
Université de Mons

Faculté des Sciences

Département d’Informatique

Dealing with Inconsistencies
in Knowledge Bases

Horacio Tellez Perez

A dissertation submitted in fulfilment of the requirements of

the degree of Docteur en Sciences

Advisor

Prof. Dr. Jef Wijsen Université de Mons

Jury

Dr. Meghyn Bienvenu CNRS, Université de Bordeaux, France

Prof. Dr. Véronique Bruyère Université de Mons

Dr. Alexandre Decan Université de Mons

Prof. Dr. Floris Geerts Universiteit Antwerpen, Belgium

Prof. Dr. Olivier Kaufmann Université de Mons

Prof. Dr. Jef Wijsen Université de Mons

September 2021

.

Thanks

This period of my life is now ending and there are several people to whom I

am grateful.

First, I would like to thank Jef, my supervisor and truthfully a guide during

these four years. Thank you for your advice, your time, and your patience.

Thank you for your unyielding help, we both know I needed it. Some people

are a crucial influence on a person’s life, I know you are one for me. Thank

you for giving me the chance to experience all of this, it was amazing. I was

really lucky to have you as my advisor.

Thanks to Meghyn Bienvenu, Véronique Bruyère, Alexandre Decan, Floris

Geerts and Olivier Kauffman who took part of their time and accepted to be

members of my jury. Thank you for your helpful remarks and advice.

The learning and working environment at the UMONS is wonderful and

I am thankful to have had the possibility of experiencing it. Thanks to the

Secretariat department, always glad to help me, from the first day nine years

ago, in particular Claudia. Thanks to the professors, who took their time to

answer my questions, even when I was no longer a student; a particular thanks

to Christophe Troestler, whom I believed nine years ago was an infinite source

of knowledge and now I am convinced. Thanks also to Thomas Brihaye, each

five minutes talk with you made my day a little brighter.

I would like to thank my friends and colleagues, research is more fun when

you have people you can complain to. Thank you Maximilien, the best bureau

partner would have been a clone of me, but you are the next best thing surely;

I almost made a tiny house because of you. Thank you Marion for introducing

iii

iv

me to Kaamelott and board games, now I am stuck with you as a friend for life;

knowing you is in my top 10100 experiences in life, guessing the exact number

is up to you. Thank you Aline, we have walked almost the same academic

path, talking to you have this pleasant feeling of talking to an old friend of

fifty years, which is weird because we have known each other for only nine.

Thank you Clément and Pierre for letting me interrupt your work practically

every day, with the time I passed in your bureau I almost deserve a chair there;

Pierre I hope you know I always let you win in chess; Clément I’m waiting

the one million euros idea. Thank you Jeremy and David, tweaking a Linux

distribution is a child’s play now. Thank you Adrian, watching Roland Garros

once was all it took to love tennis.

Thank you Danny and Samuel, with our talks I’m now sure that loving

science is for life.

Thanks to my family, that is bigger than they imagine, as my life partner’s

family is also mine. I am blessed to have so many good-natured people around

me. Thanks to my step-mother, who cares for me more than I could have ever

imagined. Thanks to my father-in-law, for all of his advice and his immeasur-

able help, a great part of my present happiness is thanks to him. Thanks to

my fathers. Thanks to my mother, you are figuratively and literally the reason

I am here; you are more stressed than I am with this work, but everything

should be fine.

Last, I would like to thank my partner in life, thank you Justine. Merci,

il y a plus de lumière dans ma vie que je n’aurais jamais crue possible grâce

à toi. Pour la stabilité actuelle dans ma vie, le mérite te revient à toi seule.

Merci d’avoir su garder mes pieds sur terre, tu me fais tellement de bien et tu

ne le sais même pas. Merci pour ta patience et ton support, cette thèse est ton

travail autant que le mien (peut-être plus le mien quand même). Je t’aime.

Abstract

This thesis develops and studies theoretical frameworks for dealing with incon-

sistencies in database and knowledge base systems. A first framework defines

a mapping language for expressing rules that take a relational database in-

stance as input, and produce an ABox in some description logic (DL). Given

a family of mapping rules, it is desirable that every database instance that is

consistent with respect to some given integrity constraints maps to an ABox

that is consistent with respect to a given TBox. While it is generally unde-

cidable whether this and other desirable properties obtain, it is shown that

decidability can be achieved under some moderate syntactic restrictions.

A second framework addresses the problem of repairing ABoxes that are

inconsistent with respect to a given TBox. It introduces a novel approach for

computing a numeric credibility score for each ABox assertion, by combining

a user-defined initial scoring with logical arguments and counterarguments

derived from the TBox. Once a credibility score has been established for each

ABox assertion (or, in general, for each fact of a knowledge base), it is natural

to define repairs as consistent subsets of the ABox with maximum aggregate

credibility score, according to some aggregation function. It is studied how

the computational complexity of recognizing such repairs depends on certain

characteristics of the aggregation function.

In addition to these theoretical developments, a software system has been

built that implements the computational approach underlying the second

framework.

v

vi

Contents

1 Introduction 1

1.1 Context and Contributions of the Thesis 1

1.2 Background from Database Theory 5

1.3 Background from Description Logics 7

2 Connecting Databases to Ontologies 13

2.1 Motivation . 13

2.2 Related Work . 16

2.3 Introductory Example . 18

2.4 Preliminaries . 19

2.4.1 Preliminaries from Database Theory 19

2.4.2 Relational Algebra . 20

2.4.3 Specialization of Predicate Logic to Database Theory . 20

2.4.4 The Guarded Fragment of First-Order Logic 21

2.5 Entity-Expressions and Relationship-Expressions 22

2.6 The Mapping Language . 25

2.7 Reasoning Problems . 27

2.8 Conclusion . 31

3 Assertion Ranking in Ontologies 33

3.1 Motivation . 33

3.2 Motivating Example . 35

3.3 Related Work . 37

vii

viii Contents

3.4 Theoretical Framework . 37

3.4.1 Refuters and Supporters 38

3.4.2 Aggregated Credibility 39

3.4.3 ABox Assessment . 39

3.4.4 Ranking of ABox Assertions 41

3.5 Framework Instantiation . 41

3.6 Properties of the Assessment 43

3.7 Solving the Instantiated Framework 45

3.7.1 Solution Existence . 46

3.7.2 Convergence Towards a Fixed Ranking 47

3.7.3 Computational Complexity 48

3.8 Credibility and Aggregated Credibility 50

3.9 Conclusion . 51

4 Weighted Repairs 53

4.1 Motivation . 53

4.2 Related Work . 58

4.3 Preliminaries . 59

4.4 Repair Checking and Related Problems 62

4.5 Main Tractability Theorem . 65

4.5.1 Monotone Under Priority 65

4.5.2 k-Combinatorial . 66

4.5.3 Main Tractability Theorem 67

4.6 On Full-Combinatorial Aggregation Functions 68

4.7 Conclusion . 69

5 Rustoner: Computing Ranks Efficiently 71

5.1 Introduction . 71

5.1.1 Technical Details . 72

5.2 How to Compute Ranks . 72

5.2.1 Computing a Conflict Matrix 73

5.2.2 Computing a Stabilized Rank 82

5.3 Inner DL-LiteR Reasoner . 91

5.3.1 The DL-LiteR Model 91

5.3.2 DL-LiteR Reasoning in Rustoner 95

ix

5.3.3 Exploratory Analysis with Rustoner 102

5.4 Experimental Results . 105

5.4.1 Ranking of General Matrices 105

5.4.2 Reasoner in Rustoner . 108

5.5 Conclusion . 111

6 Conclusion 115

Appendices 119

A Semantics of Relational Algebra Operators 121

B Proofs for Chapter 2 123

B.1 Proofs of Theorem 2.1 and Corollaries 2.2 and 2.3 123

B.2 Proof of Theorem 2.4 . 129

B.3 Proof of Theorem 2.5 . 134

C Background from Algebra 135

D Proofs for Chapter 3 139

E Proofs for Chapter 4 147

F Experiments with Rustoner 151

Bibliography 155

x Contents

CHAPTER 1

Introduction

“To measure is to know.” “If you

cannot measure it, you cannot

improve it.” “When you can

measure what you are speaking

about, and express it in numbers,

you know something about it;

but when you cannot measure it,

when you cannot express it in

numbers, your knowledge is of a

meagre and unsatisfactory kind.”

Lord Kelvin

In this introductory chapter, we first outline the organization and contri-

butions of this thesis. We then provide some background on topics in database

theory and description logics that are relevant for this thesis. A background

on relevant topics in algebra is given in Appendix C.

1.1. Context and Contributions of the Thesis

Context In recent years, data production is growing at an almost exponen-

tial rate [2, 3]. Moreover, there is an increased need to store and exchange

1

2 Introduction

data. This data proliferation often happens in an uncontrolled or little con-

trolled fashion, which leads to data quality problems, meaning that data can

become incomplete, uncertain, contradictory, inconsistent. . . The challenges

related to data inconsistency have been particularly addressed in two research

communities: the elder community studying theoretical foundations for (re-

lational) database systems [6], and the younger one studying the Semantic

Web [102]. In database systems, integrity constraints are used to capture more

of the meaning of the data, thereby defining the “consistent” data. There are

two main approaches to deal with inconsistent database instances: in data

cleaning [63], the aim is to arrive at a single consistent database; the basic

assumption in database repairing [118] is that there may be no single best way

to clean an inconsistent database, in which case one has to deal with multi-

ple repairs. Reasoning about integrity constraints has been at the center of

database research since the introduction of the relational model. On the other

hand, the Semantic Web is supported by Description Logics [16], a family of

logics tailored for knowledge representation. Description Logics (DL) are not

only designed for representing information, but also for automated reason-

ing about this information, seeking a good balance between expressive power

and complexity of reasoning. Database theory and Description Logics are the

main frameworks used in this thesis to study the inconsistency problem. Sig-

nificantly, in recent years, there have been growing research efforts to make

these two frameworks work together. Notably, the paradigm of Ontology Based

Data Access (OBDA) seeks to benefit from both worlds, by querying relational

databases through an ontological language, and by enriching query answers by

means of ontological reasoning. Such reasoning can also unveil conflicts and

errors in the data. The first part of this thesis will develop and investigate

an OBDA framework that takes into account the inconsistency problem. The

second part will develop quantified approaches for dealing with inconsistency

in knowledge bases. We will now describe these contributions in more detail.

Study of an ODBA framework Chapter 2 defines an OBDA mapping

language for expressing rules that take a relational database instance as input,

and produce an ABox in some description logic DL. It is assumed that the

fixed database schema is equipped with a set Σ of integrity constraints, while

3

the target ABox is subject to a fixed TBox T in some description logic. Our

mapping language is designed to be user-friendly by providing an intuitive

syntax that is nevertheless expressive. Given a family M of mapping rules, it

is natural to ask questions about the relationship between the (in)consistency,

with respect to Σ, of the input database instances and the (in)consistency,

with respect to T , of the ABoxes produced by the mapping. Such questions

include the following.

� Is there at least one consistent (with respect to Σ), non-empty database

that maps to an ABox that is consistent with respect to T ? If the answer

to this question is “no,” then at least one component among Σ, T , or

M must be incorrectly specified.

� Is there a consistent (with respect to Σ) database that maps to an ABox

that is inconsistent with respect to T ? If the answer to this question

is “no,” then database consistency implies consistency of the produced

ABox.

� Conversely, is there an inconsistent (with respect to Σ) database that

maps to an ABox that is consistent with respect to T ?

While these problems are generally undecidable, it is shown that decidability

can be achieved under some moderate syntactic restrictions. We study how

the computational complexity of these problems depends on the expressive

power of the languages used for Σ and T .

Study of a framework for ranking ABox assertions Following the

OBDA study of Chapter 2, we will develop a quantified approach to the in-

consistency problem in knowledge bases represented by a TBox and an ABox.

In this part of the thesis, we assume that all information is already in an on-

tology ⟨T ,A⟩, ignoring the database component. In practice, such an ABox

could be explicitly given or be the result of applying an OBDA mapping on a

database instance, as defined in Chapter 2. Chapter 3 introduces a framework

that addresses the problem of assessing the quality of assertions in ABoxes

that are inconsistent with respect to a given TBox. It introduces a novel ap-

proach for computing a numeric credibility score for each ABox assertion, by

4 Introduction

combining a user-defined initial scoring with logical arguments and counter-

arguments derived from the TBox. Informally, starting from the user-defined

base score, the quality of an assertion should be increased if it is supported by

other high-quality assertions, and should be decreased if it is refuted by other

high-quality assertions. This supporting and refuting evidence for assertions

is modeled by a system of linear equations. We study the conditions under

which this system has a solution. Moreover, we discuss how to pick a “stabi-

lized” ranking if multiple solutions exist. Significantly, we have developed a

software tool rustoner that implements the proposed framework. Rustoner is

discussed in Chapter 5.

Study of weighted repairs Most existing approaches to database repairing

define a repair as a consistent database that is maximally close, according to

some fixed distance measure, to the original, inconsistent database. Common

distance measures state that the symmetric difference between repairs and the

original database should be minimal with respect to set inclusion or cardinality.

Although these distance measures are theoretically elegant, they are often

unsatisfactory in practice because they are largely agnostic about the meaning

of the data. We believe that it is worthwhile to develop capabilities for further

restricting the set of repairs—in the same way as integrity constraints restrict

the set of possible databases.

Once a credibility score has been established (in Chapter 3) for each ABox

assertion (or, in general, for each fact of a knowledge base), it is natural to

define repairs as consistent subsets of the ABox with maximum aggregate

credibility score, according to some aggregation function. Such an approach

is investigated in Chapter 4. We study how the computational complexity

of recognizing aggregate-based repairs depends on certain characteristics of

the used aggregation function, and present some desirable properties of the

aggregation function that lead to polynomial-time complexity.

This thesis is deliberately written in such a way that each chapter is self-

contained and can be read on its own. To achieve this, some small overlap

among chapters was unavoidable. We believe that the chapters together form

5

a coherent whole with three successive blocks, as described next. First, an

OBDA mapping language is defined to map databases to ontologies. Such

mapping defines an ABox which can be materialized or remain virtual. Second,

an ABox ranking allows for the quantification of “quality” or “trustfulness” of

ABox assertions. Third, once data is quantified, it can be used in our study

of weighted repairs.

1.2. Background from Database Theory

This part follows the theory and notations defined in [6]. In this thesis, we use

the relational database model. Informally, a database in this model is a set of

tables.

Example 1.1

We provide a simple database for storing users and books in a library.

USERS Id Last First Since

0012 Smith Rob 12/12/2015

1004 Jones Tom 02/08/2013

BOOKS Id Title Category

BE10 Coming Back Romance

BE10 The Foundation SF

◁

We assume three disjoint, countably infinite sets: a set att of attributes, a

set relname of relation names, and a set dom of constants. We assume a total

order ≤att on att. We also assume a total function sort with domain relname

that maps every relation name to a finite set of attributes. In Example 1.1,

USERS is a relation name with sort(USERS) = {Id , Last , First , Since}, a

set of attributes.

Let U be a finite set of attributes. A tuple over U is a total mapping from U

to dom. For example, the following set is a tuple over {Id ,Last ,First ,Since}:

{Id : 0012,Last : Smith,First : Rob,Since : 12/12/2015}.

6 Introduction

If the attributes in a tuple are ordered according to ≤att, then attributes can

be omitted without ambiguity, as follows:

(0012, Smith,Rob, 12/12/2015) .

The latter representation is often referred to as the unnamed perspective. A

relation over U is a finite set of tuples over U .

A database schema S is a finite set of relation names. A database instance

over S (or simply, database over S) is a total mapping with domain S that

associates, to each relation name R in S, a relation over sort(R). If db is

a database instance, then Rdb denotes the relation associated to R. In the

unnamed perspective, if (c1, . . . , cℓ) is a tuple in Rdb, then we also say that

R(c1, . . . , cℓ) is a fact of db. It is often convenient to represent a database

instance as the set of its facts. Example 1.1 shows a database over the schema

{USERS ,BOOKS}.

Integrity Constraints, Inconsistency, and Repairs

A database schema S is commonly extended with a set Σ of integrity con-

straints that restrict the set of allowed database instances. In this thesis, we

assume that all integrity constraints are domain-independent sentences [6, Def-

inition 5.3.7] in predicate logic. Note that this excludes first-order sentences

that are not domain-independent, for example, ∀xR(x).

A database db is consistent with respect to Σ, denoted db |= Σ, if it

satisfies all integrity constraints in Σ; otherwise db is inconsistent. Note that

satisfaction in database theory has two particularities compared to standard

predicate logic: firstly, constant symbols are interpreted as themselves, and

secondly, since integrity constraints are domain-independent, the truth of a

sentence is the same for every universe of discourse that contains all constants

occurring in db or Σ.

Example 1.2

The following integrity constraint expresses that no two distinct tuples in a

BOOKS relation can agree on the attribute Id .

∀x∀y1∀y2∀z1∀z2

((
BOOKS (x, y1, z1)

∧BOOKS (x, y2, z2)

)
→ (y1 = y2 ∧ z1 = z2)

)
.

7

Note that the database of Example 1.1 is inconsistent with respect to this

integrity constraint.

◁

We allow database instances db that are inconsistent with respect to a set

of integrity constraints. Informally, a repair [12] of such a database instance db

is a consistent database instance that can be obtained from db by means of

some minimal change. The concept of “minimal change” can be formalized

in many different ways. For example, we may restore consistency by deleting

a minimal (with respect to set inclusion) set of tuples, without inserting new

tuples or modifying existing tuples. This gives rise to subset repairs, which

are inclusion-maximal consistent subsets of db. A more in-depth overview of

database repairing can be found in [118].

Example 1.3

For our running example, the following are the two subset repairs of the

BOOKS relation:

r1 =
BOOKS Id Title Category

BE10 Coming Back Romance

r2 =
BOOKS Id Title Category

BE10 The Foundation SF

◁

1.3. Background from Description Logics

This subsection follows the treatment in [16]. Description Logics are a family of

logics ranging from fairly simple logics (e.g., DL-Lite [31]) to quite expressive

ones (e.g., SHIQ [60]). We will discus notions that are common to most

DLs.

As for any formal logic, expressions in DL must be syntactically well-

defined. We begin by specifying three countably infinite pairwise disjoint sets:

the set of concept names C, the set of role names R, and the set of individ-

uals I. Concept names and role names are to be interpreted by, respectively,

unary and binary relations. Individuals are interpreted by constants.

