a homomorphism (call it h) from

5.5. SIMPLIFYING STRATEGIES 111

Function ContainedIn(Q1,Q2,u) is
Data: self-join-free Boolean conjunctive queries Q2 and Q1 such

that |Q2| = |Q1|, there exists a homomorphism from Q2 to
Q1, and bQ1c is in FO; a variable u

Result: Is bQ1c v ∃u (bQ2c)?
if u 6∈ vars(Q2) then

return true
else

let h be the (unique) homomorphism from Q2 to Q1

let F0 := head(Q1)
let G0 be the (unique) atom of Q2 such that h(G0) = F0

if G0
Q2Q1 u then

return false
else

let Q̂1 := Q1 \ {F0}
let Q̂2 := Q2 \ {G0}
let α be an arbitrary valuation over vars(F0)
return ContainedIn(α(Q̂1),Q̂2,u)

Function ContainedIn

Q2 to Q1. Assume that bQ1c is in FO and that for every F ∈ Q1, it is the
case that F+,Q1 ⊆ vars(F). Then the following are equivalent for any variable
u:

1. ContainedIn(Q1,Q2,u) returns true; and

2. bQ1c v ∃u (bQ2c).

Proof. 2 =⇒ 1 Proof by contraposition. Assume that false is returned
by ContainedIn(Q1,Q2,u). Then, at some point in its execution, the test
“if G0

Q2Q1 u” becomes true. Let F0, F1, . . . , Fn be a topological sort of the
attack graph of Q1 where ties are broken lexicographically. For every i ∈ {0,
1, . . . , n}, let Gi be the atom of Q2 with the same relation name as Fi (i.e.,

112 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

h(Gi) = Fi). Then, there exists l ∈ {0, 1, . . . , n} such that Gl
Q′

2α(Q′
1)

 u where

• Q′2 = {Gl, Gl+1, . . . , Gn},

• Q′1 = {Fl, Fl+1, . . . , Fn}, and

• α is a valuation over vars(F0) ∪ vars(F1) ∪ · · · ∪ vars(Fl−1).

We have α(Fl)
α(Q′

1)
 h(u). From Lemma 9, it follows Fl

Q1 h(u). It is now
easy to see Gl

Q2Q1 u. By Theorem 13, bQ1c 6v ∃u (bQ2c).
1 =⇒ 2 We use the following notations:

h := (unique) homomorphism from Q2 to Q1;
F0 := head(Q1);
G0 := the (unique) atom in Q2 such that h(G0) = F0;
Q̂1 := Q1 \ {F0};
Q̂2 := Q2 \ {G0}.

The initial assumptions are the following:

1. ContainedIn(Q1,Q2,u) returns true;

2. db is a database such that every repair of db satisfies Q1.

The proof runs by structural induction. For the base case (i.e., u 6∈ vars(Q2)),
it is obvious that ∃u (bQ2c) ≡ bQ2c and the desired result holds because
there exists a homomorphism from Q2 to Q1. Assume hereinafter that u ∈
vars(Q2).

Since bQ1c is in FO, the attack graph of Q1 is acyclic. Let R0, R1, . . . , Rn
be a topological ordering of the attack graph of Q1, where ties are broken
lexicographically. 3 Since F0 = head(Q1), the relation name of F0 is R0.

We need to show show that db |= ∃u (bQ2c). Clearly, since db |= bQ1c,
there must exist a (not necessarily unique) subset db0 of db such that

1. db0 |= bQ1c;
3By an abuse of notation, we blur the distinction between atoms and their relation names.

5.5. SIMPLIFYING STRATEGIES 113

2. for every block b of db, either b ⊆ db0 or b ∩ db0 = ∅.

3. Minimality: for every block b of db0, we have db0 \ b 6|= bQ1c.

In practice, db0 can be obtained from db by repeatedly removing blocks
until the further removal of any more block would lead to a database that
falsifies bQ1c. We will show that db0 |= ∃u (bQ2c), which obviously implies
db |= ∃u (bQ2c) (because every repair of db contains a repair of db0).

Let the set of R0-facts in db0 be {A1, A2, . . . , Am}. For 1 ≤ i ≤ m, denote
by θi the (unique) valuation over vars(F0) such that θi(F0) = Ai. We show
the following:

Agreement Property: For every v ∈ vars(F0)∩F+,Q1
0 , for all i, j ∈

{1, 2, . . . ,m}, θi(v) = θj(v).

To this extent, let v ∈ vars(F0) ∩ F+,Q1
0 . Then, F0 6Q1 v. Moreover, since

F0 has no incoming attacks in the attack graph of Q1, we have that for all
F ∈ Q1, F 6Q1 v. From Lemma 8, it follows that for all i, j ∈ {1, 2, . . . ,m},
θi(v) = θj(v), which concludes the proof of the Agreement Property. Notice
that from keyvars(F0) ⊆ F+,Q1

0 and the Agreement Property, it follows that
the set {A1, A2, . . . , Am} is the unique R0-block of db0.

It suffices now to show that there exists a constant b (which depends on
db0) such that every repair of db0 satisfies Q2u→b. We distinguish two cases,
the first case being the easier one.

Case u ∈ vars(G0)

In this case, it can be shown that all R0-facts agree on the position at which u
occurs in G0. Indeed, from G0 6Q2Q1 u (since ContainedIn(Q1,Q2,u) returns
true), it follows h(u) ∈ F+,Q1

0 . From h(u) ∈ vars(F0) and the Agreement
Property, it follows that for all i, j ∈ {1, 2, . . . ,m}, θi(h(u)) = θj(h(u)). In
this case, the desired result holds for b = θ1(h(u)).

114 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

Case u 6∈ vars(G0)

Let d̂b0 := db0 \ {A1, A2, . . . , Am}. For i ∈ {1, 2, . . . ,m}, denote by d̂bi0 a
minimal subset of d̂b0 such that d̂bi0 |= bθi(Q̂1)c and every block of d̂b0 is
either contained in d̂bi0 or disjoint with d̂bi0. That is, d̂bi0 is obtained from
d̂b0 relative to θi(Q̂1) in exactly the same way as db0 was obtained from db
relative to Q1. In the same way as {A1, A2, . . . , Am} was shown to be the only
R0-block of db0, it can be shown that for each i ∈ {1, 2, . . . ,m}, d̂bi0 contains
only one R1-block.

It follows from Lemma 9 that R1, R2, . . . , Rn will be a topological sort of the
attack graph of θi(Q̂1) (for all 1 ≤ i ≤ m). The following hold for any i ∈ {1,
2, . . . ,m}:

• from our initial hypothesis that ContainedIn(Q1,Q2,u) returns true, it
follows that ContainedIn(θi(Q̂1),Q̂2,u) returns true; and

• by the induction hypothesis, there exists a constant bi such that every
repair r̂ of d̂bi0 satisfies Q̂2u→bi

.

We show that db0 |= bQ2u→b1c (i.e., we fix i = 1). By symmetry, it will
actually follow that for every i ∈ {1, 2, . . . ,m}, db0 |=

⌊Q2u→bi

⌋
.

Let r be an arbitrary repair of db0. We need to show r |= Q2u→b1 .
We can assume l ∈ {1, 2, . . . ,m} such that Al ∈ r. Since r |= Q1, there

exists a valuation δ over vars(Q1) such that δ(Q1) ⊆ r and δ(F0) = Al. The
latter follows because Al is the only R0-fact in r. Let α be the valuation
over vars(Q2) such that for every x ∈ vars(Q2), α(x) = δ(h(x)). Obviously,
α(Q2) = δ(Q1) ⊆ r and α(G0) = Al.

Clearly, r ∩ d̂b1
0 is a repair of d̂b1

0. By the induction hypothesis, we can
assume a valuation β over vars(Q2) such that

1. β(Q̂2) ⊆ r ∩ d̂b1
0;

2. β(u) = b1; and

3. β(G0) = A1.

5.5. SIMPLIFYING STRATEGIES 115

Notice that the induction hypothesis gives us the first two items. The last
item follows from the construction of d̂b1

0.
Let γ be the valuation over vars(Q2) such that for every x ∈ vars(Q2),

γ(x) =

 α(x) if G0
Q2Q1 x

β(x) otherwise.
(5.7)

From the construction of γ and G0 6Q2Q1 u, it follows γ(u) = b1. It remains to
be shown that γ(Q2) ⊆ r. To this extent, let G be an arbitrary atom of Q2.
It remains to be shown that γ(G) ∈ r. We distinguish two cases.

Case G = G0. Recall that α(G0) = Al, β(G0) = A1, and Al ∈ r. We show
that γ(G0) = α(G0) = Al. To this extent, let w be an arbitrary variable
in vars(G0). If G0

Q2Q1 w, then γ(w) = α(w) by the construction of
γ in (5.7). Consider next G0 6Q2Q1 w. Then it must be the case that
h(w) ∈ F+,Q1

0 and, by the Agreement Property, A1 and Al agree on the
position at which w occurs in G0. Then, α(w) = β(w).

Case G 6= G0. Assume towards a contradiction G ∈ Q2 such that γ(G) 6∈ r.
Then, it must be the case that α(G) 6= γ(G) 6= β(G), because α(G)
and β(G) belong to r. Then we can assume y1, y2 ∈ vars(G) such that
γ(y1) = α(y1) 6= β(y1) and γ(y2) = β(y2) 6= α(y2). We next show a
contradiction by proving α(y2) = β(y2).

Observe that by the construction of γ in (5.7), from γ(y1) = α(y1) 6=
β(y1), it follows G0

Q2Q1 y1. Likewise, from γ(y2) = β(y2) 6= α(y2), it
follows G0 6Q2Q1 y2. We show next h(y2) ∈ F+,Q1

0 .

From G0
Q2Q1 y1 and y1 ∈ vars(G), it follows G0

Q2Q1 G, which implies
the existence of a sequence of the form (5.5) with Gl = G. Then for
every variable v ∈ vars(G), either G0

Q2Q1 v or h(v) ∈ F+,Q1
0 . Since

y2 ∈ vars(G) and G0 6Q2Q1 y2, it must be the case h(y2) ∈ F+,Q1
0 .