8 Introduction

We now discuss how constructs are inductively built. For the base case, we

have that atomic concepts are concept names in C, and atomic roles are role

names in R. In what follows, let C, D be valid atomic or complex concepts;

and let r, s be valid atomic or complex roles. Then the following are all valid

constructs:

� ⊥ which corresponds to nothing or the empty set;

� ⊤ which corresponds to all or the set that equals the universe of inter-

pretation;

� C ⊓D concept conjunction;

� C ⊔D concept disjunction;

� ¬C concept negation;

� ¬r role negation;

� r− inverse of a role;

� r ∩ s role conjunction;

� r∗ transitive closure of a role;

� ∀r.C universal restriction; and

� ∃r.C existential restriction.

While the syntax differs from first-order logic, the intended meaning is

closely related to first-order semantics. A particular DL is obtained by allowing

only a subset of constructors. For example, DL-Lite is restricted to to the

following constructs:

� ⊥;

� ⊤;

� A a basic concept;

� r a basic role;

9

� r−;

� ¬s where s can be atomic or inverted;

� ∃s.⊤ where s can be atomic or inverted; and

� ¬C where C can be atomic or of the form ∃s.⊤.

Moreover, some DL add extra constructs not shown before. For example,

SHIQ∩,∪,¬(full),∗ allows for all of the precedent constructs and some more.

TBox and ABox

Knowledge represented by means of a Description Logic is called an ontology.

Such knowledge in an ontology is stored in two sets: the terminology box called

TBox, and the assertion box called ABox. The TBox specifies general knowl-

edge about the domain of study, including the interaction among concepts,

while the ABox stores more concrete information pertaining to individuals.

Example 1.4

We present a simple ontology for the taxonomy of canidae. The TBox is

denoted by T and the ABox by A.

T =

{
Species ⊑ Genus,

Order ⊑ Phylum ⊓ Class

}

A =


chordata : Phylum,

carnivora : Order,

canis lupus : Species,

(canis lupus, canis latrans) : sameGenus


◁

The new symbol ⊑ appearing in the TBox models that a concept is a

specialization of another. This allows us to structure our knowledge, saying

that the concept Species is a specialization of the concept Genus (or, conversely,

that Genus is a generalization of Species).

The ABox A contains specific assertions. The assertion carnivora : Order

expresses that carnivora is an Order, while the assertion (canis lupus, canis latrans) :

10 Introduction

sameGenus expresses that both canis lupus and canis latrans are of the same

Genus. More formally, assertions in an ABox can be of two forms:

� a : C

� (a, b) : s

where a, b are individual names, C is a concept, and s is a role. ABoxes are

finite sets of ABoxes assertions.

In the field of Description Logics, an ontology ⟨T ,A⟩ is also called a knowl-

edge base, and often denoted by the symbol K.

Remark 1.4

Some logics that allow role inclusions, like sameGenus ⊑ sameFamily , do not

put such axioms in the TBox, but rather in an RBox R.

◁

Syntactic Restrictions Syntactic restrictions not only apply to the con-

struction of complex concepts and roles, but also to what expressions are

allowed in the TBox and the ABox. For example, in the logic ALC, the ex-

pression C ⊑ D is syntactically valid whenever C and D are atomic or complex

concepts. On the other hand, in DL-Lite, the left-hand expression C must be

a non-negated concept. Likewise, in a concept expression a : E, the expres-

sion E must be a basic concept in DL-Lite, but the logic ALC allows for more

flexibility, sometimes allowing for E to be a complex construct.

Interpretation

Like in first-order logic, the semantics of an ontology is defined by interpreting

its symbols. An interpretation is a pair (∆I , ·I) where ∆I is a non-empty

interpretation domain, and ·I is a function that maps symbols in ⟨T ,A⟩ to

∆I , as follows:

� ⊥I equals ∅;

� ⊤I equals ∆I ;

� for every concept name A, AI is a subset of ∆I ;

11

� for every role name r, rI is a subset of ∆I × ∆I ; and

� for every individual name a, aI is an element of ∆I .

The function ·I naturally extends to complex constructs, for example:

� (C ⊓D)I = CI ∩DI ;

� (¬C)I = ∆I \ CI ;

� (∃r.C)I = {a ∈ ∆I | there is b ∈ ∆I such that (a, b) ∈ rI and b ∈ CI}.

An interpretation can satisfy or violate TBox axioms and ABox assertions, in

particular:

� an interpretation (∆I , ·I) satisfies the TBox axiom C ⊑ D if CI ⊆ DI ;

� an interpretation (∆I , ·I) satisfies an ABox assertion a : C if aI is con-

tained in CI .

Finally, we say that an interpretation (∆I , ·I) is a model of an ontology ⟨T ,A⟩
if (∆I , ·I) is a valid interpretation that satisfies all axioms in T and all asser-

tions in A.

Reasoning

Standard reasoning tasks in Description Logics concern satisfiability and log-

ical implication, which involve questions of the following kind:

� Given an ontology K = ⟨T ,A⟩, is K satisfiable, i.e., is there a model

(∆I , ·I) of K?

� Given an ontology K = ⟨T ,A⟩ and two concepts C,D, does K logically

imply C ⊑ D, i.e., is it true that every model (∆I , ·I) of K satisfies

C ⊑ D?

� Given an ontology K = ⟨T ,A⟩ and an assertion α, does K entail α, that

is, is every model of K also a model of α? A variant of this problem will

play a key role in Chapter 3.

The computational complexity of these tasks depends on which constructs are

(dis)allowed in the Description Logic under consideration, as nicely exposed

in [16].

12 Introduction

CHAPTER 2

Connecting Databases to Ontologies

Remark 2.0

The content of this chapter has been presented at DL 2019 [89].

◁

2.1. Motivation

The literature contains many proposals for mapping relational databases to

ontologies. A major motivation for these proposals is ontology-based data

access (OBDA) [119], i.e., the capability of interrogating databases by using

an ontological vocabulary. The current study, however, started with a different

purpose, which can be coined as ontology-based database repairing or ontology-

based database cleaning. Database repairing [118] and data cleaning [63] are

approaches for dealing with dirty data, where dirtiness refers to the violation of

integrity constraints or, more abstractly, the non-conformity to rules that the

data should obey. Ideally, all such data rules should be declared at database

design time and subsequently enforced by the database management system.

In practice, however, we seldom dispose of an exhaustive declaration of all data

rules: some rules were overlooked when the database schema was conceived,

while others were hidden in procedural programming code. Moreover, in the

course of time, new rules may emerge because of new legislation (e.g., GDPR),

13

14 Connecting Databases to Ontologies

while existing rules may be invalidated. Now let us assume that we have access

to an ontology that talks about objects and relations that also exist in some

presumably dirty database. Our hypothesis is that data quality problems may

become more visible when we succeed in connecting or mapping the database

to the ontology, enabling us to confront the stored data with the ontological

“ground truth.” It should be mentioned here that an ontologically based

approach to data quality is not a new idea: it already appeared in [116], was

formalized in [40], and is mentioned in [119] as an important direction for

future research.

An OBDA setting consists of several components. It comprises a relational

database schema (i.e., a set of relation names), a description logic vocabulary

(i.e., a set of unary and binary predicate names, called concept names and

role names), and a TBox in some description logic. A final component is a

database-to-ontology mapping. Such a mapping takes, as input, a database

instance over the fixed database schema, and returns, as output, an ABox in

the description logic. If M denotes such a mapping and db denotes a database

instance that serves as input to M, then we write M(db) for the resulting

ABox. In a data cleaning context, we may be interested to know, for example,

whether the knowledge base ⟨T ,M(db)⟩ is consistent, and if not, what data

in db causes inconsistency.

In this chapter, we introduce and study a language for specifying such

mappings M, seeking a good balance between expressiveness and complexity.

Four design considerations are as follows.

� First, we work in a perspective where columns in relations are not only

numbered, as in mathematical logic, but also named with attributes. We

will not assume that real-world entities have unique identifiers. Instead,

we will use tuples with attributes to identify entities. This allows us,

for example, to distinguish between the actress {Lastname : Hilton,

Firstname : Paris} and the entity {Hotel : Hilton, City : Paris},

which is a hotel in Paris.

� Second, the language for mapping databases to ontologies will be a sub-

set of relational algebra. This leads to a succinct syntax without first-

order variables. A major convenience for end-users is that any syntac-

15

tically correct combination of the algebra operators is allowed in our

mapping language. This would not be achievable in predicate logic,

where end-users would be troubled with syntactic restrictions like safe-

ness and guardedness. The omission of variables is similar to description

logics capturing fragments of first-order logic without using first-order

variables, in a syntax that is friendly to end-users.

� Third, like with description logics, a major concern in the design of

our mapping language is to find a good balance between expressiveness

and complexity. For expressiveness considerations, we allow negation

in our mapping language, which is often considered useful [20]. On the

other hand, we cannot allow the full expressive power of predicate logic,

because this would lead to the undecidability of some basic reasoning

problems.

� Fourth, relational database schemas are often obtained from a concep-

tual schema expressed in the Entity-Relationship model [35] or some

variant of it. In such database schemas, most database tables corre-

spond to either an entity type or a relationship type in the conceptual

schema. Intuitively, concept names and role names in description log-

ics also correspond, respectively, to entity types and relationship types.1

These resemblances have motivated some design choices of our mapping

language. In particular, for mappings that generate concept assertions

in the ABox, we have opted for including negation in our mapping lan-

guage at the price of giving up on arbitrary joins. The idea is that in

a well-designed database, the same real-world entity will generally not

be spread out over multiple database tables, thus reducing the need for

arbitrary joins. On the other hand, negation may be co“mmonly needed

(for example, to compute foreign students as all students except Belgian

citizens).

The main results in this chapter can be summarized as follows.

� In terms of expressiveness, our language is incomparable with the com-

monly used language of GLAV mappings [32]. In particular, we allow

1A mathematical logician may object that concept names and role names are just strings

in some vocabulary.

16 Connecting Databases to Ontologies

negation but disallow arbitrary conjunctive queries at the left-hand sides

of mapping rules. We thus obtain an expressive language, while impor-

tant reasoning problems remain decidable in EXPTIME. It should be

noted here that this complexity is in terms of the size of database con-

straints, mapping rules, and TBox axioms. This is often called schema

complexity, as opposed to data complexity.

� Our mapping language is based on GF , the guarded fragment of first-

order logic. Nevertheless, end-users can define mapping rules without

knowing the guarded fragment. In fact, we propose a user-friendly alge-

braic language that is contained in the guarded fragment.

� We propose a solution to overcome the mismatch between value-based

keys used in databases and abstract individual names in description logic,

which was illustrated by the previous “Paris Hilton” example.

This chapter is organized as follows. The next section discusses related

work. Section 2.3 illustrates the concepts of this chapter by means of a simple

example. Section 2.4 introduces some preliminary definitions. Section 2.5 in-

troduces Entity-expressions and Relationship-expressions, which are the build-

ing blocks for our mapping rules that are introduced in Section 2.6. The de-

cidability of some important reasoning problems is established in Section 2.7.

Section 2.8 concludes the chapter. All proofs are available in Appendix B.

2.2. Related Work

Recent years have seen active research on disclosing relational databases to

ontologies or the semantic Web [100,101,104,119]. The most commonly used

rules used for mapping relational databases to ontologies have the form

∀x⃗ (φ(x⃗) → ∃y⃗ψ(x⃗, y⃗)) , (2.1)

where the left-hand side φ is a conjunction of atoms over the database schema,

and the right-hand side ψ is a conjunction of atoms over the vocabulary (con-

cept names and role names) of the ontology. A closed formula of the form (2.1)

is called a GLAV mapping or, in the database literature, a tuple-generating

17

dependency (tgd). A tgd is full if no existential quantifier occurs in it. A GAV

tgd is a full tgd whose right-hand side is a single atom. A LAV tgd is a tgd

whose left-hand side is a single atom. Bienvenu [21] uses GAV¬,̸= tgds, which

extend GAV tgds by allowing negated atoms and inequalities in the left-hand

side. In [94], the left-hand side is allowed to be an arbitrary SQL query.

Most studies in OBDA have adopted the relational database model; recent

notable exceptions are [24,29,82] which also consider NoSQL databases.

As explained in the introduction, our incentive for studying OBDA is

that it can provide an ontologically based approach to data quality. This in-

volves identifying inconsistency and redundancy in OBDA mappings, as well

as testing for other (un)desirable properties [40, 75, 94]. A recent survey on

OBDA [119] mentions data quality as an important research direction.

When mapping relational databases to ontologies, a difficulty is that the

relational database model uses value-based primary keys to identify tuples,

while description logics use abstract individual names to refer to objects, pos-

sibly in combination with the Unique Name Assumption. For example, in a

database setting, a fact R(a1, . . . , ak, b⃗) may represent an entity (e.g., a stu-

dent, a teacher, a course) in the real world. The relation name R together

with the underlined primary-key value uniquely identify this entity. Such a

primary-key value can be composite, i.e., k ≥ 1. If we want to represent the

same entity in the DL setting, we have to create a unique, atomic individual

name for it. This issue is nicely discussed in [94, p. 149], where a solution is

proposed that uses ordered tuples of database constants for individual names.

Our approach resembles the latter solution, with one significant extension: we

also use attributes, as illustrated by the “Paris Hilton” example in Section 2.1.

Another problem that often emerges in data integration is that a same

real-world entity may be recorded multiple times in a database with different

identifiers, in which case a database-to-ontology mapping should involve some

unification [33, 120]. This unification problem, however, is outside the scope

of our study.

18 Connecting Databases to Ontologies

2.3. Introductory Example

Before starting the technical development, we introduce our mapping language

by means of a simple example. A fact ENROLLED(c, f, ℓ, p, y) in our example

database means that student (f, ℓ) is currently enrolled in course c and took

the prerequisite course p in the year y. A fact TAUGHT -BY (c, f, ℓ, h, s)

means that the course c is taught by (f, ℓ) and takes place at every hour h

during semester s. The same course can be taught more than once in a week.

ENROLLED Course First Last Prerequisite Year

CS402 Tom Jones CS311 2008

CS402 Tom Jones CS401 2009

TAUGHT -BY Course First Family Hour Semester

CS402 David Maier Mon. 10am Spring

CS402 David Maier Tue. 10am Spring

We will identify all persons by their first and last names, using the attributes

First and Last . The operator πFirst ,Last takes the projection on First and

Last . Since the table TAUGHT -BY uses the attribute Family for last names,

we rename that attribute by means of the renaming operator δFamily→Last . Let

S := πFirst ,LastENROLLED and T := πFirst ,Last(δFamily→LastTAUGHT -BY).

Thus, S is the set of persons that are students, and T is the set of persons

that are teachers. We will identify all courses by the attribute Course, which

necessitates the use of the renaming operator δPrerequisite→Course . Let

C := πCourseENROLLED ∪ πCourse(δPrerequisite→CourseENROLLED)

∪ πCourseTAUGHT -BY

Thus, C is the set of all courses. We are now ready to give three mapping

rules for populating concept names Student, Teacher, and Course:

S : Student, T : Teacher, C : Course.

Since S and T use the same attributes, it is possible that some students are

also teachers. This would result in a knowledge base falsifying Teacher ⊑

19

¬Student. Our mapping language captures negation by means of the difference

operator −. For example, one could declare

S − T : PersonWhoDoesNotTeach.

Finally, we show a mapping rule for roles. Assume we are in the spring

semester, and we are interested in who attends which course in the current

semester. We show a mapping rule for the role name attends:[
S, C ⋉

(
σSemester=SpringTAUGHT -BY

)
, ENROLLED

]
: attends (2.2)

S gets all students. Next, C⋉σSemester=Spring(TAUGHT -BY) gets all courses

that take place in the spring semester. Technically, ⋉ is the semijoin op-

erator, whose effect is to return those courses in C that join with some tu-

ple in the selection σSemester=SpringTAUGHT -BY . Then, the third argument

ENROLLED specifies that a student in the first argument has to be related

to a course in the second argument if they occur together in a same tuple of

ENROLLED . The last argument, attends, specifies the role name for student-

course pairs so obtained.

The following mapping rule is equivalent to (2.2), but applies the semester

condition on the third argument:[
S, C, ENROLLED ⋉ πCourse

(
σSemester=Spring(TAUGHT -BY)

)]
: attends

2.4. Preliminaries

2.4.1 Preliminaries from Database Theory

We assume a denumerable set att of attributes, a denumerable set dom of

constants, and a denumerable set relname of relation names. We assume

a total order ≤att on att. We assume a total function sort with domain

relname that maps every relation name to a finite set of attributes.

Let U be a finite set of attributes. A tuple over U is a total mapping

from U to dom. A relation over U is a finite set of tuples over U . An

attribute renaming for U is a total injective function from U to att. We

write A1, A2, . . . , An → B1, B2, . . . , Bn for the attribute renaming f such that

20 Connecting Databases to Ontologies

f(Ai) = Bi for i ∈ {1, . . . , n} and f is the identity on other attributes. If t is

a tuple over U and f is an attribute renaming, then f(t) denotes the tuple s

over {f(A) | A ∈ U} such that for every A ∈ U , s(f(A)) = t(A). For example,

if t = {A : a, B : b, C : c} and f = AB → BD, then f(t) = {B : a, D : b,

C : c}.

A database schema is a finite set of relation names. In the rest of the

chapter we will suppose a fixed database schema. A database instance db as-

sociates, to each relation name R, a finite relation over sort(R), denoted Rdb.

A database instance is also called a database.

2.4.2 Relational Algebra

The operations of the relational algebra [6] are selection σ, projection π, (nat-

ural) join ⋊⋉, semijoin ⋉, renaming δ, union ∪, and difference −. Conditions

in selections can be equalities between attribute values and constants, that is,

σA=B and σA=c. A projection πXE takes the projection of E on the set X

of attributes. A renaming δfE, where f is an attribute renaming, applies f

to all tuples in E. A join E ⋊⋉ F returns all tuples that can be constructed

by taking the union of two tuples, one from E and one from F , that agree

on their common attributes. A semijoin E ⋉ F returns every tuple of E that

agrees with some tuple of F on their common attributes. In the full relational

algebra, ⋉ is not a primitive operator, because it can be expressed as a pro-

jection of a join: E ⋉ F ≡ πsort(E)(E ⋊⋉ F). However, semijoin is a primitive

operator in the semijoin algebra, which allows semijoins but disallows joins.

The formal semantics of all operators, which is given in Appendix A, defines

eval(E,db), the relation to which an algebra expression E on a database db

evaluates.

2.4.3 Specialization of Predicate Logic to Database Theory

We recall some slight differences between the uses of predicate logic in mathe-

matical logic and in database theory, particularly the fact that interpretations

are always Herbrand interpretations and that function symbols do not appear

in the vocabulary, except in the form of constants. These differences will be

relevant in the technical treatment.

21

Let φ(x1, . . . , xn) a first-order formula with free variables x1, . . . , xn. Let ν

be a valuation over {x1, . . . , xn} such that for every i ∈ {1, . . . , n}, ν(xi) = ai.

If we write db |= φ(a1, . . . , an), then we mean that A, ν |= φ, using standard

first-order logic semantics for |=, for the following structure A:

� The universe of discourse A is any set that contains all values that

appear in the database or in φ. We will require that our formulas are

domain-independent [6, Definition 5.3.7], which means that it does not

matter what are the other values in A.

� Every relation name R is interpreted by Rdb, that is, RA = Rdb.

� Constant symbols are interpreted as themselves, that is, cA = c for

every constant symbol c. This is also called a Herbrand interpretation

of constants.

Note that our vocabularies have no function symbols of arity 1 or greater.

2.4.4 The Guarded Fragment of First-Order Logic

The guarded fragment of first-order logic [11, 53], denoted by GF , was first

introduced by Andréka et al. as a a generalization of some nice reasoning

properties of modal logics. Since Description Logics are closely related to

modal logics [16], the guarded fragment provides a nice setting to study De-

scription Logics. The guarded fragment satisfies attractive properties: the

problem of logical implication is decidable in 2EXPTIME, and in EXPTIME if

the vocabulary is assumed to be fixed; GF has the finite model property and

the tree model property. It should also be noted that GF is closely related to

the semijoin algebra [73], a language that will be used in our setting.

We define GF as the following restriction of predicate calculus, with equal-

ity:

� every quantifier-free formula belongs to GF ;

� if φ(x⃗, y⃗) belongs to GF and R(x⃗, y⃗) is a relation atom in which all free

variables of φ actually occur, then the formulas ∃y⃗ (R(x⃗, y⃗) ∧ φ(x⃗, y⃗))

and ∀y⃗ (R(x⃗, y⃗) → φ(x⃗, y⃗)) belong to GF ; and

22 Connecting Databases to Ontologies

� GF is closed under ∧, ∨, ¬, →, ↔.

A first-order formula is called guarded if it belongs to GF .

The guarded fragment GF can capture several modal logics and most De-

scription Logics. On the other hand, it cannot express some common database

constraints like transitivity or functional dependencies.

2.5. Entity-Expressions and Relationship-Expressions

In this section, we introduce Entity-expressions and Relationship-expressions,

which will be used in Section 2.6 to construct mapping rules. The follow-

ing definitions are relative to a fixed database schema and description logic

vocabulary (i.e., a finite set of concept names and role names).

Definition 2.1 (Entity-Expression).

Entity-expressions (EEs) are recursively defined as follows:

1. Every relation name R is an EE with sort sort(R).

2. If E is an EE andX ⊆ sort(E), then πXE is an EE with sort(πXE) = X.

3. If E is an EE and f is an attribute renaming for sort(E), then δfE is

an EE with sort(δfE) = {f(A) | A ∈ sort(E)}.

4. If E is an EE, A,B ∈ sort(E), and c ∈ dom, then σA=cE and σA=BE

are EEs with sort(σA=cE) = sort(σA=BE) = sort(E).

5. If E1 and E2 are EEs such that sort(E1) = sort(E2), then E1 ∪ E2 and

E1 − E2 are EEs with sort(E1 ∪ E2) = sort(E1 − E2) = sort(E1).

6. If E1 and E2 are EEs, then E1 ⋉ E2 is an EE with sort(E1 ⋉ E2) =

sort(E1).

◁

23

Example 2.1

Let db be the following database.

R A B C

a b c

d e f

S B C D

b c e

b b m

T C E F

l e d

f g g

We show next the interpretation of two Entity-Expressions:

σB=CS B C D

b b m

and
(πCR ∪ πCS) − πCT C

b

c

.

◁

Note that Entity-expressions cannot use the join operator ⋊⋉. The frag-

ment of relational algebra that replaces the join operator ⋊⋉ with the semijoin

operator ⋉ is known as the semijoin algebra. An important result by Lein-

ders et al. [73] states that the semijoin algebra is contained in GF . Our

setting slightly differs from this earlier work because we have attribute re-

namings δf and selections of the form σA=c, both of which are not present

in [73]. The proof of the following Theorem 2.1 translates Entity-expressions

in domain-independent formulas in the guarded fragment. It differs from [73]

in that it admits constants and does not use the formulas Gk(x1, . . . , xk) in-

troduced by Leinders et al. for defining the guarded k-tuples of a structure.

In the translation from the semijoin algebra to first-order logic, the expression

Gk(x1, . . . , xk) is used as a guard. Our translation avoids the use of such a

guard by first rewriting algebra expressions in union normal form, which is

conceptually simple but comes at the price of an exponential blowup.

Theorem 2.1. For every Entity-expression E with sort(E) = {A1, . . . , An},
it is possible to construct a domain-independent formula φ(x1, . . . , xn) in GF

such that for every database db, for all a1, . . . , an ∈ dom, {A1 : a1, . . . , An :

an} ∈ eval(E,db) if and only if db |= φ(a1, . . . , an).

24 Connecting Databases to Ontologies

Since decidability of of logical implication in GF carries over the semijoin

algebra, we obtain the following corollaries of Theorem 2.1.

Definition 2.2 (Satisfiable Entity-Expression).

An Entity-expression E is called satisfiable if and only if there exists a database

instance db such that eval(E,db) ̸= ∅.

◁

Corollary 2.2. The following problem is decidable: Given an Entity-expression

E, is E satisfiable?

The join operator ⋊⋉ can be used in Relationship-expressions, capturing a

common intuition that relationships are places where entities “join.”

Definition 2.3 (Relationship-Expression).

Relationship-expressions (REs) are recursively defined as follows:

� Every Entity-expression is an RE.

� If E1 and E2 are REs, then E1 ⋊⋉ E2 is an RE.

� The set of REs is closed under the operators σA=c, σA=B, δf , ∪, and −.

◁

Note that the set of Relationship-expressions is not closed under projection

or semijoin; for example, T ⋉ (R ⋊⋉ S) and πAB(R ⋊⋉ S) are not Relationship-

expressions. That is, Relationship-expressions cannot project out attributes.

Intuitively, Relationship-Expressions express relationships among entities that

result from Entity-expressions; the inability to use projection ensures that such

entities will not be truncated and become unrecognizable. In this way, The-

orem 2.1 remains valid if we replace “Entity-expression” with “Relationship-

expression” in its statement. A corollary is that satisfiability of Relationship-

expressions is also decidable.

Corollary 2.3. The following problem is decidable: Given a Relationship-

expression E, is E satisfiable?

For every fixed finite vocabulary, the satisfiability problem for GF is in

EXPTIME. It is proved in [73, Theorem 9] that this complexity upper bound

25

carries over to the semijoin algebra. It should be noted that our translation

from semijoin algebra to GF first rewrites expressions in union normal form,

which comes at the price of an exponential blowup. Nevertheless, we believe

that this blowup can be avoided by an approach similar to [73].

2.6. The Mapping Language

We will now introduce the notion of Database-to-ABox Dependency (DAD).

From here on, all definitions are relative to a database schema S, a description

logic vocabulary C ∪R (i.e., a set of concept names and role names), and a

description logic DL. A DAD can be of two sorts: a Concept DAD (CDAD)

takes as input a database and returns a set of concept assertions; a Role DAD

(RDAD) takes as input a database and returns a set of role assertions.

CDAD

The following definition introduces the syntax and semantics for a Concept

DAD. The semantics of CDAD relies on a function ι from the set of all tuples

to I, the set of individual names.

Definition 2.4 (Concept DAD).

A Concept DAD (CDAD) is an expression E : C where E is an Entity-

expression (over the database schema S) and C is a concept name in C.

We assume a denumerable set I of individual names. We assume an injec-

tive function ι from the set of all tuples (taken over all finite subsets of att)

to the set of individual names.

Let db be a database. The set of concept assertions generated by E : C

from db is the following:

{ ι(t) : C | t ∈ eval(E,db) }.

◁

RDAD

The syntax for a Role DAD is slightly more complex: it is a sequence of

two Entity-expressions, one Relationship-expression, and a role name r in R.

26 Connecting Databases to Ontologies

Informally, given a database, such a Role DAD generates a role assertion

(a, b) : r whenever a and b belong, respectively, to the result of the first and

the second Entity-expression, and together fit the Relationship-expression. We

give an example, and then provide a formal definition.

Example 2.2

Consider the following data from the Mathematics Genealogy Project at

http://www.genealogy.ams.org.

PHD First Last Year AdvisorFirst AdvisorLast

Jan Chomicki 1990 Tomasz Imielinski

Tomasz Imielinski 1981 Witold Lipski

Witold Lipski 1968 Wiktor Marek

Assume that no two distinct persons in this database agree on their first

and last names. Let f be a renaming such that f(First) = AdvisorFirst

and f(Last) = AdvisorLast . Thus, the inverse of f , denoted f−1, maps

AdvisorFirst and AdvisorLast to, respectively, First and Last . The following

Entity-expression P gets first and last names of all persons in the database:

P := π{First ,Last}PHD ∪ δf−1

(
π{AdvisorFirst ,AdvisorLast}PHD

)
.

It is significant to note that Wiktor Marek will be added with attributes First

and Last , even though he does not appear with these attributes in the PHD

table. The following RDAD populates the role name SupervisedBy :

[P, P/f,PHD] : SupervisedBy . (2.3)

Given a database db, this rule will add a role assertion (s, t) : SupervisedBy to

the ABox whenever s, t ∈ eval(P,db) such that some tuple of eval(PHD ,db)

includes both s and f(t). For example, if s0 = {First : Witold, Last : Lipski}
and t0 = {First : Wiktor, Last : Marek}, then (s0, t0) : SupervisedBy will be

added to the ABox because s0 ∪ f(t0) = {First : Witold, Last : Lipski,

AdvisorFirst : Wiktor, AdvisorLast : Marek} is included in the last tuple of

the PHD table.

◁

http://www.genealogy.ams.org

27

Definition 2.5 (Role DAD).

A Role DAD (RDAD) is an expression of the form

[E1/f1, E2/f2, E] : r

where E1 and E2 are Entity-expressions, f1 and f2 are attribute renamings,

E is a Relationship-expression such that sort(δf1E1)∪ sort(δf2E2) ⊆ sort(E),

and r is a role name in R.

If f1 or f2 is the identity, it can be omitted. Such an RDAD is called join-

free if ⋊⋉ does not occur in it (but ⋉ can occur). For example, the RDADs (2.2)

and (2.3) are both join-free.

To define the semantics, let db be a database. The set of role assertions

generated by [E1/f1, E2/f2, E] : r from db is the following:

{ (ι(t1), ι(t2)) : r | t1 ∈ eval(E1,db), t2 ∈ eval(E2,db),

and f1(t1) ∪ f2(t2) ⊆ t for some t ∈ eval(E,db) }.

◁

2.7. Reasoning Problems

We now move from a single CDAD or a single RDAD to sets of CDADs and

RDADs, and introduce some reasoning problems.

Definition 2.6 (The ABox M(db)).

Let db be a database. Let M be a set of CDADs and RDADs. We write

M(db) for the smallest ABox that contains all concept and role assertions

generated from db by the CDADs and RDADs in M.

A CDAD is said to be active on db if it generates at least one concept

assertion from db; an RDAD is active on db if it generates at least one role

assertion from db.

◁

In the following definition, one may think of Σ as a set of database con-

straints. However, when studying problems like Satisfiability (see below),

we may add to Σ some desirable properties, like ∃x⃗R(x⃗) if we are asking for a

satisfying database in which R is nonempty.

28 Connecting Databases to Ontologies

Definition 2.7 (DB2KB specification).

Fix two vocabularies, τ1 and τ2, of first-order logic without function symbols.

A DB2KB (or OBDA specification) is a triple (Σ,M, T) where

� Σ is a set of closed first-order formulas over the database schema, using

the vocabulary τ1;

� M is a set of CDADs and RDADs, where Entity-Expressions and Relation-

ship-Expressions are defined over τ1, and concept and role constructs are

defined over τ2; and

� T is a DL TBox, using the vocabulary τ2.

◁

Console and Lenzerini [40] introduced the notions of faithfulness and pro-

tection for characterizing data quality in OBDA. These notions are recalled

next, together with the well-known notion of satisfiability. For aesthetic rea-

sons, we state all questions in the form “Is there a database such that. . . ?”.

Therefore, we are asking for the complement of faithfulness and protection

as defined in [40]. This difference is not fundamental, because we are aiming

at decidability results, and the class of decidable languages is closed under

complement. Finally, the notion of global-consistency appeared in [75].

INPUT: A DB2KB (Σ,M, T).

QUESTIONS:

� Satisfiability: Is there a database db such that db |= Σ and the

knowledge base ⟨T ,M(db)⟩ is consistent?

� Non-Faithfulness: Is there a database db such that the knowl-

edge base ⟨T ,M(db)⟩ is consistent but db ̸|= Σ?

� Non-Protection: Is there a database db such that db |= Σ but

the knowledge base ⟨T ,M(db)⟩ is inconsistent?

� Global-Consistency: Is there a database db such that db |= Σ,

all CDADs and RDADs of M are active on db, and the knowledge

base ⟨T ,M(db)⟩ is consistent?

29

Informally, a “yes”-answer to Non-Protection tells us that the ontology

has some constraints not implied by Σ. Recall from Section 2.1 that the

discovery of such constraints may be significant in data quality assessments.

As mentioned just in front of Definition 2.7, Σ may contain desirable prop-

erties in addition to database constraints. For example, for Satisfiability,

we can use Σ to express that the database db must be nonempty, as follows.

For every R ∈ S, define φR := ∃x⃗R(x⃗), and add to Σ the formula
∨

R∈S φR,

or even stronger,
∧

R∈S φR. These are unlikely to be database constraints,

because most database applications start with an empty database, which thus

has to be legal. However, database relations are not intended to remain empty

at all times, which can thus be expressed as a desirable property in Σ. A

knowledge-worker might even use Σ to assert knowledge like

¬∃h∃zTAUGHT -BY (CS402, Jeffrey, Ullman, h, z)

and then run Satisfiability to check consistency of her knowledge.

The above problems can be shown to be undecidable in general [40, Theo-

rem 1]. The following theorem shows their decidability under some restrictions

on the input, which will be discussed after the theorem. A technical crux in

the proof of Theorem 2.4 concerns the switch from database tuples to DL in-

dividual names. As discussed in Section 2.2, entities that are represented by

tuples on the database side must be mapped to atomic, individual names on

the ontology side. We solve this issue by choosing an appropriate encoding for

the injective function defined in Definition 2.4.

Theorem 2.4. Satisfiability, Non-Faithfulness, Non-Protection, and

Global-Consistency are decidable problems if their inputs are restricted to

DB2KBs (Σ,M, T) with the following properties:

� T can be effectively expressed in GF;

� every formula in Σ is in GF; and

� all RDADs in M are join-free.

The satisfiability problem for GF with constants is EXPTIME-complete

when the arities of all relation names are fixed [111]. The EXPTIME-hard

30 Connecting Databases to Ontologies

lower bound obviously carries over to the problems in Theorem 2.4. The

EXPTIME-upper bound does not, insofar as Theorems 2.1 and 2.4 use expo-

nential translations of CDADs and RDADs in GF . However, it is a plausible

conjecture that membership in EXPTIME can be obtained along the lines of

the proof of [73, Theorem 9].

We briefly discuss the restrictions in the statement of Theorem 2.4. The

restriction that the input TBoxes T must be expressible in GF may be au-

tomatically fulfilled by the description logic DL under consideration. Indeed,

many expressive description logics can be expressed in GF [15,112], an example

being ALC [16, p. 46]. The requirement that Σ is in GF still allows express-

ing many interesting properties and database constraints, like non-emptiness

of relations and inclusion dependencies, as well as all Boolean combinations

of these (because GF is closed under Boolean combinations). On the other

hand, GF does not include common database constraints like primary keys or

functional dependencies. Theorem 2.4 imposes no restrictions on CDADs, but

RDADs are restricted to be join-free. Our example RDADs (2.2) and (2.3)

are join-free. Informally, join-freeness demands that whenever an RDAD puts

two entities together in a role, then these entities should already occur to-

gether in some database relation. This restriction is plausibly satisfied for

database schemas that are obtained from Entity-Relationship diagrams that

already capture such roles by relationships. The restriction can be prohibitive

though if one wants to combine in a role two entities that are unrelated in the

Entity-Relationship diagram.

Finally, we show a result telling us that database constraints can be ob-

tained from an ontology, given a mapping M. As we argued in Section 2.1,

this may be of interest in data cleaning applications where some database

constraints may be missing.

Theorem 2.5. Let (Σ,M, T) be a DB2KB such that Σ = ∅ and T is a

DL-Litecore TBox. It is possible to construct a finite set Σ′ of closed first-order

formulas such that for every database db, db |= Σ′ if and only if ⟨T ,M(db)⟩
is a consistent knowledge base. Moreover, if every RDAD in M is join-free,

then Σ′ is in GF.

31

2.8. Conclusion

The language of CDADs and RDADs allows expressing database-to-ontology

mappings in a user-friendly way. The language is based on the semijoin al-

gebra, which is embedded in the guarded fragment of first-order logic. This

results in decidability of some important reasoning problems. Since CDADs

and RDADs allow full negation, they can express mappings that are not GLAV

mappings. On the other hand, the GLAV mapping

∀x∀y∀z (R(x, y) ∧R(y, z) ∧R(z, x) → C(x))

is not guarded and cannot be expressed as a CDAD. In future research, we

plan to explore in more depth the practice of using ontological knowledge in

database repairing, database cleaning, and consistent query answering. We

also plan to investigate complexity bounds for the decidable problems in The-

orem 2.4.

32 Connecting Databases to Ontologies

CHAPTER 3

Assertion Ranking in Ontologies

Remark 3.0

The content of this chapter has been presented at DL 2020 [90].