The statement of Theorem 14 makes the hypothesis that F+,Q1
0 ⊆ vars(F0),

hence h(y2) ∈ vars(F0). Then, by the Agreement Property, it is correct
to conclude that for all i, j ∈ {1, 2, . . . ,m}, θi(h(y2)) = θj(h(y2)). In the

116 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

remainder of the proof, we denote by d the constant such that for all
i ∈ {1, 2, . . . ,m}, θi(h(y2)) = d. Intuitively, this means that all R0-facts
of db0 contain the constant d at the position at which h(y2) occurs in
F0. Note incidentally that this does not mean that y2 occurs in G0,
because the homomorphism h can map distinct variables of Q2 to the
same variable in Q1 (i.e., h needs not to be injective).

Let F be the atom such that h(G) = F , and let the relation name of F
be R. From G 6= G0, it follows F 6= F0 (and R 6= R0). Since y2 occurs
in G, h(y2) occurs in F . So h(y2) occurs in both F0 and F . Let o be
the arity of R and let p ∈ {1, 2, . . . , o} such that y2 occurs at position
p in G (and hence h(y2) occurs at position p in F). The construction
of db0 ensures that all R-facts of db0 will contain the same constant d
at position p. Indeed, if an R-fact A of db contains a distinct constant
at position p, then the block containing A will be excluded from db0

(because of the Minimality condition). It follows α(y2) = d = β(y2), a
contradiction. We conclude by contradiction that γ(G) ∈ r.

This concludes the proof.

5.6 Conclusion

We have studied a realistic setting for divulging an inconsistent database to end
users. In this setting, users access the database exclusively via syntactically
restricted queries, and get exclusively consistent answers computable in FO
data complexity. If the data complexity is higher, then the query will be
rejected, in which case users have to fall back on strategies that obtain a
large (the larger, the better) subset of the consistent answer. Such strategies
combine answers obtained from several “easier” queries.

Although our setting applies to arbitrary queries and constraints, we only
searched for strategies when constraints are primary keys, and the database is
accessible only via self-join-free conjunctive queries for which consistent query
answering is in FO. Under these access restrictions, we showed how to con-

5.6. CONCLUSION 117

struct strategies that combine answers by means of union and quantification.
It turns out that the simplification of such strategies raises a novel and chal-
lenging query containment problem. By means of a new tool (a generalization
of attack graphs), we were able to solve this containment problem under some
syntactic restrictions, leaving a general solution for future work. Another in-
teresting open question is whether our strategies can still be improved, e.g.,
by using negation.

Of practical interest is the development of an academic prototype that
allows investigating the real-life applicability and efficiency of the proposed
strategies.

118 CHAPTER 5. UNDER-APPROXIMATIONS OF CQA

Chapter 6

On the Syntax of Consistent
First-Order Rewritings

If a conjunctive query Q has a consistent first-order rewriting, then there exist
several procedures for effectively constructing a consistent first-order rewriting
for Q. Although different procedures construct semantically equivalent first-
order queries, their outcomes may be syntactically very different. Some past
experiments [DPW12, Dec13] have revealed that these syntactic differences
can result in different execution times on a real SQL RDBMS, suggesting that
some procedures yield “more optimal” rewritings than others.

In this chapter, we investigate two syntactic properties of consistent first-
order rewritings, namely the quantifier rank and the number of existential
and universal quantifier blocks. We elaborate rewriting procedures that aim
at a reduction in either measure. This chapter generalizes the theoretical
treatment of [DPW12,Dec13] which assumed that the conjunctive queries that
are input to the rewriting procedures are acyclic (as defined in [BFMY83]).
In this chapter, the input conjunctive queries can be cyclic. New experiments
involving cyclic queries are left for future work. Past experiments are already
presented in [Dec13] and will not be repeated here.

119

120 CHAPTER 6. SYNTAX OF FO REWRITINGS

R Conf Year Town

SUM 2012 Marburg
SUM 2016 Mons
SUM 2016 Gent
SUM 2017 Rome
SUM 2017 Paris

S Town Attractiveness

Charleroi C
Marburg A
Mons A
Mons B
Paris A
Rome A

Figure 6.1: Uncertain database db0.

6.1 Introduction

In the following running example database, there are still two candidate cities
for organizing SUM 2016 and SUM 2017. The table S shows controversy about
the attractiveness of Mons, while information about the attractiveness of Gent
is missing.

Database db0 has 8 repairs, because there are two choices for SUM 2016,
two choices for SUM 2017, and two choices for Mons’ attractiveness. The
following conjunctive query asks in which years SUM took place (or will take
place) in a city with A attractiveness:

Q0 =
{
y | ∃z

(
R(SUM, y, z) ∧ S(z,A)

)}
.

The consistent answer of Q0 on db0 is {2012, 2017}. Notice incidentally that
Q0(db0) also contains 2016, but that answer is not certain, because in some
repairs, the organizing city of SUM 2016 does not have A attractiveness.

For every database, the consistent answer toQ0 is obtained by the following
first-order query:

ϕ0(y) =

∃z(R(SUM, y, z)∧
∀z(R(SUM, y, z)⇒

S(z,A)∧
∀v(S(z, v)⇒ v = A))).

6.2. NOTATIONS AND TERMINOLOGY 121

Consistent first-order rewritings are of practical importance, because they can
be encoded in SQL, which allows to obtain consistent answers using standard
database technology. We know by Theorem 3 that such rewritings can be
computed for self-join-free conjunctive queries with an acyclic attack graph,
which we focus on in this chapter.

We provide two theorems indicating that rewritings produced by Func-
tion Rewrite can generally be “simplified” by (i) reducing the number of (al-
ternations of) quantifier blocks and/or by (ii) reducing the quantifier nesting
depth.

This chapter is organized as follows. Section 6.2 provides missing notations
and definitions. In particular, we provide measures for describing the syntactic
complexity of a first-order formula. Section 6.3 provides an example justifying
why the algorithm developed in Chapter 3 could (and therefore should) be
improved. Section 6.4 and Section 6.5 show how rewritings can be simplified
with respect to the complexity measures of Section 6.2. Section 6.6 concludes
the chapter.

6.2 Notations and Terminology

Quantifier rank and quantifier alternation depth The quantifier rank
of a first-order formula ϕ, denoted by qr(ϕ), is the depth of the quantifier
nesting in ϕ and is defined as usual (see, for example, [Lib04, page 32]):

• if ϕ is quantifier-free, then qr(ϕ) = 0;

• qr(ϕ1 ∧ ϕ2) = qr(ϕ1 ∨ ϕ2) = max (qr(ϕ1),qr(ϕ2));

• qr(¬ϕ) = qr(ϕ);

• qr(∃x (ϕ)) = qr(∀x (ϕ)) = 1 + qr(ϕ).

A first-order formula ϕ is said to be in prenex normal form if it has the
form q1x1q2x2 . . . qnxnψ, where qi’s are either ∃ or ∀ and ψ is quantifier-free.
We say that ϕ has quantifier alternation depth m if q1x1q2x2 . . . qnxn can be

122 CHAPTER 6. SYNTAX OF FO REWRITINGS

divided into m blocks such that all quantifiers in a block are of the same type
and quantifiers in two consecutive blocks are different.

For formulas not in prenex normal form, the number of quantifier blocks is
counted as follows. A universally quantified formula is a formula whose main
connective is ∀. An existentially quantified formula is a formula whose main
connective is ∃. The number of quantifier blocks in a first-order formula ϕ,
denoted qbn(ϕ), is defined as follows:

• if ϕ is quantifier-free, then qbn(ϕ) = 0;

• qbn(ϕ1 ∧ ϕ2) = qbn(ϕ1 ∨ ϕ2) = qbn(ϕ1) + qbn(ϕ2);

• qbn(¬ϕ) = qbn(ϕ);

• if ϕ is not universally quantified and n ≥ 1, then qbn(∀x1 ∀x2 . . .

∀xn (ϕ)) = 1 + qbn(ϕ); and

• if ϕ is not existentially quantified and n ≥ 1, then qbn(∃x1 ∃x2 . . .

∃xn (ϕ)) = 1 + qbn(ϕ).

For example, if ϕ is ∃x ∃y (∃u (ϕ1) ∧ ∃v (ϕ2)) and ϕ1, ϕ2 are both quantifier-
free, then qbn(ϕ) = 3. Notice that ϕ has a prenex normal form with quantifier
alternation depth equal to 1. Clearly, if ϕ is in prenex normal form, then the
quantifier alternation depth of ϕ is equal to qbn(ϕ).

Proposition 2. Every first-order formula ϕ has an equivalent one in prenex
normal form with quantifier alternation depth less than or equal to qbn(ϕ).

Proof. The proof runs by induction on the structure of ϕ. The result is obvious
if ϕ is quantifier free. For the induction step, we distinguish the following cases.

Case ϕ = ϕ1 ∧ ϕ2. Assume qbn(ϕ1) = n1 and qbn(ϕ2) = n2. By the in-
duction hypothesis, we can assume integers m1 ≤ n1 and m2 ≤ n2 such
that ϕ1 has an equivalent formula ϕ′1 in prenex normal form with quan-
tifier alternation depth m1, and ϕ2 has an an equivalent formula ϕ′2 in
prenex normal form with quantifier alternation depth m2. A standard

6.3. NAIVE ALGORITHM 123

translation [Pap94, page 99] of ϕ′1 ∧ ϕ′2 in prenex normal form yields a
formula with quantifier alternation depth ≤ m1 + m2. Finally, notice
m1 +m2 ≤ n1 + n2 = qbn(ϕ).

Case ϕ = ϕ1 ∨ ϕ2. Similar to the previous case.

Case ϕ = ¬ϕ1. Easy.