◁

3.1. Motivation

Inconsistency is an important and recurrent problem in today’s database

and knowledge base systems. Data errors are practically unavoidable in sys-

tems that integrate data coming from different sources. Two approaches to

tackle this problem are data cleaning [63, 117] and consistent query answer-

ing (CQA) [118]. The latter approach uses the notion of repair, which is a

consistent knowledge base obtained by making some minimal amount of data

corrections. A repair is conceptually not different from a cleaned knowledge

base. However, whereas the process of data cleaning is supposed to end in a

single cleaned knowledge base, the CQA approach allows for the possibility

of multiple repairs (or possible worlds). In the Description Logics framework,

different repairs correspond to different ABoxes, each one consistent with re-

spect to a given fixed TBox. When we move from a single-world perspective

to a possible-worlds perspective, different semantics for logical reasoning be-

come possible [22,25,30,54,74,79]. Eventually, all these semantics address the

33

34 Assertion Ranking in Ontologies

following central problem: Given a logical sentence φ, assign some degree of

truthfulness to φ. Is φ true in some, most, or all repairs? What is the proba-

bility of φ being true? Is there strong support for—or resistance against—the

sentence φ? Throughout this chapter, we use the term “truthfulness” in a

loose and informal way; we could have used other terms instead: credibility,

veracity, accuracy. . .

In this chapter, we present a new principled framework for evaluating the

relative truthfulness of ABox assertions (i.e., the sentence φ is an ABox asser-

tion in our framework). By relative, we mean that we are merely interested

in ranking ABox assertions: Given two ABox assertions α and β, is α more,

less, or equally truthful than β? Our framework is different from CQA in that

it does not use the notion of repair. The framework assumes that there is

some initial weight function over the ABox assertions, called credibility func-

tion, which models the opinion of domain experts concerning the truthfulness

of assertions. In their assessments, however, experts may have difficulties to

fully understand and take into account the logic that is expressed by, possi-

bly extensive, TBoxes. To overcome this difficulty, we propose an automated

mathematical method for adjusting the experts’ initial credibility function by

taking into account the ontological logic of the TBox: strong logical support

for an assertion α should increase its credibility, while strong logical support

for ¬α should decrease α’s credibility. Eventually, our method results in a

ranking of ABox assertions in terms of truthfulness, taking into account both

the experts’ credibility function and the TBox logic. In our framework, we

assume that the TBox has been validated by a multitude of experts and is

therefore error-free.

This chapter is organized as follows. Section 3.2 presents a guiding ex-

ample. Section 3.3 discusses related work. Section 3.4 introduces our general

theoretical framework, and Section 3.5 presents a particular instantiation of

this framework. Section 3.6 shows that our method guarantees some desirable

properties. Section 3.7 studies in more detail some theoretical questions and

computational tasks raised by this instantiation. Section 3.8 discuses about

the user credibility function and aggregate operators. Finally, Section 3.9

concludes the chapter.

35

3.2. Motivating Example

Consider the following knowledge base K0 = ⟨T0,A0⟩.

T0 =



Professor ⊑ Person,

Student ⊑ Person,

Person ⊑ ¬Course,
Student ⊑ ¬Professor,
∃teaches ⊑ Professor,

∃attends ⊑ Student,

∃teaches− ⊑ Course,

∃attends− ⊑ Course


A0 =



John : Professor

Ava : Student

DB2 : Course

KR : Course

(John,DB2) : teaches

(John,KR) : attends

(Ava, IA) : attends

(Bob,KR) : attends


This knowledge base is inconsistent, because from (John,KR) : attends, we

can infer John : Student by means of the axiom ∃attends ⊑ Student. Then, by

means of the axiom Student ⊑ ¬Professor, we can infer John : ¬Professor, which

obviously contradicts the first assertion in A0. In conclusion, (John,KR) :

attends and John : Professor contradict one another. The vertices in the di-

rected graph of Fig. 3.1 are the assertions of A0. A red-colored edge from α

to β means that α refutes β. On the other hand, a green-colored edge from

α to β means that α supports β. For example, from (John,DB2) : teaches

we can infer John : Professor by means of the axiom ∃teaches ⊑ Professor.

Therefore, (John,DB2) : teaches supports John : Professor. In this example,

we assumed that domain experts esteemed that assertions in the ABox were

equally credible, represented by a value of 1. Then, our proposed method

updates values by balancing the value of each assertion α with respect to the

values of α’s refuters and supporters. Refuters and supporters of α, respec-

tively, lower and increase α’s value by an amount that is proportional to their

own value. In Fig. 3.1, we see that John : Professor is attributed a higher value

than (John,KR) : attends because it has more supporters and less refuters.

Figure 3.2 shows the effect of adding Ava : Professor to A0. One can

observe that the values of the assertions (Ava, IA) : attends and Ava : Student

have gone down because of conflicts with the new assertion.

Since supporters and refuters are single assertions in this simple exam-

36 Assertion Ranking in Ontologies

++

Figure 3.1: ABox assessment obtained by a practical application of our frame-

work.

Figure 3.2: New ABox assessment after adding Ava : Professor.

37

ple, they can be represented in a directed graph. In our general framework,

however, supporters and refuters will be sets of assertions. For example, if

A ⊓ B ⊑ ¬C is a TBox assertion, then the set {(i,A), (i,B)} is a refuter of

(i,C), but neither (i,A) nor (i,B) is a refuter on its own.

3.3. Related Work

In Description Logics, different repairs correspond to different ABoxes, each

one consistent with respect to a given fixed TBox. When we move from a

single ABox to a set of possible ABoxes, different semantics for logical rea-

soning become possible, including brave semantics [25], ABox Repair (AR)

and Intersection ABox Repair (IAR) semantics [74]. These semantics can be

enriched by taking into account notions of cardinality [79], preference [22], or

probability [30,54]. Some works [45,110] in the Description Logics community

have already investigated the problems of finding the best repairs according

to some criteria, and of extracting consistent information that best complies

with specific needs. Sik Chun Lam et al. have proposed logic-based methods

for repairing TBox axioms of unsatisfiable ontologies [70], as well as numerical

methods for rewriting and ranking problematic axioms [39].

Ranking the nodes of some sort of knowledge graph in terms of interest,

quality, or preference is a recurrent problem in many disciplines. Solving these

problems requires to somehow quantify the nodes and their interactions. A

quantitative approach, rather than a qualitative one, has been used in argu-

mentation frameworks [9,27,28,62,96], belief revision [103], the Web [68,85],

and social networks [43,113].

3.4. Theoretical Framework

Throughout this chapter, we will assume that TBoxes are satisfiable. That is,

for every TBox T , the knowledge base ⟨T , ∅⟩ is consistent. If a knowledge base

⟨T ,A⟩ is inconsistent, we will assume that the inconsistency is caused by one

or more assertions in A. When humans are faced with such an inconsistent

knowledge base ⟨T ,A⟩, they may not be able to quickly pinpoint the “wrong”

assertion(s) in A, because the inconsistency may only become apparent after

38 Assertion Ranking in Ontologies

an involved reasoning process that uses many axioms and assertions. We

present a method for ranking assertions such that higher-ranked assertions are

more “truthful” than lower-ranked assertions. Significantly, the ranking only

requires some superficial input from the user, which is modeled by the notion

of a credibility function, a mapping from A to R. Such a credibility function

will be combined with TBox assertions to result in the desired ranking. All

definitions that follow are relative to a fixed knowledge base ⟨T ,A⟩ in some

fixed Description Logic.

3.4.1 Refuters and Supporters

We define what it means for a set B of assertions to support or refute an

assertion α not in B. In our framework, assertions will be higher ranked if

they have strong supporters and no strong refuters.

Definition 3.1 (Refuters and Supporters).

The following definitions are relative to a knowledge base ⟨T ,A⟩, and an

assertion α ∈ A.

A refuter of α is an inclusion-minimal subset B of A with the property

that ⟨T , B⟩ is consistent and ⟨T , B ∪ {α}⟩ is inconsistent.

A supporter of α is an inclusion-minimal subset B of A with the property

that ⟨T , B⟩ is consistent, α ̸∈ B, and ⟨T , B⟩ |= α.

◁

We recall that a logic is monotonic if whenever Σ1 and Σ2 are two sets of

expressions and Σ1 entails φ, then Σ1∪Σ2 also entails φ. We can also express

the monotonicity of a logic by saying that if φ is an inconsistent expression,

then φ ∧ ϕ is also inconsistent for every ϕ.

Proposition 3.1. Let ⟨T ,A⟩ be a knowledge base in a monotonic Description

Logic, and let α ∈ A. Then,

1. distinct refuters of α are not comparable by set inclusion;

2. distinct supporters of α are not comparable by set inclusion; and

3. if B is a refuter of α and B′ is a supporter of α, then B and B′ are not

comparable by set inclusion.

39

From here on in this chapter, we will assume that all Description Logics

considered are monotonic. This is not a big restriction for our framework, since

most Description Logics can be defined in terms of first-order logic, which is

a monotonic logic.

3.4.2 Aggregated Credibility

As explained in the beginning of Section 3.4, we assume a credibility function

mapping every assertion α in A to a real number that can be thought of as

the truthfulness associated by an expert to the assertion α. In our setting

we assume that higher numeric values are synonym of more quality or more

trustworthiness.

We will assume that the credibility function induces a function f from

2A to R by means of some aggregation operator ⊕. Examples of ⊕ are MIN,

MAX, AVG, SUM. In the theoretical development, we will abstract away from

the aggregation operator ⊕ and treat f as a basic construct. To keep our

framework flexible and general, we do not impose any restrictions on the choice

of the credibility function, which can be instantiated and adapted later on to fit

a particular setting, for example, as a probability distribution. Nevertheless, in

Section 3.8, we propose some concrete realization of the notion of aggregation.

3.4.3 ABox Assessment

An ABox assessment for an ABox A is a total function ν : A → R. Informally,

our goal is to define ν such that if two ABox assertions are logically conflicting,

then the assertion with the higher ν-value is preferred.

Although credibility functions and ABox assessments are both mappings

from A to R, it is important to understand that they are conceptually distinct.

In particular, ABox assessments improve credibility functions by taking into

account the axioms of the TBox, via the notions of refuter and supporter

defined previously.

Informally, we want that for every α ∈ A, its value under ν is greater

if α has strong supporters, and smaller if α has strong refuters. Here, the

strength of a supporter or refuter is recursively determined by the aggregated

40 Assertion Ranking in Ontologies

ν-values of its elements. This can be expressed as follows, where ∼ denotes

some proportionality that will be made explicit later on:

ν(α) ∼
∑
B is a

supporter

of α

f(B) ∗
∑
β∈B

ν(β)

−
∑
B is a

refuter

of α

f(B) ∗
∑
β∈B

ν(β)

 . (3.1)

The expression at the righthand of ∼ will be abbreviated Σ±(α). Informally,

Σ±(α) sums over all supporters and refuters of α. The formulas for supporters

and refuters are signed positively and negatively respectively. The magnitude

of each supporter’s or refuter’s contribution is proportional to its aggregated

credibility and ABox assessment values. It is significant that (3.1) is recursive,

in the sense that ν appears at both the lefthand and righthand of ∼.

To shorten notations, we define mappings T : A → 2A and F : A → 2A,

as follows:

T (α) := {B ⊆ A | B is a supporter of α};

F (α) := {B ⊆ A | B is a refuter of α}.

Informally, one can think of T and F as True and False respectively. B ∈ T (α)

is shorthand for “B is a supporter of α,” and B ∈ F (α) is shorthand for “B is

a refuter of α”. Obviously, the complexity of computing T and F will depend

on the underlying Description Logic.

To have a more compact form for Σ±(α), we define an indicator function

I from {T, F} × 2A ×A×A to {0, 1}:

I(L,B, α, β) =

{
1 if β ∈ B and B ∈ L(α)

0 otherwise
(3.2)

Thus, I(T,B, α, β) is one if B is a supporter of α that contains β, and is zero

otherwise. Likewise, I(F,B, α, β) is one if B is a refuter of α that contains β,

and is zero otherwise. Note incidentally that α = β implies I(L,B, α, β) = 0,

because α does not belong to a supporter or a refuter of itself. Then, for

α ∈ A,

Σ±(α) =
∑
β∈A

ν(β) ∗

∑
B⊆A

f(B) ∗ (I(T,B, α, β) − I(F,B, α, β))

 . (3.3)

41

3.4.4 Ranking of ABox Assertions

An ABox assessment ν induces a ranking of an ABox, as follows: α is ranked

higher than β if ν(α) > ν(β); and α is ranked equal to β if ν(α) = ν(β).

We define what it is for two assessments to be rank equivalent

Definition 3.2 (Rank-equivalent assessments).

Let A be an ABox and ν1, ν2 : A → R two assessments over A. We say that

ν1 and ν2 are rank-equivalent and write ν1
•∼ ν2 if for every pair of assertions

α, β ∈ A we have that

ν1(α) < ν1(β) ⇔ ν2(α) < ν2(β).

◁

It is easily verified that if ν1
•∼ ν2, then ν1(α) = ν1(β) implies ν2(α) =

ν2(β). Obviously,
•∼ is an equivalence relation on the set of all ABox as-

sessments. In our study, we will be primarily interested in the set of ABox

assessments modulo
•∼. That is, we are not so much interested in the real

numbers in the range of two different ABox assessments, but rather in their

induced rankings.

Example 3.1

Let A = {α1, α2, α3}. Let ν1 and ν2 be two assessments, as follows:

� ν1(α1) = 1, ν1(α2) = 2, ν1(α3) = 3; and

� ν2(α1) = 2, ν2(α2) = 4, ν2(α3) = 8.

Then, ν1 and ν2 are rank-equivalent. If we rank the assertions of A in ascending

order, then both assessments agree that α1 precedes α2, and that α2 precedes

α3.

◁

3.5. Framework Instantiation

We will assume A = {α1, . . . , αn}. In this section, we elaborate an instan-

tiation of the framework in Section 3.4. With the previous abbreviations,

42 Assertion Ranking in Ontologies

Eq. (3.1) reads as ν(αi) ∼ Σ±(αi). We will instantiate ∼ as a linear propor-

tionality, i.e., for some numbers a, b, c with a ̸= 0:
a ∗ ν(α1) = b ∗ Σ±(α1) + c

a ∗ ν(α2) = b ∗ Σ±(α2) + c
...

a ∗ ν(αn) = b ∗ Σ±(αn) + c

(3.4)

A more natural formulation may introduce only two numbers d, e and impose

ν(αi) = d ∗Σ±(αi) + e for 1 ≤ i ≤ n. This is tantamount to fixing a = 1. The

choice for using three numbers was made for reasons of flexibility, but is not

fundamental.

Since we think of (3.1) as a positive proportionality, we require that a and

b have the same sign, say both positive. Let Af be the square n × n matrix

such that for 1 ≤ i, j ≤ n,

A
f
i,j :=

∑
B⊆A

f(B) ∗ (I(T,B, αi, αj) − I(F,B, αi, αj)) . (3.5)

It is easily verified that for every i ∈ {1, . . . , n}, Afi,i = 0.

For i ∈ {1, . . . , n}, we introduce a variable xi for the unknown ν(αi). We

define X =
[
x1 x2 · · · xn

]⊺
. Then, using (3.3), the system of equations

(3.4) can be equivalently written as follows:(
a · 1− b · Af

)
X =

[
c · · · c

]⊺
, (3.6)

where 1 is the square identity matrix. Equation (3.6) has a unique solution

if and only if the matrix
(
a · 1− b · Af

)
(which does not depend on c) is non-

singular (i.e., is invertible). In that case, the solution ABox assessment is

given by:

X =
(
a · 1− b · Af

)−1 [
c c · · · c

]⊺
(3.7)

We should pick c ̸= 0 to avoid the all-zero solution. Indeed, if
(
a · 1− b · Af

)
is non-singular and c = 0, then the solution to (3.7) yields the ABox assess-

ment ν such that ν(α1) = ν(α2) = · · · = ν(αn) = 0, which obviously is of no

interest for ranking ABox assertions.

Then, it is easily verified that for fixed values of a and b, different choices

for c lead to rank-equivalent solutions. Therefore, we can choose c = 1 without

43

loss of generality, in which case in the solution, xi is the sum of all elements

in the ith row of
(
a · 1− b · Af

)−1
. Two significant questions remain:

1. For which values of a and b is the square matrix
(
a · 1− b · Af

)
non-

singular, such that (3.7) gives us a unique ABox assessment? Obviously,(
a · 1− b · Af

)
is invertible if and only if

(
1− b

a · Af
)

is invertible. There-

fore, only the ratio between a and b matters in our subsequent analysis.

2. Are ABox assessments obtained for different values of a, b rank-equivalent?

We conclude this section by providing a graph-theoretical view on the above

questions.

Graph-theoretical view From a graph-theoretical viewpoint, Af can be

interpreted as an edge-weighted directed graph whose vertices are the asser-

tions of the ABox. This view is used in Figures 3.1 and 3.2. An edge from

αj to αi (i ̸= j) has weight Afi,j . The task is then to assign a real number

to each vertex such that the resulting graph satisfies the sort of equilibrium

expressed by (3.4). The ratio between a and b determines how strongly a ver-

tex is impacted (supported or refuted) by its incoming edges. The question

arising is whether an equilibrium (3.4) can be attained for some values of a, b.

It is equally important to examine the robustness of such an equilibrium (if it

exists) with respect to rank-equivalence. Ideally, different ABox assessments

obtained by small parameter changes should be close modulo rank-equivalence.

3.6. Properties of the Assessment

Intuitively, one expects that assessments be invariant under a reordering of

the input assertions in the ABox. Also, assessments should not change if we

add a new assertion that does not interact with any existing assertion. In

this section, we show that our computation indeed satisfies these expected

properties.

We first show that the the assessment resulting from our framework is

independent of the order supposed on assertions present in the ABox. At some

point in the theoretical development, we suppose A equal to {α1, . . . , αn} and

44 Assertion Ranking in Ontologies

base the matrix coordinates on this order. We now show that the computed

assessments are independent of such order.

Proposition 3.2. Let T be a TBox in some DL. Let A = {α1, . . . , αn} be an

ABox in the same vocabulary as T . Let f be a credibility function for A. Let

Af be the conflict matrix relative to ⟨T ,A⟩ and f .
Let ρ : {1, . . . , n} → {1, . . . , n} be a permutation and let A′ = {β1, . . . βn} with

βi = αρ(i) for all i, that is, A′ is the be ABox obtained by changing the order

of elements in A following ρ.

If A′f denotes the conflict matrix relative to ⟨T ,A′⟩ and f , then:

∀1 ≤ i, j ≤ n, A′
f
i,j = A

f
ρ(i),ρ(j).

In particular, for every triple (a, b, c) of real numbers, ⟨T ,A⟩ has a unique

assessment ν with respect to (a, b, c) if and only if ⟨T ,A′⟩ has a unique assess-

ment ν ′ with respect to (a, b, c). Moreover, for such unique assessments ν and

ν ′, it holds that for all i, we have that ν ′(αi) = ν(αρ(i)).

As we have seen, assertions can have both refuters and supporters. Intu-

itively, we expect that assertions without refuters tend to be more credible,

while assertions without supporters may be less credible. In the same way,

assertions that do not take part in any interaction should not influence the

assessment and should not be influenced by the assessment. All these ex-

pected properties turn out to be correct. We first define what it means for an

assertion to be unsupported, unrefuted, or independent.

Definition 3.3 (Unsupported, Unrefuted, Independent).

Let T be a TBox in some DL and let A be an ABox in the same vocabulary

that T . Let I be the indicator function defined in Eq. (3.2). Let α be an

assertion in A, we say that α is:

� unsupported if for all B ⊆ A and for all β ∈ A, I(T,B, α, β) = 0;

� unrefuted if for all B ⊆ A and for all β ∈ A, I(F,B, α, β) = 0; and

� independent if for allB ⊆ A and for all β ∈ A, we have that I(T,B, α, β) =

I(F,B, α, β) = 0 and that I(T,B, β, α) = I(F,B, β, α) = 0.

◁

45

Proposition 3.3. Let T be a TBox in some DL. Let A = {α1, . . . , αn} be an

ABox relative to T , and f a credibility function for A.

Let α ∈ A be such that α is independent. Then, the system defined by a triple

(a, b, c) of reals induces a unique assessment ν for ⟨T ,A⟩ if and only if the

system defined by (a, b, c) induces a unique assessment ν ′ for ⟨T ,A\{α}⟩.
In the case that such unique assessment exists, it holds that ν(α) = c

a and that

for every β ∈ A\{α}, we have that ν(β) = ν ′(β);

Proposition 3.3 tells us that independent assertions can be omitted in the

computations, which may be a significant optimization.

Proposition 3.4. Let T be a TBox in some DL. Let A = {α1, . . . , αn} be an

ABox relative to T . Let f be a credibility function such that for all B ⊆ A
we have that f(B) ≥ 0. Let (a, b, c) be a triple of real numbers that induces a

unique assessment ν for ⟨T ,A⟩ such that ν(α) ≥ 0 for all α ∈ A. Then the

following statements hold true:

� if α ∈ A is unrefuted, then ν(α) ≥ c
a ;

� if α ∈ A is unsupported, then ν(α) ≤ c
a .

The hypotheses in Proposition 3.4 may be easily met in practice. Indeed,

the common aggregation functions SUM,MIN,MAX,AVG will output positive

aggregated numbers if applied on sets of positive numbers. The second hy-

pothesis that ν(α) ≥ 0 for all α ∈ A is also mild. Indeed, this property will

be automatically satisfied by our method (Theorem 3.7) whenever c ≥ 0.

3.7. Solving the Instantiated Framework

In Section 3.5, we presented the matrix equation (3.6) whose unique solution, if

it exists, yields an ABox assessment. This matrix equation has parameters a, b.

A remaining problem is how to pick appropriate values for these parameters.

One solution could be to choose values for a, b in an empirical fashion, relying,

for instance, on information obtained from some learning experience. However,

we will only focus on theoretical aspects in the current chapter. Later, in

Chapter 5, we will discuss an implementation of this theory in the rustoner

software program; Figures 3.1 and 3.2 were generated using this program. In

46 Assertion Ranking in Ontologies

Section 3.7.1, we will show a parameterization scheme for a, b that guarantees

the existence of a solution for (3.6): pick a ≫ b > 0. What is probably more

important is that when the ratio a/b grows, the ABox assessments obtained

for different a, b become all rank-equivalent. Informally, the parameterization

scheme converges to a unique ABox assessment modulo rank-equivalence.

3.7.1 Solution Existence

Note that all diagonal elements in
(
a · 1− b · Af

)
are equal to a. The in-

vertibility of
(
a · 1− b · Af

)
can be guaranteed by (some form of) diagonal

dominance, a concept that is easily grasped and has turned out to be useful

in applications [115]. An example is the Levy-Desplanques theorem recalled

next.

Theorem 3.5 (Levy-Desplanques). A square n × n matrix A is invertible if

for every i ∈ {1, . . . , n}, |aii| >
∑n

j=1
j ̸=i

|aij |.

From Theorem 3.5, it immediately follows that (3.7) has a unique solution

if for all i ∈ {1, . . . , n}, we have |a| > |b| ∗
∑n

j=1

∣∣∣Afi,j∣∣∣. This is illustrated by

Example 3.2.

Example 3.2

Assume four assertions α1, α2, α3, α4 such that α1 and α2 support one another,

while α3 and α4 refute one another. Take b = 1. If we assume f({αi}) = 1 for

1 ≤ i ≤ 4, we obtain:

Af =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 .
Then,

a · 1− b · Af =


a −1 0 0

−1 a 0 0

0 0 a 1

0 0 1 a

 .
It follows from Theorem 3.5 that this matrix is invertible for a > 1, giving the

47

following solution:

X =


1

a−1
1

a−1
1

a+1
1

a+1

 .
Although distinct values for a lead to different ABox assessments, it is sig-

nificant to observe that 1
a−1 > 1

a+1 (a > 1), and therefore all these ABox

assessments ν are rank-equivalent: ν(α1) = ν(α2) > ν(α3) = ν(α4). It is

intuitively correct that the two assertions that mutually attack one another

lose credibility.

◁

The invertibility of
(
a · 1− b · Af

)
may also follow from Banach’s Lemma,

which is recalled next.

Theorem 3.6 (Banach’s Lemma). LetM be a square matrix with the property

that ∥M∥ < 1 for some operator norm ∥·∥. Then the matrix 1−M is invertible

and (1−M)−1 = 1+M +M2 +M3 + · · · .

Therefore, if we fix a = 1 and pick b sufficiently small (which is analogous

to fixing b = 1 and picking a sufficiently large), then the matrix 1 − b · Af is

invertible, and
(
1− b · Af

)−1
= 1+b ·Af + · · · . If we limit ourselves to the two

most significant terms in this expansion, we get X =
(
1+ Af

) [
1 1 · · · 1

]⊺
as an approximate solution for (3.7). The ranking obtained by this solution is

intuitively meaningful, because it ranks αi based on the sum of the elements

in the ith row of Af ; in this row, supporters have a positive sign, and refuters

a negative sign.

3.7.2 Convergence Towards a Fixed Ranking

So it turns out that (3.6) has a unique solution with a, b ≥ 0 whenever the

ratio a/b is sufficiently large. It is desirable that different solutions are rank-

equivalent, as was the case in Example 3.2. We now show that this desirable

property indeed holds true beyond some threshold value for a/b.

The notion of rank-equivalence obviously extends to any two vectors of

real numbers: two such vectors u, v of the same length n are rank-equivalent

48 Assertion Ranking in Ontologies

if for all 1 ≤ i, j ≤ n, ui < uj if and only if vi < vj . The proof of the following

theorem is in Appendix D. Since, as argued before, only the ratio between a

and b matters in our analysis, we can fix b and let a increase in the following

theorem.

Theorem 3.7 (Convergence). Let M be an n × n matrix whose diagonal

elements are zero. Let b, c ∈ R. Consider the following equation with real-

number parameter a:

(a · 1− b ·M)X =
[
c · · · c

]⊺
. (3.8)

Then there exists a∗ ∈ R such that

� for every a ≥ a∗, the equation (3.8) has a unique solution; and

� for all a1, a2 ≥ a∗, if X1 and X2 are solutions to (3.8) for parameters

a1 and a2 respectively, then X1 and X2 are rank-equivalent.

Moreover, such a bound a∗ can be computed in polynomial time in the size

of n.

Informally, Theorem 3.7 tells us that for all choices of b and c, there is a

threshold value a∗ such that all choices of a satisfying a ≥ a∗ lead to the same

ABox assessment modulo rank-equivalence.

3.7.3 Computational Complexity

We discuss the computational complexity of solving (3.6). The main difficulty

is the computation of the non-diagonal elements in Af , which are defined

by (3.5). Given αi and βj , this requires finding every B ⊆ A such that βj ∈ B

and B is a supporter or refuter of αi. In general, the number of supporters or

refuters can be exponential in the size of A, because an ABox of size 2n can

have
(
2n
n

)
supporters or refuters not comparable by set inclusion. However,

in practice, a fixed upper bound on the size of supporters or refuters may be

implied by the TBox, in a way captured by the following definition.

Definition 3.4 (Conflict-bounded TBox).

We say that a TBox T is conflict-bounded if there exists a polynomial-time

computable positive integer m such that for every knowledge base ⟨T ,A⟩, if

49

⟨T ,A⟩ is inconsistent, then there exists B ⊆ A with |B| ≤ m such that ⟨T , B⟩
is already inconsistent.

◁

Conflict-boundedness arises in practice. For example, for every DL-Lite

TBox, every supporter or refuter has cardinality ≤ 1 because each conflict in

DL-Lite involves at most two assertions. Conflict-boundedness is also guaran-

teed in EL⊥nr (EL⊥ with non-recursive empty concepts) defined in [99].

Theorem 3.8. Let T be a conflict-bounded TBox such that ABox consistency

with respect to T can be checked in polynomial time. Then, for every ABox

A, the matrix Af can be computed in polynomial time (in the size of A) if f

is polynomial-time computable.

Proof. Let n := |A|. Recall that Af is an n × n matrix given by (3.5). Since

T is conflict-bounded, say with bound m, for every B ⊆ A, if |B| > m, then

I(T,B, αi, αj) = I(F,B, αi, αj) = 0. Therefore, the sum in (3.5) must only

consider subsets B ⊆ A with |B| ≤ m, which are polynomially many and

polynomial-time computable. Furthermore, since ABox consistency checking

is in polynomial time by the hypothesis of the theorem, it can be tested in

polynomial time whether any such B containing αj is a supporter or a refuter

of αi (or neither of both). The computation of f(B) is also in polynomial time

by the hypothesis of the theorem. It is now obvious that any entry of Af can

be computed in polynomial time.

Once the conflict matrix Af has been created, finding an assessment rel-

ative to a triple (a, b, c) boils down to solving a linear system, which can be

done in time O(n3) where n is the dimension of the ABox. Finding a sta-

bilized assessment is more time consuming, but still in polynomial time by

Theorem 3.7.

An inspection of the preceding proof reveals that Theorem 3.8 remains

valid if, throughout its statement, we replace polynomial time by some higher

complexity upper bound (e.g., polynomial space or exponential time).

50 Assertion Ranking in Ontologies

3.8. Credibility and Aggregated Credibility

So far, throughout this chapter, we have assumed an aggregate credibilty

function f : 2A → R. In the theoretical development, we treated f as a basic

construct, and deliberately abstracted away from aggregate operators. In this

section, we will explain how f can be defined in terms of aggregation. We first

define the notion of aggregate operator.

Definition 3.5 (Aggregate Operator).

An aggregate operator is a collection G = {g0, g1, g2, . . . } of functions, where

each gn, 0 < n, takes an n-element multiset (bag) of real numbers, and returns

a number in R. Furthermore, g0 is constant.

◁

For example, the aggregate operator SUM will be represented as GSUM =

{g0, g1, g2, . . . }, where g0 = 0, and

gn ({{r1, . . . , rn}}) = r1 + · · · + rn.

Note incidentally that aggregate operators in Definition 3.5 are only defined

on finite multisets, which is sufficient for our framework.

Starting from a user-defined credibility function w : A → R, such an

aggregate operator naturally defines an aggregate credibility function f : 2A →
R, as follows:

for every finite set S = {α1, α2, . . . , αn}, S ⊆ A, with n ≥ 0, we

define

f(S) := gn({{w(α1), w(α2), . . . , w(αn)}}).

In particular, f(∅) := g0(∅).

The function f defined in this way will be denoted by G▷w.

Example 3.3

Let A = {α1, α2, α3, . . . }. Let w(α1) = 4 and w(α2) = w(α3) = 5. For the

aggregate operator SUM, we obtain f({α1, α2, α3}) = 4 + 5 + 5 = 14.

◁

Obviously, different aggregate operators will lead to different credibility

values for supporters and refuters, as illustrated next.

51

Example 3.4

Let T = {A ⊓ B ⊑ ¬C,D ⊓ E ⊓ F ⊑ C, } and let A = {a : A, a : B, a : C,

a : D, a : E, a : F}. Assume that an expert’s credibility function w is as

follows:

� w(a : A) = w(a : B) = 2; and

� w(a : C) = w(a : D) = w(a : E) = w(a : F) = 1.

Then, S = {a : D, a : E, a : F} is the only supporter of a : C, and R =

{a : A, a : B} is the only refuter of a : C. If the aggregate operator SUM is

used, then the aggregated credibilities of R and S are, respectively, 4 and 3.

If the aggregate operator COUNT is used, then the aggregated credibilities of

R and S are, respectively, 2 and 3.

◁

In the next chapter, we will study another aspect of aggregate operators

in the context of knowledge base repairing. It will then become more clear

that there is no single “best” aggregation function. Different users may prefer

different aggregation functions: MIN guarantees a minimal quality for each

assertion in the knowledge base, SUM is an indicator of the cumulative quality,

while AVG can give the user an idea of the quality of each assertion on average.

3.9. Conclusion

In this work, we have proposed a novel framework to rank the assertions of an

inconsistent ABox in terms of their degree of truthfulness. This ranking takes

into account an expert’s credibility function as well as the logical axioms of

the TBox. The theoretical framework can work with any Description Logic,

but to gain computational tractability, restrictions have to be imposed.

The framework is implementable using existing libraries for matrix opera-

tions and description logics. A prototype of the ranking has been implemented

in the rustoner program [88].

A next step is to use our framework for repairing database and knowledge

base systems. Our ranking of ABox assertions can be extended in several ways

52 Assertion Ranking in Ontologies

to a ranking of repairs, using some notion of Pareto optimality. For example, if

two facts α and β contradict one another and α is ranked higher than β, then a

repair containing α is preferred over a repair containing β (all other facts being

equal). This brings us in the realm of prioritized database repairing [118],

which we see as a promising way to enrich existing DL repair semantics (like

IAR and AR). By narrowing the search space of possible repairs, we may also

hope to gain efficiency compared to existing repair semantics.

Theorem 3.7 states that in the proposed framework, we can single out a

unique ranking of ABox assertions, which is obtained by choosing a sufficiently

large value for the parameter a. However, smaller values for a may yield other

assessments that need not to be rank-equivalent to the assessments found

in Theorem 3.7. This raises some questions that merit to be studied in both

theory and practice: Can the rankings obtained for two different values of a be

highly uncorrelated (relative to some rank correlation coefficient)? If so, can it

be argued that the “asymptotic” ranking found in Theorem 3.7 is intrinsically

more desirable than rankings obtained for smaller values of a? Is there an

informal reason to believe that rankings obtained with higher values for a will

be more useful in practice?

In the next chapter, we will develop a quantified approach to database

repairing. Nevertheless, the ABox ranking developed in the current chapter

allows for an alternative approach along the lines of the framework introduced

in [105] and further investigated in [47, 66, 77]. In this framework, a prefer-

ence relation on database repairs is deduced from a preference relation on the

set of database facts. Along the same lines, our ranking of ABox assertions

establishes a preference relation which can be lifted to repairs.

For example, assume that starting from an inconsistent knowledge base

⟨T ,A⟩, we find two subsets A1,A2 ⊆ A such that both ⟨T ,A1⟩ and ⟨T ,A2⟩
are consistent. Under the following condition, we can say that A1 is preferred

over A2: for every B2 ∈ A2 \ A1, there exists B1 ∈ A1 \ A2 such that B1 is

ranked before B2. Informally, A1 is preferred over A2 if A1 can be obtained

from A2 by exchanging assertions with assertions of higher quality. A globally

optimal repair can then be defined as a consistent ABox that is maximal with

respect to the above preference relation.

CHAPTER 4

Weighted Repairs

Remark 4.0

The content of this chapter will be presented at FQAS 2021 [91].

◁

4.1. Motivation

In today’s era of “big data,” database management systems have to cope more

and more with dirty information that is inconsistent with respect to some in-

tegrity constraints. Such integrity constraints are commonly expressed in de-

cidable fragments of some logic, for example, as dependencies [6] or ontologies

in some Description Logic [16]. The term repair is commonly used to refer to

a consistent database that is obtained from the inconsistent database by some

minimal modifications. This notion was introduced twenty years ago in a sem-

inal paper by Arenas et al. [12], and has been an active area of research ever

since. In particular, the field of Consistent Query Answering (CQA) studies

the question of how to answer database queries if multiple repairs are possible.

Two surveys of this research are [18,118].

This chapter’s aim is to contribute to the research in preferred repair se-

mantics, whose goal is to capture more of the meaning of the data into the

repairing process. To this end, we introduce and study weighted repairs. We

53

54 Weighted Repairs

will assume that database tuples are associated with numerical weights such

that tuples with higher weights are preferred over tuples with lower weights.

Then, among all possible repairs, weighted repairs are those with a maximum

aggregated value, according to some aggregation function. We will study the

relationship between the complexity of computing weighted repairs and certain

properties of the aggregation function used.

The remainder of this section is an informal guided tour that introduces

and motivates our research questions by means of a simple example. We start

with a graph-theoretical view on database repairing.

A Graph-Theoretical Perspective on Database Repairing

Consider the following table TEACHES , in which a fact TEACHES (p, c, s)

means that professor p teaches the course c during semester s.

TEACHES Prof C# Sem

Jeff A fall (f1)

Jeff B fall (f2)

Ed C spring (s1)

Rob C spring (s2)

Rob D spring (s3)

The integrity constraints are as follows:

Σ = {{Prof ,Sem} → {C#}, {C#} → {Prof }},

The first functional dependency expresses that no professor teaches more than

one course in a given semester. The second functional dependency expresses

that no course is taught by more than one professor. The relation TEACHES

violates these integrity constraints; its conflict graph is shown in Fig. 4.1. The

vertices of the conflict graph are the facts in the relation TEACHES ; two

vertices are adjacent if together they violate some functional dependency.