Case ϕ = ∀x1 . . . ∀xnϕ1 when n ≥ 1 and ϕ1 not universally quantified.
Assume qbn(ϕ1) = n1. By the induction hypothesis, we can assume in-
teger m1 ≤ n1 such that ϕ1 has an equivalent formula ϕ′1 in prenex nor-
mal form with quantifier alternation depth m1. Obviously, ∀x1 . . . ∀xnϕ′1
is equivalent to ϕ, is in prenex normal form, and has quantifier alterna-
tion depth ≤ 1 +m1. Finally, notice 1 +m1 ≤ 1 + n1 = qbn(ϕ).

Case ϕ = ∃x1 . . . ∃xnϕ1 when n ≥ 1 and ϕ1 not existentially quantified.
Analogous to the previous case.

6.3 Naive Algorithm

The algorithm Function Rewrite developped in Chapter 3 is called “naive”
because it does not attempt to minimize the alternations or nesting depth of
quantifiers. This may be problematic when the rewritings are translated into
SQL for execution, as illustrated by the following example.

Example 35. For each m ≥ 1, assume relation name Ri with signature [2, 1],
and let disjoint(m) = {R1(x1, b), . . . , Rm(xm, b)}, where b is a constant. No-
tice that disjoint(m) is a Boolean query whose attack graph has no edges.
Formulas ϕ1, ϕ2, and ϕ3 are three possible consistent first-order rewritings for
disjoint(m). The formula ϕ1 is returned by Function Rewrite, while ϕ2 and
ϕ3 result from some syntactic simplification techniques described in Section 6.4
and Section 6.5. In particular, ϕ2 minimizes the number of quantifier blocks,
and ϕ3 minimizes the nesting depth of quantifiers.

124 CHAPTER 6. SYNTAX OF FO REWRITINGS

ϕ1 = ∃x1(R1(x1, b)∧
∀z1(R1(x1, z1)⇒ z1 = b∧
∃x2(R2(x2, b)∧
∀z2(R2(x2, z2)⇒ z2 = b∧
. . .

∃xm(Rm(xm, b)∧
∀zm(Rm(xm, zm)⇒ zm = b)) . . .))))

ϕ2 = ∃x1 ∃x2 . . . ∃xm(∧mi=1 Ri(xi, b)∧
∀z1 ∀z2 . . . ∀zm(∧mi=1 Ri(xi, zi)⇒
z1 = b ∧ z2 = b ∧ . . . ∧ zm = b))

ϕ3 = ∃x1(R1(x1, b) ∧ ∀z1(R1(x1, z1)⇒ z1 = b))∧
∃x2(R2(x2, b) ∧ ∀z2(R2(x2, z2)⇒ z2 = b))∧

...
∃xm(Rm(xm, b) ∧ ∀zm(Rm(xm, zm)⇒ zm = b))

Notice that ϕ1, ϕ2, and ϕ3 each contain m existential and m universal
quantifiers. The following table gives the quantifier rank and the number of
quantifier blocks for these formulas; recall that these measures were defined in
Section 6.2.

ϕ qr(ϕ) qbn(ϕ)

ϕ1 2m 2m
ϕ2 2m 2
ϕ3 2 2m

The differences in syntactic complexity persist in SQL. Assume that for
each i ∈ {1, 2, . . . ,m}, the first and the second attribute of each Ri are named
A and B respectively. Thus, A is the primary key attribute. For m = 2, the
queries of Listing 6.1, Listing 6.2 and Listing 6.3 are direct translations into

6.3. NAIVE ALGORITHM 125

SELECT ’true’ FROM R1 AS r11
WHERE NOT EXISTS (

SELECT * FROM R1 AS r12
WHERE r12.A = r11.A AND (r12.B <> ’b’ OR NOT EXISTS (

SELECT * FROM R2 AS r21
WHERE NOT EXISTS (

SELECT * FROM R2 AS r22
WHERE r22.A = r21.A AND r22.B <> ’b’))));

Listing 6.1: Consistent SQL rewriting obtained from ϕ1.

SELECT ’true’ FROM R1 AS r11, R2 AS r21
WHERE NOT EXISTS (

SELECT * FROM R1 AS r12, R2 AS r22
WHERE r12.A = r11.A AND r22.A = r21.A
AND (r12.B <> ’b’ OR r22.B <> ’b’));

Listing 6.2: Consistent SQL rewriting obtained from ϕ2.

SQL of ϕ1, ϕ2, and ϕ3. 1 The fact that ϕ2 only has one ∀ quantifier block
results in an SQL query for ϕ2 with one NOT EXISTS. Notice further that the
SQL query for ϕ2 requires m tables in each FROM clause, whereas the SQL
query for ϕ3 takes the intersection of m SQL queries, each with a single table
in the FROM clause.

The foregoing example shows that formulas returned by Function Rewrite
can be “optimized” so as to have lower quantifier rank and/or less (alternations
of) quantifiers blocks. The theoretical details will be given in the next two
sections.

1In practice, we construct rewritings in tuple relational calculus (TRC), and then translate
TRC into SQL. Such translations are well known (see, e.g., Chapter 3 of [Ull88]).

126 CHAPTER 6. SYNTAX OF FO REWRITINGS

SELECT ’true’ FROM R1 AS r11
WHERE NOT EXISTS (

SELECT * FROM R1 AS r12
WHERE r12.A = r11.A AND r12.B <> ’b’)

INTERSECT

SELECT ’true’ FROM R2 AS r21
WHERE NOT EXISTS (

SELECT * FROM R2 AS r22
WHERE r22.A = r21.A AND r22.B <> ’b’);

Listing 6.3: Consistent SQL rewrititing obtained from ϕ3.

Importantly, these simplifications do not decrease (nor increase) the num-
ber of ∃ or ∀ quantifiers in a formula; they merely group quantifiers of the
same type in blocks and/or decrease the nesting depth of quantifiers.

6.4 Reducing the Number of Quantifier Blocks

Function Rewrite constructs a consistent first-order rewriting by treating one
unattacked atom at a time. The next theorem implies that multiple unattacked
atoms can be “rewritten” together, which generally results in less (alternations
of) quantifier blocks, as expressed by Corollary 1.

Theorem 15. Let Q(~v) be a query in SJFCQ. Let S ⊆ Q be a set of
unattacked atoms in the attack graph of Q. Let ~x be a vector of variables
such that vars(~x) = ⋃

F∈S keyvars(F) \ vars(~v). Let Q′(~v, ~x) be the query
with the same atoms as Q(~v) but in which the variables of ~x are free. If
ϕ(~v, ~x) is a consistent first-order rewriting for Q′(~v, ~x), then ∃~xϕ(~v, ~x) is a
consistent first-order rewriting for Q(~v).

Proof. We fix ~v = v1, . . . , vm and ~x = x1, . . . , xl. Assume ϕ is a consistent
first-order rewriting for Q′. Then, for every database db, for all ~a ∈ domm,

6.4. REDUCING THE NUMBER OF QUANTIFIER BLOCKS 127

~b ∈ doml,
db |=

⌊
Q′(~a,~b)

⌋
⇔ db |= ϕ(~a,~b). (6.1)

Note that db |=
⌊
Q′(~a,~b)

⌋
is tantamount to saying that every repair of db

satisfies the Boolean query Q′(~a,~b). We need to show that for every database
db, for every ~a ∈ domm,

db |= bQ(~a)c ⇔ db |= ∃~xϕ(~a, ~x). (6.2)

⇐ Easy. ⇒ Assume S = {F1, . . . , Fu}. Let ~x1 = x1, . . . , xk be a
vector of variables such that vars(~x1) = keyvars(F1)\keyvars(~v). Let Q1 =
Q(~v, ~x1), i.e., Q1 is obtained from Q by making the variables in ~x1 free. By
Lemma 3.7 in [KW17], for every database db, for every ~a ∈ domm, there
exists ~b ∈ domk such that:

db |= bQ(~a)c ⇒ db |=
⌊
Q1(~a,~b)

⌋
.

It can be easily shown that none of the atoms of S is attacked in the attack
graph of Q1 (still by Lemma 3.7 in [KW17]). Then, by repeated application of
the same arguments, for every database db, for every ~a ∈ domm, there exists
~b ∈ doml such that:

db |= bQ(~a)c ⇒ db |=
⌊
Q′(~a,~b)

⌋
. (6.3)

From (6.1) and (6.3), for every database db, for every ~a ∈ domm, there
exists ~b ∈ doml such that db |= bQ(~a)c implies db |= ϕ(~a,~b). Consequently,
for every database db, for every ~a ∈ domm, db |= bQ(~a)c implies db |=
∃~xϕ(~a, ~x).

Corollary 1. Let Q(~v) be a query in SJFCQ whose attack graph is acyclic.
Let p be the number of atoms on the longest directed path in the attack graph of
Q. There exists a consistent first-order rewriting ϕ for Q such that qbn(ϕ) ≤
2p.

Proof. For every atom F ∈ Q, we define the stratum of F as the number of
atoms on the longest directed path (in the attack graph of Q) that starts from

128 CHAPTER 6. SYNTAX OF FO REWRITINGS

F = R(u, a, x)

G = S(x, y, z)

H = T(x, y) I = P(x, z)

Figure 6.2: Attack graph for Boolean query Q = {R(u, a, x), S(x, y, z), T(x, y),
P(x, z)}.

some unattacked atom and ends at F . In particular, an atom has stratum 1
if and only if it is unattacked. The greatest stratum is p.

From Theorem 15, it follows that Function Rewrite can be modified so as
to proceed stratum-by-stratum (rather than atom-by-atom), starting with all
atoms at stratum 1. In particular, let {Ri(~xi, ~yi)}ki=1 be all atoms at stratum 1.
Then Q has a consistent first-order rewriting of the form:

∃~x1 · · · ∃~xk∃~y1 · · · ∃~yk

 (∧k
i=1 Ri(~xi, ~yi)

)
∧

∀~y1 · · · ∀~yk
((∧k

i=1 Ri(~xi, ~yi)
)
⇒ C ∧ ψ

) 
where C is a conjunction of equalities and ψ is a consistent first-order rewriting
of the query obtained from Q by removing all atoms with stratum 1. If ψ is
obtained by recursive application of the same method (on a smaller query),
we obtain a consistent first-order rewriting for Q that has a prenex normal
form with 2p quantifier blocks.