Given a database instance, it is common to define a subset repair as an

inclusion-maximal subinstance that satisfies all integrity constraints. In terms

of the conflict graph, every subset repair is an inclusion-maximal independent

set (IMIS), and vice versa. Recall that in graph theory, a set of vertices

is independent if no two vertices of it are adjacent. It can be verified that

55

f1 = TEACHES (Jeff,A, fall)

f2 = TEACHES (Jeff,B, fall)

s1 = TEACHES (Ed,C, spring)

s2 = TEACHES (Rob,C, spring)

s3 = TEACHES (Rob,D, spring)

Figure 4.1: Conflict graph for the running example.

the graph of Fig. 4.1 has four IMISs: every IMIS includes either {f1} or

{f2}, and includes either {s1, s3} or {s2}. The term cardinality-repair refers

to independent sets of maximum cardinality. In our running example, the

cardinality-repairs are {f1, s1, s3} and {f2, s1, s3}.

Maximum-Weight Independent Set (MWIS)

As in [81], we will assume from here on that every fact is associated with a

nonnegative weight, where larger weights are better. In practice, such weights

may occur in data integration, where facts coming from more authoritative

data sources are tagged with higher weights. For example, in the next rela-

tional table, among the first two facts—which are conflicting—the second fact

has a higher weight and is therefore considered better.

TEACHES Prof C# Sem w

Jeff A fall 1

Jeff B fall 2

Ed C spring 1

Rob C spring 2

Rob D spring 1

It is now natural to take these weights into account, and define repairs as

maximum-weight independent sets (MWIS) of the conflict graph. In graph

theory, an MWIS is an independent set that maximizes the sum of the weights

of its vertices. In our example, there are two MWISs, both having a total

summed weight of 4:

56 Weighted Repairs

T1 Prof C# Sem w

Jeff B fall 2

Rob C spring 2

and

T2 Prof C# Sem w

Jeff B fall 2

Ed C spring 1

Rob D spring 1

.

Aggregation Functions Other than SUM

The aggregation function SUM is cooked into the definition of MWIS: among

all independent sets, an MWIS is one that maximizes the summed weight.

From a conceptual perspective, it may be natural to use aggregation functions

other than SUM. For example, among the two repairs T1 and T2 shown above,

we may prefer T1 because it maximizes the average weight. Indeed, the average

weights for T1 and T2 are, respectively, 2+2
2 and 2+1+1

3 . Alternatively, we may

prefer T1 because it maximizes the minimum weight. Therefore, to capture

these alternatives, we will allow other functions than SUM in this chapter,

including AVG and MIN.

Computing Repairs

In data cleaning and database repairing, we are often interested in finding one

or more repairs for a given database instance. Now that we have discussed

weights and different aggregation functions, this boils down to the follow-

ing task: given a database instance with weighted facts, return an inclusion-

maximal consistent subinstance that maximizes the aggregated weight accord-

ing to some fixed aggregation function. Alternatively, in graph-theoretical

terms: given a vertex-weighted graph, return an inclusion-maximal indepen-

dent set that maximizes the aggregated weight according to some fixed aggre-

gation function. Since for aggregation functions other than SUM, maximality

with respect to set inclusion and maximality with respect to aggregated weight

may not go hand in hand, it should be made precise which criterion prevails:

� among all inclusion-maximal independent sets, return one that maxi-

mizes the aggregated weight; or

� among all independent sets that maximize the aggregated weight, return

one that is inclusion-maximal.

57

To illustrate the difference, let G = (V,E) with V = {a, b} and E = ∅. Let

w(a) = 1 and w(b) = 2, and let MIN be the aggregation function. The first

task would return {a, b}, while the second task would return {b}. In this

chapter, we will study the latter task, because from a quality perspective, the

criterion of maximal aggregated weight seems more important than inclusion-

maximality.

It is known that under standard complexity assumptions (in particular,

P ̸= NP), there is no polynomial-time algorithm that returns an MWIS for a

given vertex-weighted graph [51]. Therefore, when the aggregation function

SUM is used, it is intractable to return a repair with a maximum summed

weight. In this chapter, we will ask whether this task can become tractable

for other aggregation functions of practical interest. Contributions of this

chapter can be summarized as follows.

� We introduce G-repairs, generalizing existing repair notions.

� By taking a conflict hypergraph perspective on database integrity, we

show that G-repairs are a generalization of maximum-weight independent

sets.

� We adapt classical decision problems to our setting, and study their com-

putational complexity. While these problems are intractable in general,

we identify classes of aggregation functions that allow for polynomial-

time algorithms.

The rest of this chapter is organized as follows. Section 4.2 discusses related

work. Section 4.3 introduces aggregation functions and defines the (conflict)

hypergraph perspective for studying inconsistent databases. Section 4.4 de-

fines the notion of G-repair and the computational problems we are interested

in. Section 4.5 shows computational complexity results for these problems,

culminating in our main tractability theorem, Theorem 4.6. Section 4.6 shows

that tractability is lost under a slight relaxation of the hypotheses of that

theorem. Finally, Section 4.7 concludes the chapter.

58 Weighted Repairs

4.2. Related Work

In their seminal paper [12], Arenas et al. define repairs of an inconsistent

database as those consistent databases that can be obtained by inserting and

deleting minimal (with respect to set inclusion) sets of tuples. Since then,

many variants of this earliest repair notion have been introduced, several of

which are discussed in [18,36,118]. For any fixed repair notion, repair checking

is the following problem: given an inconsistent database and a candidate re-

pair, is the candidate a true repair (i.e., does it satisfy all constraints imposed

by the repair notion under consideration)? Afrati and Kolaitis [7] made impor-

tant contributions to our understanding of the complexity of repair checking.

For databases containing numerical attributes, repairs have also been defined

as solutions to numerical constraint problems [19,26,48].

A notable work is [78], where the authors study also weigthed databases

and where the “Most Probable Database” [55] problem relative to database

cleaning and repairing is settled for functional dependencies.

The notion of conflict hypergraph was introduced in [37], and later extended

in [106]. The relationship between repairs and inclusion-maximal independent

sets was observed in [37, Proposition 3.1]. If database tuples are associated

with nonnegative weights, then it is natural to generalize this relationship by

viewing repairs as maximum-weight independent sets (MWIS).

As we will explain shortly, our setting can be naturally expressed in graph-

theoretical terms, using weighted variants of the maximal independent set

problem. Many works deal with finding, approximating, or counting maximum

weighted independent sets (e.g., [42, 65, 109, 122], in simple graphs as well as

hypergraphs [8, 57]. In our approach, however, we do not primarily focus on

the maximum summed weight, but also allow for aggregation functions other

than SUM. The problems we study are specifically motivated by database

applications in which several other aggregation functions are sensible.

We will show that some problems that are NP-hard in general, become

tractable for aggregation functions that have some desirable properties. In-

spired by database theory, weight-based approaches to inconsistency have also

been studied for knowledge bases in Description Logics [22,46].

59

4.3. Preliminaries

Aggregation Functions over Weighted Sets

Informally, aggregation functions take as input a set of elements, each as-

sociated with a weight, and return an aggregated weight for the entire set.

Examples are SUM and MIN. In this work, all weights will be nonnegative

rational numbers, which we interpret as quality scores where higher values are

better. These notions are formalized next.

Definition 4.1 (Weighted set).

A weighted set is a pair (I, w) where I is a finite set and w is a total mapping

from I to Q+ (i.e., the set of nonnegative rational numbers). We will often

assume that the weight function w is implicitly understood. That is, whenever

we say that I is a weighted set, we mean that (I, w) is a weighted set for a

mapping w that is implicitly understood.

Two weighted sets (I1, w1) and (I2, w2) are isomorphic if there is a bijection

π : I1 → I2 such that for every x ∈ I1, w1(x) = w2(π(x)). Informally, two

weighted sets are isomorphic if the attained numeric values as well as their

multiplicities coincide.

◁

A standard definition of aggregate operator is Definition 3.5 of Chapter 3.

We now define aggregation functions in a slightly different manner that better

suits the theoretical treatment in this chapter. Instead of aggregating over bags

of real numbers, we will aggregate over sets in which elements are associated

with (not necessarily distinct) weights.

Definition 4.2 (Aggregation function).

An aggregation function G is a function that maps every weighted set (I, w)

to a nonnegative rational number, denoted G▷w(I), such that:

� G is closed under isomorphism, meaning that any two weighted sets that

are isomorphic are mapped to the same value; and

� the empty weighted set is mapped to 0.

We write AGGpoly for the class of aggregation functions that are com-

putable in polynomial time in |I|. Some well-known members of this class are

60 Weighted Repairs

denoted COUNT, SUM, MAX, MIN, AVG and PRODUCT, with their expected,

natural semantics (not repeated here).

◁

By measuring the complexity of an aggregation function G in terms of

|I|, we do not take into account the size of the numeric values in the image

of the mapping w. This complexity is appropriate for the applications we

have in mind. The requirement that an aggregation function be closed under

isomorphism is tantamount to saying that for a weighted set I, the value

G▷w(I) depends on, and only on, the multiset {{w(x) | x ∈ I}}. While it may

be more common to define aggregation functions on multisets of numbers (see,

e.g., [76, p. 159]), our Definition 4.2 is appropriate for the purposes we have

in mind. Indeed, we will only apply aggregation on weighted sets formed by

vertices of a vertex-weighted graph.

Conflict Hypergraphs

Conflict hypergraphs [37, 38] generalize the conflict graphs introduced pre-

viously in Section 4.1. To detect violations of functional dependencies, it

suffices to regard two tuples at a time. However, more involved constraints

may consider three or more tuples at a time. For this reason, conflict graphs

are generalized to conflict hypergraphs. Informally, a conflict hypergraph is a

hypergraph whose vertices are the database facts; hyperedges are formed by

grouping facts that together violate some integrity constraint.

Formally, a fact is an expression R(c1, . . . , cn) where R is a relation name

of arity n, and each ci is a constant. A database is a finite set of facts. Let db

be a database instance, and C be a set of integrity constraints. The (conflict)

hypergraph is defined as an hypergraph H = (V,E) whose vertices are the

facts of db; there is an hyperedge e = {R1(c⃗1), . . . , Rk(c⃗k)} if (and only if)

the following properties hold:

1. the facts R1(c⃗1), . . . , Rk(c⃗k) taken together violate one or more integrity

constraints of C; and

2. every strict subset of e satisfies C.

In other words, the hyperedges of H are the inclusion-minimal inconsistent

61

subsets of db. Recall from graph theory that an independent set of a hyper-

graph H = (V,E) is a set I ⊆ V such that I includes no hyperedge of E.

Then, by construction, the following expressions are obviously equivalent for

every database instance db and set C of integrity constraints:

� I is an independent set of the (conflict) hypergraph; and

� I is consistent, i.e., I satisfies C.

It is this equivalence between independent sets and database consistency that

motivates the hypergraph perspective on database repairing. For most database

integrity constraints, minimal (w.r.t. ⊆) inconsistent sets are bounded in size.

For example, for functional dependencies or primary keys, this bound is 2.

This will be mimicked in the hypergraph perspective by assuming a bound b

(some positive integer) on the size of the hyperedges.

Finally, we will consider vertex-weighted hypergraphs, i.e., the vertex set

will be a weighted set, as defined by Definition 4.1.

Definition 4.3 (Weighted Hypergraph).

A hypergraph is called weighted if its vertex set is a weighted set. Technically,

such a hypergraph is a nested pair ((V,w), E) with (V,w) a weighted set of

vertices, and E a set of hyperedges. However, as announced in Definition 4.1,

we often omit the explicit mention of the weight function w. For simplicity,

we will assume that no hyperedge is a singleton. For every integer b ≥ 2, we

define WH[b] as the set of weighted hypergraphs containing no hyperedge of

cardinality strictly greater than b.

◁

To conclude this section, we argue that for most common database integrity

constraints, the hypergraph perspective is appropriate for our computational

complexity studies, even if constraints are given as expressions in relational

calculus. The reason is that P (i.e., polynomial time) is the smallest com-

plexity class considered in our complexity analysis, while for most database

constraints, conflict hypergraphs can be obtained by a query in relational

calculus, which is strictly contained in P. For example, for a functional depen-

dency R : X → Y , the edges of the conflict hypergraph are all pairs of tuples

in R that agree on all attributes of X but disagree on some attribute in Y .

62 Weighted Repairs

4.4. Repair Checking and Related Problems

A repair of an inconsistent databases db is often defined as a maximal consis-

tent subinstance of db, where maximality can be with respect to set inclusion

or cardinality, yielding subset- and cardinality-repairs, respectively. These no-

tions carry over to the hypergraph perspective defined in Section 4.3. For any

aggregation function G and weighted hypergraph, we now define G-repairs as

a natural generalization of existing repair notions. Significantly, from a graph-

theoretical viewpoint, G-repairs generalize maximum-weight independent sets,

which are independent sets of vertices whose weights sum to the maximum

possible value. In G-repairs, other functions than SUM can be used.

Definition 4.4 (G-repair).

Let G be an aggregation function, and H = ((V,w), E) a weighted hyper-

graph. A G-repair of H is a subset I ⊆ V with the following three properties:

Independence: I is an independent set of H;

Maximality: for every other independent set J ⊆ V , it holds that G▷w(I) ≥
G▷w(J); and

Saturation: for every other independent set J ⊆ V , if G▷w(I) = G▷w(J) and

I ⊆ J , then I = J .

◁

Informally, among all independent sets that maximize G▷w, a weighted

repair is one that is inclusion-maximal. Subset repairs and cardinality-repairs

are special cases of G-repairs. Indeed, if we let G = SUM and w(v) = 1

for every vertex v, then G-repairs coincide with cardinality-repairs. If we let

G = MIN and w(v) = 1 for every vertex v, then G-repairs coincide with subset

repairs.

We now relax G-repairs by replacing the Maximality requirement in Def-

inition 4.4 by a lower bound on the aggregated value. This corresponds to

real-life situations where we may already be happy with a guaranteed lower

bound.

Definition 4.5 (q-suitable vertex set).

This definition is relative to some fixed aggregation function G. Let H =

63

((V,w), E) be a weighted hypergraph, and q ∈ Q+. A set I ⊆ V is said to be

a q-suitable set of H if the following three properties hold true:

Independence: I is an independent set of H;

Suitability: G▷w(I) ≥ q; and

Saturation: for every other independent set J ⊆ V such that I ⊆ J , if

G▷w(I) ≤ G▷w(J), then I = J .

◁

Informally, an independent set I is q-suitable if its aggregated value is at

least q and every strict extension of I is either not independent or has a strictly

smaller aggregated value. The decision problems of our interest generalize

repair checking, which is central in consistent query answering [118].

Definition 4.6

The following problems are relative to an aggregation function G in AGGpoly

and a positive integer b.

PROBLEM REPAIR-CHECKING(G,b)

Input: A weighted hypergraph H in WH[b]; a set I of vertices.

Question: Is I a G-repair of H?

PROBLEM REPAIR-EXISTENCE(G,b)

Input: A weighted hypergraph H in WH[b]; a rational number q.

Question: Does H have a G-repair I such that G▷w(I) ≥ q?

PROBLEM SUITABILITY-CHECKING(G,b)

Input: A weighted hypergraph H in WH[b]; a set I of vertices; a

rational number q.

Question: Is I a q-suitable set of H (with respect to G)?

64 Weighted Repairs

◁

These problems obviously have relationships among them. For example,

if the answer to SUITABILITY-CHECKING(G,b) on input H, I, q is “yes,” then

the answer to REPAIR-EXISTENCE(G,b) on input H, q is also “yes.” Also, for a

weighted hypergraph H, if q := max{G▷w(J) | J is an independent set of H},

then every G-repair is a q-suitable set, and vice versa. We now give some com-

putational complexity results. The proof of the following result is straightfor-

ward.

Theorem 4.1 (Complexity upper bounds). For every G ∈ AGGpoly and b ≥
2, REPAIR-CHECKING(G,b), and SUITABILITY-CHECKING(G,b) are in coNP,

and REPAIR-EXISTENCE(G,b) is in NP.

The following result means that our problems are already intractable under

the simplest parametrization.

Theorem 4.2 (Complexity lower bounds). REPAIR-CHECKING(COUNT,2) is

coNP-hard and REPAIR-EXISTENCE(COUNT,2) is NP-hard.

On the other hand, SUITABILITY-CHECKING(COUNT,2) is tractable (i.e., in

P). Indeed, tractability holds for a larger class of aggregation functions that

contains COUNT and is defined next.

Definition 4.7 (⊆-monotone).

An aggregation function is called ⊆-monotone if for every weighted set (I, w),

for all J1, J2 ⊆ I such that J1 ⊆ J2, it holds that G▷w(J1) ≤ G▷w(J2).
1

◁

It is easily verified that COUNT and MAX are ⊆-monotone. SUM is also ⊆-

monotone, because we do not consider negative numbers. On the other hand,

MIN and AVG are not ⊆-monotone. We give the following claim without proof,

because we will shortly prove a stronger result.

Claim 4.3 (Complexity upper bound). For every G ∈ AGGpoly and b ≥ 2, if

G is ⊆-monotone, then SUITABILITY-CHECKING(G,b) is in P.

1In the notation G▷w(J1), the weight function is understood to be the restriction of w to

J1.

65

4.5. Main Tractability Theorem

Theorem 4.2 shows that REPAIR-CHECKING(G,b) becomes already intractable

for simple aggregation functions and conflict hypergraphs. The aim of the cur-

rent section is to better understand the reason for this intractability, and to

identify aggregation functions for which REPAIR-CHECKING(G,b) is tractable.

In Sections 4.5.1 and 4.5.2, we define two properties of aggregation functions

that give rise to some first tractability results. Then, in Section 4.5.3, we com-

bine these results in our main tractability theorem for REPAIR-CHECKING(G,b).

4.5.1 Monotone Under Priority

The converse of the claim at the end of Section 4.4 does not hold. Indeed, MIN

is not ⊆-monotone, but it is easily verified that SUITABILITY-CHECKING(MIN,b)

is in P. We now aim at larger classes of aggregation functions G for which

SUITABILITY-CHECKING(G,b) is in P. The computational complexity of this

problem is mainly incurred by the saturation property in Definition 4.5, as

there can be exponentially many sets including a given independent set. There-

fore, we are looking for conditions that avoid such an exponential search. Such

a condition is given in Definition 4.8.

Definition 4.8 (Monotone under priority).