Example 36. The longest path in the attack graph of Figure 6.2 contains 3
atoms. From Corollary 1 and Property 2, it follows that the query of Figure 6.2
has a consistent first-order rewriting with quantifier alternation depth less than
or equal to 6.

6.5. REDUCING THE QUANTIFIER RANK 129

6.5 Reducing the Quantifier Rank

Consider query disjoint(m) with m ≥ 1 in Example 35. Function Rewrite
will “rewrite” the atoms Ri(xi, b) sequentially (1 ≤ i ≤ m). However, since
these atoms have no bound variables in common, it is correct to rewrite them
“in parallel” and then join the resulting formulas. This idea is generalized in
the following theorem.

Definition 10. Let Q(~v) be a query in SJFCQ with |Q| ≥ 1. An independent
partition of Q is a (complete disjoint) partition {Q1, . . . ,Qk} of Q such that
for 1 ≤ i < j ≤ k, vars(Qi) ∩ vars(Qj) ⊆ vars(~v).

Theorem 16. Let Q(~v) be a query in SJFCQ. Let {Q1, . . . ,Qk} be an inde-
pendent partition of Q. For each 1 ≤ i ≤ k, let ϕi be a consistent first-order
rewriting for Qi(~vi), where ~vi is ~v restricted to vars(Qi). Then,

∧k
i=1 ϕi is a

consistent first-order rewriting for Q.

Proof. Let θ be an arbitrary valuation over vars(~v). For 1 ≤ i ≤ k, let θi be
the restriction of θ on vars(~vi). Define ϕ = ∧k

i=1 ϕi.
Let db be a database such that db |= ϕ(θ(~v)). Then, for 1 ≤ i ≤ k, db |=

ϕi(θi(~vi)). Let r be an arbitrary repair of db. Since each ϕi is a consistent
first-order rewriting for Qi and since db |= ϕ(θi(~vi)), we have θi(~vi) ∈ Qi(r)
(for 1 ≤ i ≤ k). Hence, for every 1 ≤ i ≤ k, we can extend θi to a valuation
Θi over vars(Qi) such that Θi(Qi) ⊆ r. Let Θ = ⋃k

i=1 Θi. We show that
Θ is a function. Assume that the same variable x occurs in vars(Qi) and
vars(Qj) with i 6= j. Since {Q1, . . . ,Qk} is an independent partition of Q,
we have x ∈ vars(~v), hence x ∈ vars(~vi) and x ∈ vars(~vj). It follows that
Θi(x) = θ(x) and Θj(x) = θ(x), hence Θi(x) = Θj(x). Since Θ(Q) ⊆ r is now
obvious, we have Θ(~v) = θ(~v) ∈ Q(r). Since r is an arbitrary repair of db, it
follows that every repair of db satisfies Q(θ(~v)).

Conversely, assume that every repair of db satisfies Q(θ(~v)). Let r be a
repair of db. We have θ(~v) ∈ Q(r). Hence, we can extend θ to a valuation Θ
over vars(Q) such that Θ(Q) ⊆ r. For 1 ≤ i ≤ k, let Θi be the restriction of Θ

130 CHAPTER 6. SYNTAX OF FO REWRITINGS

on vars(Qi). Then for 1 ≤ i ≤ k, Θi(Qi) ⊆ r. It follows Θi(~vi) ∈ Qi(r). Since
Θ(~vi) = θi(~vi) is obvious and since r is an arbitrary repair of db, it follows
that for 1 ≤ i ≤ k, every repair of db satisfies Qi(θi(~vi)). Since each ϕi is
a consistent first-order rewriting for Qi, we have that for 1 ≤ i ≤ k, db |=
ϕi(θi(~vi)). Consequently, db |= ∧k

i=1 ϕi(θi(~vi)). It follows db |= ϕ(θ(~v)).

This theorem allows us to build queries with a lower quantifier rank than
the naive algorithm, but we would like to predict the final quantifier rank we
can achieve using it. To this extent, we provide Function QR which computes
an upper bound on the smallest quantifier rank one can obtain by improving
the naive algorithm using Theorem 16. That is, if Function QR returns the
integer n on input Q(~v), then Q(~v) has a consistent first-order rewriting ϕ
with qr(ϕ) ≤ n.

The expression |keyvars(Fi) \ vars(~v)| + (n − k) in Function QRaux is
the increase in quantifier rank that results from rewriting an atom Fi. For
example, if we rewrite an atom R(x1, . . . , xk, xk+1, . . . , xn) and assume no free
variables (i.e., ~v is empty), the increase in quantifier rank is k + (n− k) = n,
which can be verified on the following rewriting:

∃x1 · · · ∃xk

 ∃xk+1 · · · ∃xnR(x1, . . . , xk, xk+1, . . . , xn)∧
∀xk+1 · · · ∀xn

(
R(x1, . . . , xk, xk+1, . . . , xn)⇒ ϕ

)  .
In the above rewriting, the formula ϕ, which rewrites the remaining atoms,
occurs within n nested quantifiers. Significantly, many queries have a con-
sistent first-order rewriting whose quantifier rank is strictly smaller than the
upper bound given by Function QR. For example, in the following “smart”
rewriting of the atom R(x, y, y, y), the formula ϕ occurs within only two nested
quantifiers, while n = 4:

∃x


∃yR(x, y, y, y)∧

∧ ∀y∀y′∀y′′
(
R(x, y, y′, y′′)⇒ y = y′ = y′′

)
∧ ∀y

(
R(x, y, y, y)⇒ ϕ

)
 .

6.5. REDUCING THE QUANTIFIER RANK 131

Input: Q(~v) is a query in SJFCQ whose attack graph is acyclic.
Result: An upper bound on the smallest quantifier rank of the

consistent first-order rewriting constructed according to
Theorem 16.

if Q = ∅ then
return 0;

else
let Q1(~v1), . . . ,Qn(~vn) be the independent subqueries of Q(~v);
return max1≤i≤nQRaux(Qi(~vi));

Function QR computes the best quantifier rank.

let F1, . . . , Fn be the unattacked atoms of Q(~v);
foreach i ∈ {1, 2, . . . , n} do

let ~vi be a vector of the variables in vars(~v) ∪ vars(Fi);
Qi ← Q \ {Fi};
let [n, k] be the signature of Fi;
Ni ← |keyvars(Fi) \ vars(~v)|+ (n− k);

return min1≤i≤n(QR(Qi(~vi)) +Ni);
Function QRaux is an auxiliary function for QR(Q(~v)).

132 CHAPTER 6. SYNTAX OF FO REWRITINGS

Note that in Function QRaux, taking the minimum of the given measures
is useful, as shown in the next two examples.

Example 37. Consider the Boolean query Q = {R(x, y), S(x, a), T(y, a)}. All
atoms are unattacked. If we start rewriting the R-atom, then there remains no
variable in the subquery, and the S- and T-atoms can be handled in a parallel
fashion. But if we end with the R-atom, then all the atoms have to be handled
sequentially, leading to a difference in the quantifier rank resulting from the
two strategies.

Starting with R
∃x ∃y(R(x, y)∧

(S(x, a)∧
∀z(S(x, z)⇒ z = a))∧

(T(y, a)∧
∀z(T(y, z)⇒ z = a)))

Quantifier rank is 3.

Ending with R (starting with the S-atom)

∃x(S(x, a)∧
∀v(S(x, v)⇒ v = a∧
∃y(T(y, a)∧
∀w(T(y, w)⇒ w = a∧

R(x, y)))))

Quantifier rank is 4.

Example 38. We can extend the previous example in the following way. Let
Q be the following query in SJFCQ:

sm(n) =
{

R(x1, x2, . . . , xn)
}
∪
{

Ri(xi, a1, a2, . . . , an−1) | i ∈ {1, 2, . . . , n}
}

where n is any non-negative integer. Note that sm(2) is the query from the
previous example modulo relation names and constant a which becomes a1.

6.5. REDUCING THE QUANTIFIER RANK 133

Again we consider what happens when we start rewriting with the R-atom
and when we end rewriting with this atom. In the second case, without loss of
generality, we handle the atoms R1, R2, . . . , Rn in natural order.

Starting with R

∃x1 ∃x2 . . . ∃xn(R(x1, x2, . . . , xn)∧
(R1(x1, a1, a2, . . . , an−1)∧
∀y1 ∀y2 . . . ∀yn−1(R1(x1, y1, y2, . . . , yn−1)⇒

(y1 = a1 ∧ y2 = a2 ∧ . . . ∧ yn−1 = an−1)))∧
(R2(x2, a1, a2, . . . , an−1)∧
∀y1 ∀y2 . . . ∀yn−1(R2(x2, y1, y2, . . . , yn−1)⇒

(y1 = a1 ∧ y2 = a2 ∧ . . . ∧ yn−1 = an−1)))∧
...

(Rn(xn, a1, a2, . . . , an−1)∧
∀y1 ∀y2 . . . ∀yn−1(Rn(xn, y1, y2, . . . , yn−1)⇒

(y1 = a1 ∧ y2 = a2 ∧ . . . ∧ yn−1 = an−1))))

Quantifier rank is n+(n−1) = 2n−1 where n is the number of existential
quantifiers and n−1 the number of universal quantifiers in each “branch.”

Ending with R

∃x1(R1(x1, a1, a2, . . . , an−1)∧
∀y1 ∀y2 . . . ∀yn−1(R1(x1, y1, y2, . . . , yn−1)⇒

(y1 = a1 ∧ y2 = a2 ∧ . . . ∧ yn−1 = an−1∧
∃x2(R2(x2, a1, a2, . . . , an−1)∧
∀y1 ∀y2 . . . ∀yn−1(R2(x2, y1, y2, . . . , yn−1)⇒

(y1 = a1 ∧ y2 = a2 ∧ . . . ∧ yn−1 = an−1∧
. . .
∃xn(Rn(xn, a1, a2, . . . , an−1)∧
∀y1 ∀y2 . . . ∀yn−1(Rn(xn, y1, y2, . . . , yn−1)⇒

(y1 = a1 ∧ y2 = a2 ∧ . . . ∧ yn−1 = an−1∧
R(x1, x2, . . . , xn)))) . . .))))))

134 CHAPTER 6. SYNTAX OF FO REWRITINGS

Quantifier rank in n + (n ∗ (n − 1)) = n2 where n is the number of
existential quantifiers and n − 1 the number of universal quantifiers in
each “step” of the query (and there are n such steps).

This example shows that choosing the rewrite order carefully can lead to
significant reductions in the quantifier rank of the generated rewriting. Func-
tion QR shows us how to choose the best possible strategy.

6.6 Conclusion

Corollary 1 and Function QR show upper bounds on the number of quanti-
fier blocks or the quantifier rank of consistent first-order rewritings. Func-
tion Rewrite can be easily modified so as to diminish either of those measures.
It is not generally possible to minimize both measures simultaneously. For ex-
ample, there seems to be no consistent first-order rewriting ϕ for disjoint(m)
such that qbn(ϕ) = qr(ϕ) = 2 (cf. the table in Section 6.3).

We focused on the queries in SJFCQ that have a consistent first-order
rewriting. We first implemented this earlier theory in a simple Function Rewrite
for constructing consistent first-order rewritings. We then proposed two syn-
tactic simplifications for such rewritings, which consist in reducing the number
of quantifier blocks and reducing the quantifier rank.

Chapter 7

Tools

A number of software tools have been developed that implement the theory
developed in the preceding chapters of this thesis. These tools offer a variety of
functionality such as computing and visualizing attack graphs, computing con-
sistent rewritings in first-order logic and SQL, in different syntactic forms (see
Chapter 6), computing first-order under-approximations (see Chapter 5). . .
These tools have already proved their usefulness in research. For example,
some conjectured properties of attack graphs can now be empirically tested
on large numbers of queries, a process that is time-consuming and error-prone
when executed manually. The tools are implemented using the OCaml lan-
guage, which is ideally fitted for scientific and mathematical software due to
its cleanliness and proximity to the mathematical language.

7.1 Canswer

Canswer (C stands for Consistent) is an OCaml library handling the constructs
we use in our research, such as first-order formulas and attack graphs. It also
allows exporting these structures into practical languages (SQL for first-order
queries, dot and tikz for attack graphs). The main functionality of Canswer is
to compute the attack graph of a self-join-free conjunctive query, to produce
a consistent first-order rewriting if it exists, and to translate such rewriting in

135

136 CHAPTER 7. TOOLS

SQL.
Canswer also includes the optimizations discussed in Chapter 6; it can deal

with the presence of satisfied constraints as discussed in Chapter 4, and can
produce the under-approximations established in Chapter 5.

Canswer is a library. As such it is meant to be used by other programs
developed in OCaml. This section presents the interface and the capabilities
of Canswer. The next sections present two interfaces that can be used by
(human) end-users. Both of these interfaces (one is console-oriented, the other
web-oriented) are built upon Canswer, featuring a subset of its functionalities.

For a full understanding of Canswer, the reader is advised to read the mli
source files of Canswer, which contain the interface and the documentation of
Canswer. However, reading this section should help to understand how the
library is built and where to start in order to get a broad idea of what Canswer
is able to do.

The Canswer library is distributed under LGPL license. This essentially
means that one can copy it, alter it, distribute it, and even sell it, provided that
one includes the original work, license and copyright, and that one discloses the
source and states any changes made to Canswer. Applications using Canswer
do not have to be licensed under LGPL.

7.1.1 Core

This part of Canswer defines the basic structures used in the whole library as
well as some basic operations. We list the modules and give some important
pieces of the interface with some explanations when appropriate.

Lset This module handles sets under the form of a list. It defines the ’a
Lset.t type (that is, a set containing elements of any type ’a, e.g., symbols),
and functions for set creation, set inspection, set operations, as well as the
usual functionals.

Symbol A symbol is a sum type defined as follows.

7.1. CANSWER 137

type constant = string

type variable = string

type t =

| Constant of constant
| Variable of variable

A function filtering variables from a Symbol.t Lset.t is also given.

RelationName

type name = string

type attribute = string

type t = private {

name : name;

attributes : attribute Lset.t;

key : attribute -> bool;

}

The type RelationName.t is private to ensure that the set of attributes uses
a correct equality function. The key part of a relation name is a Boolean
function telling whether an attribute is part of the key or not. The function
RelationName.make allows one to create relation names. Other functions help
the user to create standard relation names.

Substitution This module captures the notion of substitution. Creating
new substitutions has to be done using the + and * operators; more information
can be found in the documentation. One can check whether a substitution
is a valuation by means of Substitution.is_valuation. Most of the other
modules contain a function substitute that applies a substitution to its main
data structure (e.g., to an atom or a query).

Atom An atom is a relation name along with a function mapping attribute
names (contained in the relation name) to symbols.

138 CHAPTER 7. TOOLS

type t = {

relation : RelationName.t;

f : RelationName.attribute -> Symbol.t;

}

Conjunctive A conjunctive query is a set of atoms along with a set of free
variables.

type t = private {

atoms : Atom.t Lset.t;

free : Symbol.t Lset.t;

}

The type is private to ensure that the sets used use a correct equality func-
tion and that the free variables actually occur in the atoms. An easy syntax
allows the user to create a conjunctive query using the empty query and the
symbols + and @. The function Conjunctive.self_join_free tests whether
a conjunctive query is self-join-free.

FromString This module parses strings into the various data structures
of the Core package. It uses the parser FromStringParser and the lexer
FromStringLexer. A symbol is considered a constant if it starts with character
a, b, c, d, e, f, g or h. Otherwise it is considered a variable.

7.1.2 Attack Graphs

This package is in charge of constructing attack graphs for a given conjunctive
query. It is composed of two modules, one handling functional dependencies,
the other generating attack graphs.

FunDep
type t
val set_from_query : Conjunctive.t -> Lset.t
val closure :

t Lset.t -> Symbol.variable Lset.t -> Symbol.variable Lset.t

7.1. CANSWER 139

Note that the module is specialized for functional dependencies on variables.
The first function computes the set of functional dependencies from a given
conjunctive query (possibly with self-joins). More formally, given a query Q, it
computes K(Q). The second function computes the closure of a set of variables
with respect to a set of functional dependencies on variables.

AttackGraph This module computes, for every atom F of a query, the
atoms and the variables attacked by F .

type node = {

q : Conjunctive.t;

atom : Atom.t;

keycl : Symbol.variable Lset.t;

keycl’ : Symbol.variable Lset.t;

attvars : Symbol.variable Lset.t;

attatoms : Atom.t Lset.t;

mutable atoms_after : Atom.t Lset.t option;

}

The type node represents a node of the attack graph. It contains a reference
to the complete query, the atom F that is attached to this node of the attack
graph, the key closure of keyvars(F) with respect to K(Q \ {F}), the key
closure of keyvars(F) with respect to K(Q), the variables attacked by F , and
the atoms attacked by F . It also contains an optional set of atoms reachable
by F in the attack graph (if the attack graph is acyclic, this coincides with
the set of attacked atoms).

140 CHAPTER 7. TOOLS

type t = node Lset.t

val make : Conjunctive.t -> t

val has_cycle : t -> bool

val unattacked : t -> Atom.t Lset.t

val strong : t -> node -> Atom.t -> bool

val transitive : t -> node -> Atom.t -> bool

val cyclic : t -> node -> Atom.t -> bool

An attack graph is just a set of nodes, as the attacks are contained in the node
structure. The make function builds up an attack graph from a conjunctive
query. The function has_cycle checks if the original query can be rewritten,
the function unattacked gives the atom that can be rewritten at this stage.
The functions strong, transitive and cyclic apply to attacks. I.e., they
take as parameter a node (with atom F) and an atom (G) and checks whether
the attack is, respectively, strong (K(Q) 6|= keyvars(F) → keyvars(G)),
transitive (the attack graph is acyclic and there exists an atom H such that
F attacks H and H attacks G), and cyclic (the attack belongs to a cycle).

7.1.3 Rewrite

The rewrite package produces a consistent first-order rewriting for a given
self-join-free conjunctive query using the algorithms developed in this thesis.
It is able to produce a DRC, a TRC or an SQL query. Furthermore it can
apply the grouping and/or the splitting strategies explained in Chapter 6.

This package makes use of OCaml functors, i.e., parameterised modules.
The reason is that the DRC and TRC languages are very similar; hence most
of their constructions are grouped in an RC module to avoid code duplication.

RC This module contains the part that is common to DRC and TRC. The
parameters that make these two languages differ are what is an atom and what

7.1. CANSWER 141

is a variable.
module type RC = sig

type atom
type variable

type formula = private

| Certain of formula
| True
| False
| Atom of atom
| And of formula Lset.t
| Or of formula Lset.t
| Neg of formula
| Implies of formula * formula
| Equiv of formula * formula
| Exists of variable Lset.t * formula
| Forall of variable Lset.t * formula

val vars : formula -> variable Lset.t
val map : (formula -> formula option) -> formula -> formula

end

A relational calculus formula is an atom, a constant truth value, a Boolean
combination of formulas, or a quantification of a formula. Note that con-
junctions and disjunctions are not necessarily binary, and that quantifications
may quantify over several variables at once. There is an additional construct,
Certain, which stands for a subquery that cannot be rewritten. In addition
to the type definition (which is private) and the variable extraction function,
there are also functions not shown here that allow the user to build an RC for-
mula. The map function navigates through the formula structure and applies
a function to all of the subformulas when appropriate.