We say that an aggregation function G is monotone under priority if for every

weighted set V , for every I ⊆ V , it is possible to compute, in polynomial time

in |V |, a set S ⊆ V \I whose powerset 2S contains all and only those subsets of

V \I that can be unioned with I without incurring a decrease of the aggregated

value (i.e., for every J ⊆ V \ I, the following holds true: J ⊆ S if and only if

G▷w(I) ≤ G▷w(I ∪ J)).

We write AGGpoly
mon for the set of aggregation functions in AGGpoly that

are monotone under priority.

◁

To illustrate Definition 4.8, we show that MIN is monotone under prior-

ity. To this end, let V be a weighted set and I ⊆ V . Clearly, MIN▷w(I) ≤
MIN▷w(I∪J) if (and only if) J contains no element with weight strictly smaller

than MIN▷w(I). Therefore, the set S = {v ∈ V \ I | w(v) ≥ MIN▷w(I)} shows

66 Weighted Repairs

that MIN is monotone under priority. It is even easier to show that every

⊆-monotone aggregation function in AGGpoly is monotone under priority, by

letting S = V \ I. Therefore, the following lemma is more general than the

claim at the end of Section 4.4.

Lemma 4.4. For every G ∈ AGGpoly
mon and b ≥ 2, SUITABILITY-CHECKING(G,b)

is in P.

Among the six common aggregation functions COUNT, SUM, PRODUCT,

MAX, MIN, and AVG, the latter one is the only one that is not in AGGpoly
mon,

as illustrated next.

Example 4.1

We show that the aggregation function AVG is not monotone under priority.

Let V = {a, b, c, d}. Let w : V → {1, 2} such that w(a) = w(b) = 1 and

w(c) = w(d) = 2. Let I = {a, c}. Then, AVG▷w(I) = 3
2 . The subsets of

V \ I = {b, d} that can be unioned with I without incurring a decrease of AVG

are {}, {d}, and {b, d}. However, the set of the latter three sets is not the

powerset of some other set.

◁

4.5.2 k-Combinatorial

Lemma 4.4 tells us that SUITABILITY-CHECKING(G,b) is in P if G = MIN or

G = MAX. However, an easier explanation is that the aggregated values of

MIN and MAX over a weighted set are determined by a single element in that

set. This observation motivates the following definition.

Definition 4.9 (k-combinatorial).

Let k be a positive integer. We say that an aggregation function G is k-

combinatorial if every weighted set I includes a subset J such that |J | ≤ k

and G▷w(J) = G▷w(I). If G is not k-combinatorial for any k, we say that G is

full-combinatorial.

We write AGGpoly
(k) for the set of aggregation functions in AGGpoly that

are k-combinatorial.

◁

67

Obviously, the aggregation functions MIN and MAX are 1-combinatorial.

From this, we can easily obtain an aggregation function that is 2-combinatorial.

For example, define SPREAD as the aggregation function such that for every

weighted set I, SPREAD▷w(I) := MAX▷w(I) − MIN▷w(I). The notion of k-

combinatorial also naturally relates to the well-studied notion of top-k queries.

For example, for a fixed k and an aggregation function G, we can define a

new aggregation function that, on input of any weighted set (I, w), returns

max{G▷w(J) | J ⊆ I, |J | = k}, i.e., the highest G-value found in any subset

of size exactly k (and returns 0 if |I| < k). This new aggregation function is

k-combinatorial by construction.

Lemma 4.5. Let k be a positive integer. For every G ∈ AGGpoly
(k) and b ≥ 2,

REPAIR-EXISTENCE(G,b) is in P.

4.5.3 Main Tractability Theorem

By bringing together the results of the two preceding subsections, we obtain

our main tractability result.

Theorem 4.6 (Main tractability theorem). Let k be a positive integer. For

every G ∈ AGGpoly
(k) ∩ AGGpoly

mon, for every b ≥ 2, REPAIR-CHECKING(G,b) is

in P.

It remains an open question whether Theorem 4.6 is often useful in prac-

tice, i.e., whether AGGpoly
(k) ∩AGGpoly

mon captures many aggregation functions

of practical interest. To give some insight, we have summarized in Table 4.1

the situation for aggregation functions frequently encountered in practice. We

recall that an aggregation function is anti-monotone if G▷w(I) ≥ G▷w(I ∪ J)

for all pairs of weighted sets I and J .

Table 4.1: Aggregation functions and their properties

aggregation ⊆-monotone anti-monotone AGGpoly
mon AGGpoly

(k) full-combinatorial

MIN × × ×
MAX × × ×
SUM × × ×
AVG ×

COUNT × × ×
PRODUCT × ×

68 Weighted Repairs

4.6. On Full-Combinatorial Aggregation Functions

Lemma 4.5 stated that the problem REPAIR-EXISTENCE(G,b) is tractable if

G is k-combinatorial for some fixed k. We will now show that dropping this

condition quickly results in intractability. For a technical reason that will

become apparent in the proof of Theorem 4.7, we need the following definition.

Definition 4.10 (witnessable).

Let G be an aggregation function that is full-combinatorial. We say that G
is witnessable if the following task is in polynomial time:

Input: A positive integer k in unary. That is, a string 111 · · · 1 of length k.

Output: Return a shortest sequence (q1, q2, . . . , qn) of nonnegative rational

numbers witnessing that G is not k-combinatorial (n > k). Formally,

for the weight function w that maps each i to qi (1 ≤ i ≤ n), it must

hold that for every N ⊆ {1, 2, . . . , n} with |N | ≤ k, we have G▷w(N) ̸=
G▷w({1, 2, . . . , n}).

◁

Clearly, if G is full-combinatorial, the output requested in Definition 4.10 ex-

ists for every k. Therefore, the crux is that the definition asks to return such

an output in polynomial time, where it is to be noted that the input is en-

coded in unary, i.e., has length k (and not log k). Since aggregation functions

G are closed under isomorphism, any permutation of a valid output is still

a valid output. An example of a witnessable aggregation function is SUM:

on input k, a valid output is the sequence (1, 1, . . . , 1) of length k + 1. For

full-combinatorial functions in AGGpoly, the requirement of being witness-

able seems very mild, and is expected to be fulfilled by natural aggregation

functions.

The following result generalizes a complexity lower bound previously estab-

lished by Theorem 4.2, because COUNT obviously satisfies the conditions im-

posed on G in the following theorem statement.

Theorem 4.7. Let G ∈ AGGpoly be a full-combinatorial function that is ⊆-

monotone and witnessable. Then REPAIR-EXISTENCE(G,2) is NP-complete.

69

4.7. Conclusion

Our work combines and generalizes notions from databases and graph the-

ory. From a database-theoretical viewpoint, G-repairs extend subset- and

cardinality-repairs by allowing arbitrary aggregation functions. From a graph-

theoretical viewpoint, G-repairs extend maximum weighted independent sets

by allowing hypergraphs as well as aggregation functions other than SUM.

With minor effort, complexity lower bounds for REPAIR-CHECKING(G,b) were

obtained from known results about maximum (weighted) independent sets.

Our main result is the computational tractability result of Theorem 4.6, which

shows a polynomial upper time bound on this problem under some restrictions

that are not unrealistic (and are actually met by several common aggregation

functions).

Throughout this chapter, aggregation functions and their properties were de-

fined and treated in an abstract, semantic way. In the future, we want to

study logical languages that allow expressing aggregation functions (e.g., first-

order logic with aggregation), and in particular their syntactic restrictions that

guarantee tractability.

70 Weighted Repairs

CHAPTER 5

Rustoner: Computing Ranks

Efficiently

5.1. Introduction

Rustoner [88] is a program to compute quality ranks for inconsistent ABoxes

in some Description Logic formalism. It is an implementation of the work

described in Chapter 3. Rustoner also provides a lightweight reasoning an

addition framework for DL-LiteR ontologies, focused on exploratory analysis.

We are well aware that there exist already several reasoners and tools to work

with Description Logics [52,108,114], some with striking efficiency. Therefore,

the main contribution of rustoner is not its reasoning capabilities, but rather

its back-end tool for computing quality-based ranks of assertions in ABoxes. It

should also be mentioned that the ranking framework provided by rustoner is

not limited to a Description Logic setting, but applies to any logical framework

that allows detecting inconsistencies within a set of affirmations or facts. This

includes, for example, inconsistency among tuples of a relational database with

respect to a set of integrity constraints.

While rustoner is a single program, it can be conceptually divided into two

parts:

� the first part is the quality ranking algorithm, which implements (in an

optimized form) the theory in our DL 2020 publication [90];

71

72 Rustoner: Computing Ranks Efficiently

� the second part is a lightweight DL-LiteR reasoner, initially written to

test how the ranking of ABox assertions behaved, and later extended to

an exploratory tool to study conflicts.

This chapter is mainly a technical description of the implementation of rus-

toner. We will assume that the reader is familiar with the underlying theory

of Description Logics and basic linear algebra.

The rest of the chapter is organized as follows: Section 5.2 explains the most

important parts of the ranking algorithm; Section 5.3 briefly explains the im-

plementation of the DL-LiteR reasoner and shows its tools; finally, Section 5.5

concludes the chapter. The main novelty of this chapter lies in the compu-

tation of both the conflict matrix of an ontology and the stabilized rank. A

reader desiring to implement or enhance the current version is encouraged

to analyze it profoundly. On the other hand, as previously mentioned, the

reasoning capabilities of rustoner can also be found in existing reasoners for

Description Logics.

5.1.1 Technical Details

Rustoner is written in rust [67], a relative young programming language, first

appearing between 2010 and 2012. We have chosen rust because its speed

is comparable to C, its syntax naturally entails memory safety, and it allows

programs written in a form close to mathematical language.

The program is publicly accessible at the address https://github.com/

hatellezp/rustoner, a full walk through of how to use rustoner and its ca-

pabilities is there given in the form of a README.

Both the program and the site are under constant development, but a version

ready to use, version 0.1.0, is available for download.

5.2. How to Compute Ranks

While the ranking approach can be easily adapted to other logic frameworks,

we will explain how it works from a Description Logic point of view. Chapter 3

developed a framework that allows for quality-based ranking of assertions and

studied the existence of a stabilized ranking. We briefly recall the main ideas,

https://github.com/hatellezp/rustoner
https://github.com/hatellezp/rustoner

73

relative to a fixed ontology ⟨T ,A⟩. We can compute the conflict matrix A of

A with respect to T , which captures how assertions in the ABox interact with

each other. From this matrix we define a linear system of equations

(a · 1− b · A)X = c ·
[
1 · · · 1

]⊤
,

where a, b, c are real positive numbers, and X a real-valued vector. Computing

a ranking for A boils down to solving the system for X and associating each

αi ∈ A with its corresponding quality assessment xi, i.e., the i-th component

of X. Furthermore, by the computation of a stabilized ranking, we mean the

computation of a lower bound for a, say a∗, with respect to a fixed b such that

the order on A induced by the elements in X is the same for every a ≥ a∗.

We can then use this a∗ to solve the system and gain a stabilized ranking for

our ontology. Thus, two main tasks emerge:

� computing the conflict matrix A relative to ⟨T ,A⟩; and

� finding the bound a∗ for a stabilized ranking.

The rest of this section explains how our implementation solves these two

tasks.

5.2.1 Computing a Conflict Matrix

Let us fix an ontology ⟨T ,A⟩ for the rest of this subsection. When we mention a

conflict matrix A, it is understood to be the conflict matrix relative to ⟨T ,A⟩.
We suppose ⟨T ,A⟩ is defined in a Description Logic language that admits

negation. We also suppose that there are no self-conflicting assertions in A, by

which we mean that there is no α ∈ A such that ⟨T , {α}⟩ |= ⊥. In fact, a self-

conflicting assertion must necessarily be false (with respect to T) and would

imply every other assertion in A (“ex contradictione quodlibet”), making our

subsequent analysis meaningless. Before explaining our algorithms, we recall

some notions related to the conflict matrix A. Fix any order on the assertions

in A and let it be equal to {α1, . . . , αn} (thus |A| = n).

Supporters and refuters Let αi ∈ A be an assertion and B ⊆ A a con-

sistent subset with respect to T . Suppose that neither αi nor ¬αi are present

in B. We say that

74 Rustoner: Computing Ranks Efficiently

� B supports αi (or that B is a supporter of αi) if ⟨T , B ∪ {¬αi}⟩ |= ⊥
and B is ⊆-minimal with this property;

� B refutes αi (or that B is a refuter of αi) if ⟨T , B ∪ {αi}⟩ |= ⊥ and B

is ⊆-minimal with this property.

It follows from the definition that the cardinality of supporters and refuters is

bounded above by |A| − 1. However, for practical computations, it would be

desirable that this cardinality be bounded by a constant that does not depend

on A. This gives rise to the notion of conflict bounded TBox recalled next.

Conflict boundedness A TBox T is conflict bounded if there exists a pos-

itive natural b such that for every ABox A, if A is inconsistent with respect

to T , then there exists B ⊆ A such that |B| ≤ b and B is already inconsistent

with respect to T . Thus in the case that T is conflict bounded, say by b, the

cardinality of every supporter and refuter is at most (b− 1).

Indicator function and aggregate operator The relation between sub-

sets of A and assertions is summarized in the indicator function I. Let αi, αj

be two assertions in A, let B ⊆ A be a subset of A, and let T and F be two

constants that stand for true and false respectively. We define the indicator

function I as:

I(B, l, αi, αj) =


1 if αj ∈ B, l = T , and B supports αi;

1 if αj ∈ B, l = F , and B refutes αi;

0 otherwise.

(5.1)

The indicator function materializes the interaction (positive and negative)

between assertions in the ABox, and constitutes the first building block for

the conflict matrix. The second building block is the aggregation function,

which makes explicit the expert’s belief about the content of the ABox. An

aggregation function (or aggregate operator) is a map f : 2A → R≥0 from

the subsets of A to the nonnegative real numbers. Let now f be an aggregate

operator with respect to A. The conflict matrix A is defined by its coefficients:

∀i, j ∈ {1, . . . , n}, aij :=
∑
B⊆A

f(B) (I(B, T, αi, αj) − I(B,F, αi, αj)) .

75

It is easily verified that aii = 0 for all i. Indeed, since αi is never present

in its supporters or refuters, it follows that I(B, T, αi, αi) and I(B,F, αi, αi)

are zero. We will often write I(B, T − F, αi, αj) as a syntactic shorthand

for (I(B, T, αi, αj) − I(B,F, αi, αj)). Note nevertheless that we could have

defined I in this form without ambiguity. Indeed, since supporters and refuters

are consistent and since no assertion in A is self-conflicting, the following

statements hold true:

� (I(B, T, αi, αj) − I(B,F, αi, αj)) = 0 implies that both I(B, T, αi, αj)

and I(B,F, αi, αj) are equal to zero;

� (I(B, T, αi, αj) − I(B,F, αi, αj)) = 1 implies that I(B, T, αi, αj) = 1

and I(B,F, αi, αj) = 0; and

� (I(B, T, αi, αj) − I(B,F, αi, αj)) = −1 implies that I(B, T, αi, αj) = 0

and I(B,F, αi, αj) = 1.

The matrix A is constructed in two steps. During the first step, called data

gathering, we compute both the indicator function and the aggregate operator

values for the subsets of A. In the second step, each entry in the matrix is

computed. The data gathering algorithm is presented next. A filter for A is

a function F that will provide on demand subsets of A in an order that we

will explain later. The size of a filter is simply the cardinality of the subset it

defines.

We will now explain some of the structures used in Algorithm 1 and argue

that it is correct.

Structures in Algorithm 1

Maps I and C Both maps represent functions, which are implemented as

hash tables (or hashmaps). Since the data structures for I and C are only

used for storing and retrieving data, hash tables are more efficient than, for

example, arrays that would augment the look-up time of a value whose index

is not known.

Array S Both supporters and refuters must be ⊆-minimal by definition.

That is, if B is a supporter of α, then no strict subset of B can also be a

76 Rustoner: Computing Ranks Efficiently

Algorithm 1: Data gathering.
Input : An ontology ⟨T ,A⟩, a bound b for conflict size,

an aggregate operator f , a map I and a map C.

Result: Computes the indicator function I of ⟨T ,A⟩ and stores the values in I;

computes the values of f with respect to subsets of A and stores them in

C.

1 n← size of A;
2 create a filter F with size n;

3 create an array for inconsistent subsets S;

4 for i from 1 to n do

5 let αi be the i-th assertion in A;
6 (re)initialize the filter F;

7 while the filter size is less than (b− 1) do

8 indexB ← the current value of F’s index;

9 B ← the subset of A encoded by F;

10 if αi is not present in B then

11 BT ← B ∪ {¬αi};
12 BF ← B ∪ {αi};
13 for each subset C in S do

14 if C ⊊ BT or C ⊊ BF then

15 F← next iteration of F;

16 go to next while loop iteration;

17 else if C = BF then

18 I(i, indexB)← (−1, B);

19 F← next iteration of F;

20 go to next while loop iteration;

21 end

22 if ⟨T , BF ⟩ |= ⊥ then

23 compute f(B);

24 C(indexB)← f(B);

25 I(i, indexB)← (−1, B);

26 add BF to the array S;

27 else if ⟨T , BT ⟩ |= ⊥ then

28 compute f(B);

29 C(indexB)← f(B);

30 I(i, indexB)← (1, B);

31 add BT to the array S;

32 F← next iteration of F;

33 end

34 end

77

supporter of α. Likewise, if B is a refuter of α, then no strict subset of B

can also be a refuter of α. The array S keeps track of which supporters and

refuters have already been found in order to avoid wrongly marking a subset

as a supporter or refuter when the ⊆-minimality condition would be violated.

A second purpose of the array S is explained next. Assume that among all

subsets of A that contain a given assertion α, the subset C is one that is

minimal (with respect to ⊆) inconsistent. That is, every strict subset of C

that contains α is consistent. Then we claim that C \{α} is a refuter of α. To

show this claim, notice first that ⟨T , (C \ {α}) ∪ {α}⟩ |= ⊥ by our assumption

that C is inconsistent and contains α. Then, let C ′ be a strict subset of

C \ {α}. By our hypothesis that C is ⊆-minimal inconsistent, it follows that

⟨T , C ′ ∪ {α}⟩ ̸|= ⊥. It is now correct to conclude that C \{α} is a refuter of α.

To further illustrate this principle, suppose B ⊊ A and α, β ∈ A are such that

� neither α nor β are in B;

� each set among B, B∪{α}, and B∪{β} is consistent with respect to T ;

and

� ⟨T , B ∪ {α, β}⟩ |= ⊥.