Finally, the functor allowing to specialize RC to either DRC or TRC,

142 CHAPTER 7. TOOLS

or any other relational calculus language, is given below. Once atoms and
variables are defined, the “language” is created and ready to use. Note that
simplifications are made when a formula is created. For example, conjunctions
of conjunctions will be unfolded and constant truth values will be eliminated
when possible.

module type EQ = sig

type t
val (=) : t -> t -> bool

end

module Rc :

functor (Atom : EQ) ->

functor (Variable : EQ) ->

(RC with type atom = Atom.t
and type variable = Variable.t)

DRC Domain Relational Calculus uses our previously defined notions of
variable and atom. A DRC query is a set of free symbols (not only variables)
along with a DRC formula. A function translating a conjunctive query into a
DRC query is also given. The rewrite function constructs a consistent query
rewriting from a conjunctive query. The user can choose to apply the grouping
and splitting strategies (see Chapter 6).

7.1. CANSWER 143

include Rc.RC
with type atom = Atom.t
and type variable = Symbol.variable

type t = {

free : Symbol.t Lset.t;

formula : formula;

}

val conjunctive : Conjunctive.t -> t
val rewrite : ?group:bool -> ?split:bool ->

Conjunctive.t -> t

TRC Tuple Relational Calculus uses equality between symbols as its atoms.
The variables are strings associated to relation names. Otherwise the module
signature is the same as the DRC module.

144 CHAPTER 7. TOOLS

type symbol =

| Map of (Symbol.variable * RelationName.t) *

RelationName.attribute
| Constant of Symbol.constant

include Rc.RC
with type variable = Symbol.variable * RelationName.t
and type atom = symbol * symbol

type t = {

free : symbol Lset.t;

formula : formula;

}

val conjunctive : Conjunctive.t -> t
val rewrite : ?group:bool -> ?split:bool ->

Conjunctive.t -> t

SQL The SQL module is basically a compiler from TRC formulas to SQL
strings.

type t = string

var from_trc : Trc.t -> t

val conjunctive : Conjunctive.t -> t
val rewrite : ?group:bool -> ?split:bool ->

Conjunctive.t -> t

7.1.4 Under-Approximations

This package of Canswer implements the theory developed in Chapter 5, which
studied first-order under-approximations for queries that have no consistent
first-order rewriting.

7.1. CANSWER 145

CqaFO This module implements CQAFO queries of the form ∃ ~X bQc. A
variable that occurs in a CQAFO query of this form is called outsourced if it
occurs in ~X; otherwise it is insourced.

type t = private {

query : Conjunctive.t;

insourced : Symbol.variable Lset.t;

outsourced : Symbol.variable Lset.t;

}

val make : Conjunctive.t -> t
val outsource : t -> Symbol.variable -> t
val substitute : t -> Symbol.variable -> Symbol.variable -> t

The make function transforms a conjunctive query into aCQAFO query where
all the variables are insourced. The two other functions transform CQAFO
queries by “outsourcing” a variable or by applying a substitution; the trans-
formed CQAFO queries are contained in the original, non-transformed query.

Expanded This module generates the full set of queries and places them in
a directed graph where an arrow from a query to another denotes the inclusion
of the former into the latter.

146 CHAPTER 7. TOOLS

type id = int

type node = private {

id : id;

cqafo : CqaFO.t;

ag : AttackGraph.t;

}

type edge = {

source : id;

dest : id;

equiv : bool;

}

type t = {

nodes : node Lset.t;

edges : edge Lset.t;

}

val make : Conjunctive.t -> t

Collapsed In the Expanded module, some edges are marked as “equiv”. This
means that the queries at the end of the edge are equivalent. This module
collapses all the queries that are equivalent, producing a smaller graph.

type collapsed = private Expanded.t
val collapse : Expanded.t -> t
val remove_transitive_edges : collapsed -> Expanded.t

The remove_transitive_edges function removes an edge A → C if there
exist two edges A→ B and B → C.

7.2 The Canswer Language

As keyboards featuring the characters ∀ or ∃ are not widespread, DRC could
not be used as an input language for Canswer. Hence a new “DSL” (Domain-
specific language) has been created. Its goals are to be simple enough for

7.2. THE CANSWER LANGUAGE 147

the researcher who just wants to see an attack graph, but also sufficiently
complete for the student who has to obtain pertinent SQL queries to conduct
experiments.

The basic structure of a query goes as follows:

s1s2 . . . sn | F1F2 . . . Fn

where the si are symbols and the Fi are atoms. A symbol is an alphanumeric
sequence starting with a lowercase character. If the first character is a, b, c, d,
e, f, g or h, then the symbol is a constant; otherwise it is a variable. The part
before the pipe is the free part of the query. To avoid errors, every variable
occurring in this part must also occur in the atoms. If the query uses no free
symbols, the pipe can be omitted.

An atom has the following form:

R(s1s2 . . . sk | sk+1 . . . sn)

where the si are symbols and R is the relation name (an alphanumeric sequence
starting with an uppercase character). The symbols before the pipe form the
key of the atom.

Although any conjunctive query can be presented in this syntax, most
Canswer functionality only applies to self-join-free queries. When the user
provides no attribute names, attribute names will be derived from attribute
positions. For example, Canswer generates the following consistent SQL
rewriting for the query R(a b |):

SELECT TRUE FROM R WHERE R.1 = ’a’ AND R.2 = ’b’;

User-defined attribute names can be provided using the following syntax within
atoms:

A : s

where A is an attribute name and s is a symbol. An attribute name is an
alphanumeric sequence that must start with an uppercase character. Named
and unnamed attributes can be mixed. Canswer generates the following con-
sistent first-order rewriting for R(A:a B:b |):

148 CHAPTER 7. TOOLS

SELECT TRUE FROM R WHERE R.A = ’a’ AND R.B = ’b’;

More syntactic sugar can be found on the home page of Canswer.

7.3 Top level interface

Once the library has been compiled, it is possible to compile a top-level in-
terface by issuing “make top” in the root directory of Canswer. Then one
can execute the “top.sh” script to get an interactive shell where Canswer is
preloaded. This allows for rapid experimenting.

For example, the following session shows the input of a conjunctive query
and the output of its rewriting in DRC and SQL.

let q = "b x | R(A:x | B:y) S(B:y | C:a)";;
let c = Canswer.Core.FromString.conjunctive q;;
let drc = Canswer.Rewrite.Drc.rewrite q;;
print_endline (Canswer.ToString.drc drc);;
let sql = Canswer.Rewrite.Sql.rewrite q;;
print_endline sql;;

The modules ToString, ToLatex and ToDot export structures in the corre-
sponding formats.

7.4 Cansweb

7.4.1 Cansweb Interface

Canswer also comes with a web-oriented interface, named Cansweb. The start-
ing page gives usage instructions and an input box allowing the user to input
a conjunctive query in the Canswer format. When the “analyze” button is
clicked, the tool proceeds by computing the attack graph as well as consistent
first-order rewritings in DRC, TRC, and SQL (if they exist).

7.4. CANSWEB 149

Since the URL of the output page contains the query being analyzed, one
can bookmark queries in a browser for faster access. The tool itself does not
propose a way to store queries.

Cansweb organizes its results in several categories:

Query gives the conjunctive query in Canswer syntax, TRC, DRC, and SQL.

Basic Properties shows the free and non-free variables and indicates whether
the input query is self-join-free.

Atoms enumerates, for each atom F of the input query Q, the following sets:
keyvars(F), F+,Q, the set of variables attacked by F , the set of atoms
attacked by F . For unattacked atoms F , the tool allows the user to
continue with the subquery that remains after rewriting F .

Attack Graph shows the attack graph of Q, where, as illustrated by Fig-
ure 7.3, unattacked atoms and attack cycles are typeset in a distin-
guished way. For each atom F , the key closure F+,Q and the set of
variables attacked by F are also shown.

FO definition gives consistent rewritings in DRC, TRC, and SQL. For each
language, four rewritings are given, featuring or not the grouping and
splitting strategies from Chapter 6.

Lattices give three directed graphs over query nodes.

• In the first one, each queryQ′ in the graph is such thatQ′ v Q. Red
nodes represent queries that have no consistent first-order rewriting.
An arrow from Q1 to Q2 indicates that Q2 v Q1. A bold arrow
indicates that the two queries are equivalent.

• The second graph is obtained from the previous one by merging
equivalent queries into a single node (some query is arbitrarily
picked to represent the equivalence class).

• The third graph is the transitive reduction of the second graph.

150 CHAPTER 7. TOOLS

We now look at the output of Cansweb for some queries encountered in
this thesis. As Cansweb is built upon Canswer, it uses the input syntax of
Section 7.2.

7.4.2 Cansweb Examples

In this section, we illustrate the functionality of Cansweb. Consider the fol-
lowing query G over the schema of Figure 1.

G =
{

(n, p) | Cars(p,Xiou) ∧ Hierarchy(n, n)
}
,

which can be expressed in Cansweb as follows:

n p |
Cars(LicensePlate:p | Employee:cXiou)
Hierarchy(Employee:n | Boss:n)

Since constants need to start with a lowercase character between a and i, Xiou
is encoded as cXiou.

Query In addition to the Canswer syntax, Cansweb provides expressions in
TRC, DRC, and SQL. The DRC expression for G shown next was obtained
from the LATEX code provided by Cansweb, extended with user-defined LATEX
macros for variable, constant, and atom.

{p, n | (
Cars(LicensePlate : p,Employee : cXiou)
∧Hierarchy(Employee : n,Boss : n))}

Attack Graph Cansweb renders attack graphs in SVG, an XML-based vec-
tor image format; see Figure 7.1. Cansweb also provides dot code and tikz
code. Typically tikz code needs some tweaking in order to fit the document’s
general style.

Note from Figure 7.1 that Cansweb detects that our example query G
consists of two subqueries that have no variables in common. In this example,

7.4. CANSWEB 151

Subquery 1 Subquery 2

{}

Hierarchy(n n)

{}

{}

Cars(p cXiou)

{}

Figure 7.1: The attack graph of G as shown by Cansweb.

the edge-set of the attack graph is empty. Figure 7.2 shows how Cansweb
renders the attack graph of Figure 6.2. The graph shows, for each atom F ,
the set F+,Q and the set of variables attacked by F .

FO definition The following TRC query is a consistent first-order rewriting
for G that minimizes the quantifier rank; its LATEX code was generated by
Cansweb. Listing 7.1 shows how Cansweb translates this TRC query into
SQL.

{fCars.LicenseP late, tHierarchy.Employee | (
∃eHierarchy∀uHierarchy(eHierarchy.Employee = uHierarchy.Employee→ (
uHierarchy.Employee = tHierarchy.Employee

∧uHierarchy.Boss = tHierarchy.Employee))
∧∃eCars∀uCars(eCars.LicenseP late = uCars.LicenseP late→ (
uCars.LicenseP late = fCars.LicenseP late

∧uCars.Employee = cXiou)))}

Finally, we illustrate how Cansweb deals with queries that have no con-
sistent first-order rewriting. The following query C has a cyclic attack graph
which is shown in Figure 7.3.

C = ∃x1∃x2∃y1∃y2∃z
(
R(a, x1, x2) ∧ S1(x1, y1, z) ∧ S2(x2, y2, z)

)
.

If the attack graph of an input query is cyclic, Cansweb will rewrite unattacked

152 CHAPTER 7. TOOLS

{u}

R(u a x)

{x, y, z}

{x, y, z}

S(x y z)

{}

{x, z}

T(x y)

{y}

{x, y}

P(x z)

{z}

Figure 7.2: The attack graph of Q from Figure 6.2 on page 128, rendered by
Cansweb.

7.4. CANSWEB 153

SELECT f_Cars.LicensePlate, t_Hierarchy.Employee
FROM Cars AS f_Cars CROSS JOIN Hierarchy AS t_Hierarchy WHERE (

EXISTS (

SELECT *

FROM Hierarchy AS e_Hierarchy
WHERE NOT EXISTS (

SELECT *

FROM Hierarchy AS u_Hierarchy
WHERE NOT (

(

u_Hierarchy.Employee = t_Hierarchy.Employee
AND u_Hierarchy.Boss = t_Hierarchy.Employee)

OR NOT e_Hierarchy.Employee = u_Hierarchy.Employee)))

AND EXISTS (

SELECT *

FROM Cars AS e_Cars
WHERE NOT EXISTS (

SELECT *

FROM Cars AS u_Cars
WHERE NOT (

(

u_Cars.LicensePlate = f_Cars.LicensePlate
AND u_Cars.Employee = ’cXiou’)

OR NOT e_Cars.LicensePlate = u_Cars.LicensePlate))))

Listing 7.1: G rewriting in SQL, built by Cansweb.

154 CHAPTER 7. TOOLS

{}

R(a x1 x2)

{x1, x2, y1, z, y2}

{x1, x2, y1}

S1(x1 y1 z)

{z, y2}

{x1, x2, y2}

S2(x2 y2 z)

{z, y1}

Figure 7.3: The attack graph of C, rendered by Cansweb.

atoms until it reaches an attack graph in which every atom has non-zero inde-
gree. The remaining subquery, which has no consistent first-order rewriting,
is then provided as the argument of the function CERTAIN. For example,
Listing 7.2 shows the SQL code for bCc constructed by Cansweb.

7.4. CANSWEB 155

SELECT TRUE FROM DUAL WHERE EXISTS (

SELECT *

FROM R AS e_R
WHERE NOT EXISTS (

SELECT *

FROM R AS u_R
WHERE NOT (

(

u_R.199 = ’a’
AND CERTAIN (EXISTS (

SELECT *

FROM S2 AS t_S2
CROSS JOIN S1 AS t_S1
WHERE t_S1.204 = t_S2.207)))

OR NOT e_R.199 = u_R.199)))

Listing 7.2: C rewriting in SQL, built by Cansweb.

156 CHAPTER 7. TOOLS

7.5 Conclusion

Canswer and Cansweb are ready-to-use tools that support research activities
in the domain of CQA. These tools allow constructing attack graphs and
constructing consistent first-order rewritings in DRC, TRC, and SQL. Their
outputs are rendered in different formats (LATEX, SVG, dot, tikz. . .) and can
thus be easily be copy-pasted in research papers or other documents. The
source code of Canswer and Cansweb is available on GitHub:

Canswer https://github.com/shepard8/canswer

Cansweb https://github.com/shepard8/cansweb

Chapter 8

Conclusion

In this thesis, we have made a number of theoretical and practical contribu-
tions in the field of Consistent Query Answering. We focused on primary key
constraints and queries in the class SJFCQ, the class of conjunctive queries
without self-joins. Our main contributions are summarized next.

• We are now able to use external knowledge about the data, in the form of
satisfied join dependencies (of a restricted form) and satisfied functional
dependencies. This information allows us to construct consistent first-
order rewritings for queries that would otherwise not be rewritable. We
have thus widened the class of queries that can be handled by the query
rewriting technique.

• We developed a method that, given an input queryQ in SJFCQ, returns
a first-order query ϕ, called first-order under-approximation, such that
ϕ is contained in bQc (according to the standard definition of query
containment). If Q has a consistent first-order rewriting, then ϕ ≡ bQc.
More significantly, if no consistent first-order rewriting for Q exists, then
ϕ is maximally contained in bQc under particular syntactic restrictions
imposed on under-approximations.

• Although FO is generally viewed as a low complexity class, static query
optimization is nevertheless a major topic in research on database sys-

157

158 CHAPTER 8. CONCLUSION

tems. We therefore investigated methods for reducing the quantifier
rank and the number of quantifier blocks in consistent first-order rewrit-
ings. This amounts, among others, to reducing the depth of NOT EXISTS
nesting in SQL. Further experiments are needed to study whether these
syntactic simplifications effectively result in lower query execution times.

• Our theory has been implemented in a software tool. In a research
environment, this tool has already been used for checking new ideas
and conjectures on large examples which are tedious to elaborate by
hand [Wij]. The tool could be helpful to practitioners who want to learn
or adopt consistent query answering. In fact, a major aim of our work is
to make consistent query rewriting a viable alternative for data cleaning.

We conclude this thesis by outlining some open research questions.

• In Chapter 4, we investigated how the method of consistent first-order
rewriting can take advantage of the presence of key-join dependencies
and functional dependencies. It would be interesting to study the impact
of other constraints on consistent first-order rewriting.

• In Chapter 5, we only looked at under-approximations of consistent
query answers. It would be interesting to also study first-order over-
approximations of the consistent answers to a query Q, i.e., first-order
queries that contain bQc and that are otherwise minimal in some sense.

• Our research has focused on consistent first-order rewritings for queries
in SJFCQ. It is an open problem to extend our results to queries with
self-joins, to unions of conjunctive queries, or to queries with some re-
stricted form of negation.

• Our tool, Canswer, constructs first-order under-approximations by travers-
ing a large lattice. This computation takes exponential time in the size
of the input query Q, which turns out to be unfeasible if the sum of the

159

arities of Q’s atoms exceeds 15. Therefore, the existence of more effi-
cient constructions needs to be explored. Also, we have not studied the
theoretical complexity of constructing first-order under-approximations.

• In Chapter 6, we studied syntactic simplifications in the context of con-
sistent first-order rewriting. Syntactic simplifications consisted in reduc-
ing the quantifier depth and the number of quantifier blocks. We did
not show, however, that our methods minimize these metrics. It also
remains an open question to what extent these syntactic simplifications
result in lower execution times on SQL RDBMSs. An important research
task is to investigate the interplay between our syntactic simplifications
and the query plan generated by the query optimizer of the RDBMS.

• On a more practical level, Canswer can be improved in several ways. One
extension could be an implementation of a polynomial-time algorithm
for CERTAINTY(Q) when the problem is in P [KW17].

Unfortunately, despite its elegance, the paradigm of Consistent Query An-
swering has not yet been implemented in mainstream database systems. We
hope that some day, a note about uncertainty management can be found in
the changelog of PostgreSQL (or some other RDBMS).

160 CHAPTER 8. CONCLUSION

Appendix A

Notations

Notation Description

a, b, c Constants

u, v, x Variables

R,S, . . . Schemas

Q,R,S Queries

R, S, T Relations

161

162 APPENDIX A. NOTATIONS

dom Set of available constants. (p. 17)

var Set of available variables. (p. 19)

sym Set of available symbols (dom ∪ var). (p. 19)

|S| Cardinality of the set S (p. 23)

Fx→y The substitution of each (free) occurence of x with y

in the object F . (p. 20)

Q(x/a) Q in which the variable x is interpreted as the constant
a. (p. 38)

v[Name] The value of attributeName in fact/atom/tuple/tuple
variable v. (p. 17)

[n, k] A signature denoting arity n and key length k. (p. 33)

µ ◦ ν Mapping applying ν then µ (composition). (p. 93)

K(Q) The set of functional dependencies associated to each
atom of query Q. (p. 40)

F+,Q The key closure of atom F in query Q. (p. 40)

163

F
Q
 G An attack from atom F to atom G in the attack graph

of query Q (omitted if clear from context). (p. 40)

F
QR
 G An homomorphic attack from atom F to atom G.

(p. 105)

type(x) An infinite set of constants, such that x 6= y implies
type(x) ∩ type(y) = ∅. (p. 96)

R : A→ B A functional dependency from set of attributes A to
set of attributes B in relation R. (p. 23)

R : ./ [A] A join dependency over the sets of attributes A = {A1,

A2, . . . , An} in relation R. (p. 26)

R[A] ⊂ S[B] An inclusion dependency from the projection of rela-
tion R onto the attributes A to the projection of rela-
tion S onto the attributes B. (p. 25)

bQ(~x)c Consistent answer to Q(~x). (p. 34)

Q⊗ Σ The extension of query Q using the set of constraints
Σ. (p. 59)

Rσi () The ith extension of atom R towards functional depen-
dency σ (i ∈ {1}, 2). (p. 60)

164 APPENDIX A. NOTATIONS

R./◦ () The all-key extension of the key join dependency on
atom R. (p. 60)

R./i () The ith extension of atom R towards its key join de-
pendency (1 ≤ i ≤ K where K is the number of com-
ponents in the key join dependency). (p. 60)

JdbK A subset of db. (p. 62)

SJFCQ The class of self-join-free conjunctive queries. (p. 20)

CQAFO A class of queries using consistent answers as atoms.
(p. 86)

FD Functional dependency. (p. 23)

KJD Key join dependency. (p. 55)

qschema(Q) Set of relation names used in the query Q. (p. 60)

schema(R) Set of attributes mapped from R by schema. (p. 17)

free(φ) Set of free variables of first-order formula φ. (p. 20)

165

vars(S) Set of variables in the set of symbols S. (p. 20)

vars(~x) Set of variables in the sequence of symbols ~x. (p. 20)

vars(F) Set of variables in the atom F . (p. 20)

keyvars(F) Set of variables in the key of atom F . (p. 34)

vars(φ) Set of variables in the formula φ. (p. 20)

vars(Q) Set of non-free variables in the query Q. (p. 20)

adom(db) The set of constants used in the database db. Also
called its active domain. (p. 18)

repairs(db) The set of repairs of database db. (p. 33)

attackgraph(Q) The attack graph of query Q. (p. 40)

head(Q) The first atom of query Q which has no incoming at-
tack. (p. 105)

166 APPENDIX A. NOTATIONS

Bibliography

[ABC99] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Con-
sistent query answers in inconsistent databases. In Victor Vianu
and Christos H. Papadimitriou, editors, Proceedings of the Eigh-
teenth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, May 31 - June 2, 1999, Philadelphia,
Pennsylvania, USA, pages 68–79. ACM Press, 1999.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[Ber11] Leopoldo E. Bertossi. Database Repairing and Consistent Query
Answering. Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2011.

[BFMY83] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yan-
nakakis. On the desirability of acyclic database schemes. J. ACM,
30(3):479–513, 1983.

[BL13] Leopoldo E. Bertossi and Lechen Li. Achieving data privacy
through secrecy views and null-based virtual updates. IEEE Trans.
Knowl. Data Eng., 25(5):987–1000, 2013.

[CFG+10] Nguyen Vi Cao, Emmanuel Fragnière, Jacques-Antoine Gauthier,
Marlène Sapin, and Eric D. Widmer. Optimizing the marriage
market: An application of the linear assignment model. European
Journal of Operational Research, 202(2):547–553, 2010.

167

168 BIBLIOGRAPHY

[CM05] Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity
maintenance using tuple deletions. Inf. Comput., 197(1-2):90–121,
2005.

[Dec13] Alexandre Decan. Certain Query Answering in First-Order Lan-
guages. PhD thesis, Université de Mons, 2013.

[DPW12] Alexandre Decan, Fabian Pijcke, and Jef Wijsen. Certain conjunc-
tive query answering in SQL. In Eyke Hüllermeier, Sebastian Link,
Thomas Fober, and Bernhard Seeger, editors, Scalable Uncertainty
Management - 6th International Conference, SUM 2012, Marburg,
Germany, September 17-19, 2012. Proceedings, volume 7520 of
Lecture Notes in Computer Science, pages 154–167. Springer, 2012.

[DRS09] Nilesh N. Dalvi, Christopher Ré, and Dan Suciu. Probabilistic
databases: diamonds in the dirt. Commun. ACM, 52(7):86–94,
2009.

[DRS11] Nilesh N. Dalvi, Christopher Ré, and Dan Suciu. Queries and
materialized views on probabilistic databases. J. Comput. Syst.
Sci., 77(3):473–490, 2011.

[End72] Herbert B. Enderton. A mathematical introduction to logic. Aca-
demic Press, 1972.

[FFM05] Ariel Fuxman, Elham Fazli, and Renée J. Miller. Conquer: Ef-
ficient management of inconsistent databases. In Fatma Özcan,
editor, Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, Baltimore, Maryland, USA, June
14-16, 2005, pages 155–166. ACM, 2005.

[FM05] Ariel Fuxman and Renée J. Miller. First-order query rewriting
for inconsistent databases. In Thomas Eiter and Leonid Libkin,
editors, Database Theory - ICDT 2005, 10th International Con-
ference, Edinburgh, UK, January 5-7, 2005, Proceedings, vol-

BIBLIOGRAPHY 169

ume 3363 of Lecture Notes in Computer Science, pages 337–351.
Springer, 2005.

[FM07] Ariel Fuxman and Renée J. Miller. First-order query rewriting
for inconsistent databases. J. Comput. Syst. Sci., 73(4):610–635,
2007.

[GGZ03] Gianluigi Greco, Sergio Greco, and Ester Zumpano. A logi-
cal framework for querying and repairing inconsistent databases.
IEEE Trans. Knowl. Data Eng., 15(6):1389–1408, 2003.

[GPW14] Sergio Greco, Fabian Pijcke, and Jef Wijsen. Certain query an-
swering in partially consistent databases. PVLDB, 7(5):353–364,
2014.

[GPW15] Floris Geerts, Fabian Pijcke, and Jef Wijsen. First-order under-
approximations of consistent query answers. In Christoph Beierle
and Alex Dekhtyar, editors, Scalable Uncertainty Management
- 9th International Conference, SUM 2015, Québec City, QC,
Canada, September 16-18, 2015. Proceedings, volume 9310 of Lec-
ture Notes in Computer Science, pages 354–367. Springer, 2015.

[GPW17] Floris Geerts, Fabian Pijcke, and Jef Wijsen. First-order under-
approximations of consistent query answers. Int. J. Approx. Rea-
soning, 83:337–355, 2017.

[Imm99] Neil Immerman. Descriptive complexity. Graduate texts in com-
puter science. Springer, 1999.

[KP12] Phokion G. Kolaitis and Enela Pema. A dichotomy in the com-
plexity of consistent query answering for queries with two atoms.
Inf. Process. Lett., 112(3):77–85, 2012.

[KPT13] Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. Efficient
querying of inconsistent databases with binary integer program-
ming. PVLDB, 6(6):397–408, 2013.

170 BIBLIOGRAPHY

[KW15] Paraschos Koutris and Jef Wijsen. The data complexity of con-
sistent query answering for self-join-free conjunctive queries under
primary key constraints. In Tova Milo and Diego Calvanese, ed-
itors, Proceedings of the 34th ACM Symposium on Principles of
Database Systems, PODS 2015, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, pages 17–29. ACM, 2015.

[KW17] Paraschos Koutris and Jef Wijsen. Consistent query answering for
self-join-free conjunctive queries under primary key constraints.
ACM Trans. Database Syst., 42(2):9:1–9:45, 2017.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, 2004.

[Lib15] Leonid Libkin. Sql’s three-valued logic and certain answers. In
Marcelo Arenas and Martín Ugarte, editors, 18th International
Conference on Database Theory, ICDT 2015, March 23-27, 2015,
Brussels, Belgium, volume 31 of LIPIcs, pages 94–109. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[Mai83] David Maier. The Theory of Relational Databases. Computer
Science Press, 1983.

[Mar02] Jerzy Marcinkowski. The [exist]*[forall]* part of the theory of
ground term algebra modulo an AC symbol is undecidable. Inf.
Comput., 178(2):412–421, 2002.

[MW13] Dany Maslowski and Jef Wijsen. A dichotomy in the complexity of
counting database repairs. J. Comput. Syst. Sci., 79(6):958–983,
2013.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-
Wesley, 1994.

[RD00] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and
current approaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

BIBLIOGRAPHY 171

[Top09] Rodney W. Topor. Safety and domain independence. In Ling Liu
and M. Tamer Özsu, editors, Encyclopedia of Database Systems,
pages 2463–2466. Springer US, 2009.

[Ull88] Jeffrey D. Ullman. Principles of Database and Knowledge-Base
Systems, Volume I. Computer Science Press, 1988.

[Wij] Jef Wijsen. Personal communication.

[Wij04] Jef Wijsen. Making more out of an inconsistent database. In Georg
Gottlob, András A. Benczúr, and János Demetrovics, editors, Ad-
vances in Databases and Information Systems, 8th East European
Conference, ADBIS 2004, Budapest, Hungary, September 22-25,
2004, Proceesing, volume 3255 of Lecture Notes in Computer Sci-
ence, pages 291–305. Springer, 2004.

[Wij05] Jef Wijsen. Database repairing using updates. ACM Trans.
Database Syst., 30(3):722–768, 2005.

[Wij06] Jef Wijsen. Project-join-repair: An approach to consistent query
answering under functional dependencies. In Henrik Legind
Larsen, Gabriella Pasi, Daniel Ortiz Arroyo, Troels Andreasen,
and Henning Christiansen, editors, Flexible Query Answering Sys-
tems, 7th International Conference, FQAS 2006, Milan, Italy,
June 7-10, 2006, Proceedings, volume 4027 of Lecture Notes in
Computer Science, pages 1–12. Springer, 2006.

[Wij09] Jef Wijsen. On the consistent rewriting of conjunctive queries
under primary key constraints. Inf. Syst., 34(7):578–601, 2009.

[Wij10a] Jef Wijsen. On the first-order expressibility of computing cer-
tain answers to conjunctive queries over uncertain databases. In
Jan Paredaens and Dirk Van Gucht, editors, Proceedings of the
Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on

172 BIBLIOGRAPHY

Principles of Database Systems, PODS 2010, June 6-11, 2010,
Indianapolis, Indiana, USA, pages 179–190. ACM, 2010.

[Wij10b] Jef Wijsen. A remark on the complexity of consistent conjunctive
query answering under primary key violations. Inf. Process. Lett.,
110(21):950–955, 2010.

[Wij12] Jef Wijsen. Certain conjunctive query answering in first-order
logic. ACM Trans. Database Syst., 37(2):9:1–9:35, 2012.

[Wij13] Jef Wijsen. Charting the tractability frontier of certain conjunc-
tive query answering. In Richard Hull and Wenfei Fan, editors,
Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS 2013, New York,
NY, USA - June 22 - 27, 2013, pages 189–200. ACM, 2013.