Then, B ∪ {α, β} is a ⊆-minimal inconsistent subset that contains α, and

therefore the set B ∪ {β} is a refuter of α and I(B ∪ {β}, F, α, β) = 1. By

symmetry, B ∪ {α} is a refuter of β and I(B ∪ {α}, F, β, α) = 1.

Our algorithm keeps track of ⊆-minimal inconsistent subsets to avoid needless

computations. At the end of the next section, we will show that S contains

only ⊆-minimal inconsistent sets, which is a crucial aspect of our algorithm.

The filter F The filter function produces subsets of A such that

� smaller (with respect to cardinality) sets are produced before larger sets;

and

� sets of the same cardinality are produced in lexicographic order.

We illustrate this by an example.

Example 5.1

Let A = {α1, α2, α3}. We are interested in producing the subsets of A in the

following order:

78 Rustoner: Computing Ranks Efficiently

� B0 = ∅;

� B1 = {α1};

� B2 = {α2};

� B3 = {α3};

� B4 = {α1, α2};

� B5 = {α1, α3};

� B6 = {α2, α3};

� B7 = {α1, α2, α3}.

◁

The filter itself is implemented as a pair composed of an index i and an array.

The array, of length |A|, has entries that belong to {0, 1}: the j-th entry is 1 if

(and only if) αj is in the subset being produced. For example, in Example 5.1,

{α1, α3} is represented by [1, 0, 1]. This array is initialized to all zeros. The

index i is initialized to 0 and is incremented whenever a subset is produced.

Whenever called, the filter will do two things:

� return the current value of the filter; and

� move to the filter’s next value.

In Example 5.1, if the filter is called with value (5, [1, 0, 1]), then it will move

to (6, [0, 1, 1]). It is important to note that if B1 is generated before B2 , then

we always have that |B1| ≤ |B2|.
This sequencing of subsets of a set has already been studied [80]. The com-

plexity of creating the filter is linear and the complexity of producing the next

state (the next subset) is also linear in the worst case. Next we explain how

Algorithm 1 works.

Logic of Algorithm 1

The following two assumptions have motivated the structure of Algorithm 1.

First, we assume that f(B) can always be computed in polynomial time in

79

the size of B. Second, we assume that testing for ABox consistency with

respect to T is significantly more time-expensive than any other instruction,

and should therefore be avoided as much as possible.

Lines 4–34 The principal outer loop of the algorithm ranges over all as-

sertions α1, α2, . . . , αn ∈ A in turn, and fills I with the indicator values for

each αi. For every assertion αi, the filter is reinitialized at line 6 and will

subsequently pass over all subsets of A.

Lines 7–33 A priori we need to know the relation between every subset of A
and the current αi. We will shortly see that there is a way to do early pruning.

The filter F generates subsets of A on demand up to size b− 1. As discussed

in Section 5.2.1, because of the bound on the size of ⊆-minimal conflicts, we

only search for subsets up to cardinality b− 1. In line 10, we assure that αi is

not present in B.

Lines 13–21 We search for two different conditions in this block. First, in

line 14, we test whether a strict subset C of BT or BF has already been found

to be inconsistent; if this is the case, then B can never be a supporter or a

refuter of αi. We now argue that this test is correct. To this end, let C be

in S such that C ⊊ BF (the case that C ⊊ BT is symmetrical). Two cases

can occur:

� Case that αi is in C. Then C\{αi} is strictly included in B. If C\{αi}
is inconsistent, then C is not a ⊆-minimal inconsistent subset and thus

not present in S. Otherwise, if C\{αi} is consistent, then B cannot be a

refuter because it will not satisfy the ⊆-minimality condition of refuters.

� Case that αi is not in C. Then C is an inconsistent subset of A that is

included in B, and hence B is also inconsistent, and thus not a refuter.

The rationale for the second test at line 17 was previously explained in the

discussion of the array S on page 75, where we showed that if BF = B ∪ {αi}
is inconsistent, then B is a candidate for refuting αi. Because of the invariant

property that S contains only ⊆-minimal inconsistent sets, B is consistent and

hence a refuter of αi.

80 Rustoner: Computing Ranks Efficiently

Lines 22–27 and lines 27–31 If ⟨T , BF ⟩ |= ⊥, then B is a refuter of αi.

In this case, the indicator map I is updated, and BF is added to the array

of inconsistent sets S. If ⟨T , BT ⟩ |= ⊥, then B is a supporter of αi, and

the treatment is analogous to the preceding case. The duplication of code is

intentional: if ⟨T , BF ⟩ |= ⊥ holds true, then we do not test ⟨T , BT ⟩ |= ⊥.

Recall that such inconsistency tests are assumed to be time-expensive and

hence should be avoided whenever possible.

S contains only ⊆-minimal inconsistent subsets It is easily verified

that every set of S is inconsistent. We now prove the invariant property that

every set in S is ⊆-minimal inconsistent. For the sake of contradiction, assume

that at some point in its execution, the algorithm adds to S a set B having a

strict subset that is inconsistent. Then, there is a minimal (with respect to ⊆)

strict subset C of B that is inconsistent. Observe that C is not contained

in S; indeed, if C was in S, then the test at line 14 would have succeeded and

the iteration would have ended without adding B to S. We now prove that

C is contained in S, which yields the desired contradiction. There are two

possibilities for C (⊎ denotes disjoint union):

� C is equal to {¬αi∗} ⊎ C ′ where ¬αi∗ is not in A; or

� C is equal to {αi∗}⊎C ′ and i∗ is minimal among the indices of assertions

in C.

In the first case, because of the ⊆-minimality of C, for every strict subset C ′′

of C ′, the set {¬αi∗} ∪ C ′′ is consistent and not present in S. Therefore, the

execution of the block 13–21 will not result in an early break of the while

loop. Since {αi∗} ∪ C ′ and {¬αi∗} ∪ C ′ cannot both be inconsistent, the test

of the block 27–31 will succeed, and {¬αi∗} ∪ C ′ = C is added to S. We

now consider the second case, that is, C = {αi∗} ∪ C ′ where i∗ is minimal

among the indices of assertions in C. Thus the first time C is generated is as

a candidate for refuting the assertion αi∗ . Since C is not generated earlier and

is ⊆-minimal inconsistent, all tests in the block 13–21 fail. The test at line 22

succeeds and C is added to S. We conclude that in all cases C is present in

S, a contradiction. We conclude by contradiction that B is never added to S.

81

Entries of the Conflict Matrix A

Once the indicator and aggregate functions have been computed and stored

in maps I and C respectively, what remains is to compute the actual entries

of the conflict matrix A. This computation is easy; we provide the algorithm

for the sake of completeness.

Algorithm 2: Filling the conflict matrix entries.
Input : Maps I and C for the indicator and aggregation function respectively,

both with respect to an ontology ⟨T ,A⟩.
Result: Computes the conflict matrix A of ⟨T ,A⟩.

1 n← size of A;
2 create a matrix A with dimension n× n and all entries set to zero;

3 for each key (i, indexB) in I do

4 (indvalue, B)← I(i, indexB);

5 f(B)← C(indexB);

6 for each αj in B do

7 A[i, j]← A[i, j] + f(B) ∗ indvalue;

8 end

9 end

10 return A;

Complexity of Computing the Conflict Matrix

The theoretical complexity of computing the conflict matrix was studied in

Chapter 3. Nevertheless, we will now provide a more fine-grained complexity

analysis of our algorithm. We start with Algorithm 1. Under our assumption

that f(B) can be computed in polynomial time in the size of B, there remain

three points whose time complexity needs a deeper analysis:

� the number of iterations before the filter F meets the stop condition at

line 7;

� the number of subsets in S to test at line 13; and

� checking consistency with respect to T at lines 22 and 27.

Since it is easily verified that at most one set is added to S in each while

iteration, the size of S is bounded by the number of iterations of the while

loop, which depends on F. The stopping condition on the filter F depends on

82 Rustoner: Computing Ranks Efficiently

whether or not T is conflict bounded. If T is conflict bounded with bound b,

then there are no more than b ∗ |A|b iterations; otherwise the number of it-

erations can be exponential in |A|. The complexity of checking consistency

depends of the Description Logic language used.

Of practical interest is the case where T is conflict bounded and consistency

checking is in polynomial time in the size of A. In this case, Algorithm 1

executes in polynomial time in the size of A. Note here that if T is conflict

bounded, the sizes of both I and C are bounded by a polynomial in the size

of A.

The second algorithm, Algorithm 2, allows for an easier analysis. Its time

complexity depends only on the size of the indicator map I. We conclude that

if T is conflict bounded, then Algorithm 2 executes in polynomial time in the

size of A.

5.2.2 Computing a Stabilized Rank

In this subsection, we show and discuss an algorithm for computing the

bound a∗ for a stabilized quality rank of assertions in an ABox. The underly-

ing theory was already presented in Chapter 3, culminating in Theorem 3.7.

In this section, we will briefly recall the global idea behind the computation.

We then present our algorithm and discuss its functioning as well as some

implementation choices. We again fix an ontology ⟨T ,A⟩ in some Description

Logic language, with A = {α1, . . . , αn}.

We recall the specifications of the problem. Given a conflict matrix A =

(aij)1≤i,j≤n relative to an ontology ⟨T ,A⟩ (the dimension of A is n×n) and a

positive real parameter b, we can specify the following system for every positive

real number a:

(a · 1− b · A)X =
[
1 · · · 1

]⊤
. (5.2)

The task is to find a lower bound a∗ for the parameter a such that

� for every a ≥ a∗, the system in Eq. (5.2) has a unique solution; and

� for every pair a1, a2 ≥ a∗, the solutions relative to a1 and a2 are rank-

equivalent.

83

Uniqueness of solutions The system in Eq. (5.2) has a unique solution if

and only if the matrix (a · 1− b · A) is invertible. Thanks to the structure of

our system matrix, invertibility obtains if |a| > |b| ∗ ∥A∥, where ∥.∥ is some

norm in the vector space of matrices. Our approach is to find a provisional

bound for the a parameter. First we compute

M(A) := max
1≤i≤n

∑
1≤j≤n

|aij |, (5.3)

for which it holds that M(A) ≥ ∥A∥∞. Thus we set the provisional bound on a

to be

aprov := b(M(A) + 1) > b∥A∥.

If a is such that |a| ≥ aprov , then the system in Eq. (5.2) when associated to

a has a unique solution. Next we explain how we find the real bound a∗ that

produces rank-equivalent solutions. From here on, we assume that all values

of a discussed have absolute value greater or equal to aprov .

Assuring rank-equivalent solutions We recall what are rank-equivalent

solutions. Two vectors x, y of dimension n are rank equivalent if

for all i, j such that 1 ≤ i < j ≤ n: xi < xj iff yi < yj .

We will use the following equivalent formulation in our analysis:

for all i, j such that 1 ≤ i < j ≤ n: xi − xj < 0 iff yi − yj < 0.

Let a be such that

(a · 1− b · A)X =
[
1 · · · 1

]⊤
has a unique solution, denoted by Xa. Using Cramer’s Rule, the solution has

an explicit form:

Xa = (xa1, . . . , x
a
n)

=
1

det (a · 1− b · A)

(
det((a · 1− b · A)|1), . . . ,det((a · 1− b · A)|n)

)
,

where

84 Rustoner: Computing Ranks Efficiently

� det (a · 1− b · A) is the determinant of the matrix (a · 1− b · A), which is

nonzero because of the invertibility of (a · 1− b · A); and

� det((a · 1 − b · A)|i) is the determinant of the matrix obtained from (a ·

1− b · A) by replacing the i-th column with the vector
[
1 · · · 1

]⊤
.

For readability, we introduce the following notations:

� we write S(a) for the system in Eq. (5.2) associated to parameter a; and

� we write S|i(a) for the system obtained from S(a) by replacing the i-th

column with the vector
[
1 · · · 1

]⊤
.

We can thus rewrite the solution Xa as

Xa = (xa1, . . . , x
a
n) =

1

det(S(a))

(
det(S|1(a)), . . . ,det(S|n(a))

)
.

We argue that for all a1, a2 ≥ aprov , the signs of det(S(a1)) and det(S(a2)) are

the same. Since the system in Eq. (5.2) is invertible for all values a ≥ aprov ,

it follows that det(S(a)) is nonzero for all a ≥ aprov . Because the function

a→ det(S(a)) is continuous with respect to a, a change in the sign of det(S(a))

would imply that there is some a0 ≥ aprov for which det(S(a0)) is equal to

zero, a contradiction. Therefore, it is correct to conclude that for all a ≥ aprov ,

the sign of det(S(a)) is the same.

It follows that for a ≥ aprov , the sign of

xai − xaj =
1

det(S(a))

(
det(S|i(a)) − det(S|j(a))

)
is determined by (and only by) the values det(S|i(a)) and det(S|j(a)). Conse-

quently, to obtain rank-equivalent solutions, the bound a∗ must be such that

for all a1, a2 ≥ a∗ and for all 1 ≤ i < j ≤ n we have that

det(S|i(a1)) − det(S|j(a1)) < 0 iff det(S|i(a2)) − det(S|j(a2)) < 0, (5.4)

which is equivalent to:

det(S(a1))(x
a1
i − xa1j) < 0 iff det(S(a2))(x

a2
i − xa2j) < 0. (5.5)

85

From Linear Algebra, we know that the function that associates, to each

a ≥ aprov , the quantity
(
det(S|i(a)) − det(S|j(a))

)
is a polynomial in the pa-

rameter a, whose degree is at most n. Let us call this polynomial pij . Because

1 ≤ i < j ≤ n, there are exactly n(n−1)
2 such polynomials. Our approach for

finding a∗ proceeds in three steps:

� choose n+ 1 values for a with each a ≥ aprov ;

� use these values to interpolate each polynomial pij with 1 ≤ i < j ≤ n;

and

� find a global upper bound a∗ for the roots to all polynomials pij .

From the definition of each polynomial and the condition stated in Eq. (5.5),

all values a ≥ a∗ will yield rank-equivalent solutions. Next we present the

algorithm that produces such a bound. In the following fft stands for a Fast

Fourier Solver, that is, a function that will apply the Fast Fourier Transform

to a vector.

The discussion below follows the same pattern that we used for Algorithm 1:

we first discuss the structure of Algorithm 3, and then we explain its imple-

mentation.

Algorithm 3 uses simple data structures: V and P are simple arrays. The

FFT solver fft and our choice of the Fast Fourier Transform as interpolation

tool will be explained at the end of this section.

Logic of Algorithm 3

Lines 4–11 We begin by finding the value M(A) relative to A, which was

defined by Eq. (5.3). This block has a linear time complexity with respect to

the size of A, and a quadratic time complexity with respect to |A|.

Line 13 Our use of the Fast Fourier Transform implies that we will use

complex roots of the unity as the n + 1 points for interpolation. We do not

need to store all n + 1 roots of the unity. Indeed, if ω ∈ C\{1} is such that

ωn+1 = 1, then ω is a (n+ 1)-th root of the unity and every other (n+ 1)-th

root of the unity is equal to ωk for some k in {1, . . . , n+ 1}. Our choice for ω

is cos(θ) + i sin(θ) where θ = 2π
n+1 .

86 Rustoner: Computing Ranks Efficiently

Algorithm 3: Compute the bound a∗

Input : A conflict matrix A relative to an ontology ⟨T ,A⟩, a real positive value b,

and FFT solver fft

Result: Computes the bound a∗ relative to A

1 create an array V of size (n+ 1)× n;

2 create and array P of size n+ 1;

3 a∗ ← 0;

// compute M(A)

4 M(A)← 0;

5 for i from 1 to n do

6 m← 0;

7 for j from 1 to n do

8 m← m+ |aij |;
9 end

10 M(A)← max (M(A),m);

11 end

12 aprov ← b(M(A) + 1);

13 compute ω, a (n+ 1)-th complex root of 1 distinct from 1;

// populate array V

14 for k from 1 to (n+ 1) do

15 a← ωkaprov ;

16 Xk ← the solution of (a · 1+ b ·A)X =
[
1 · · · 1

]⊤
;

17 D ← det (a · 1+ b ·A);

18 for i from 1 to n do

19 V [k, i]← D ∗ (Xk)i;

20 end

21 end

22 for i in from 1 to (n− 1) do

23 for j from (i+ 1) to n do

// populate array P with values relative to i, j

24 for k from 1 to (n+ 1) do

25 P [k]← V [k, i]− V [k, j];

26 end

27 compute coefficients of pij from P with the FFT solver fft;

28 P ← pij // P actually stores pij

29 (d+ 1)← real degree of pij ;

// update the bound a∗

30 a∗ ← max
(
a∗, 1 + max1≤k≤d

(
−P [k]
P [d+1]

))
;

31 end

32 end

33 return a∗;

87

Lines 14–21 To interpolate an n-degree polynomial, we need n+ 1 points,

and compute their image under the function to be interpolated. That is, if we

want to interpolate a function f using n+ 1 points x1, . . . , xn+1, we compute

the image yi = f(xi) of each point under f . This procedure generates n + 1

pairs (x1, y1), . . . , (xn+1, yn+1) that will be used to interpolate f .

This block is charged with the data gathering part of the procedure. We choose

a single set {a1, . . . , an+1} with n+1 points that will be used to interpolate all

polynomials pij . We will solve n + 1 times the system in Eq. (5.2) and store

the solution vectors in the array V . In the next paragraph, we explain how

the values in V are then used to compute pij(ak) for each k in {1, . . . , n+ 1}.

Let ak be one of the n + 1 points chosen for interpolation. First we com-

pute the solution Xk to the system (ak · 1+ b · A)X =
[
1 · · · 1

]⊤
and also the

determinant of (ak · 1+ b · A), denoted det(S(ak)). Note that

Xk =
1

det(S(ak))
(S(ak)|1, . . . , S(ak)|n).

Secondly we store the vector

det(S(ak)) ∗Xk = (S(ak)|1, . . . , S(ak)|n)

at row k of the array V . Let pij be one of the polynomials, then

pij(ak) = det(S(ak))(Xk
i −Xk

j) = S(ak)|i − S(ak)|j

= V [k, i] − V [k, j].

Thus, all values needed for interpolation can be found by solving n+ 1 times

the system in Eq. (5.2) and computing a determinant.

Now we explain our choice of the points a1, . . . , an+1. The FFT solver fft uses

the roots of the unity as points for interpolation, that is, {a1, . . . , an+1} must

be equal to {ω, ω2, . . . , ωn+1} where ω is a n + 1 complex root of 1 distinct

from 1. For each k in {1, . . . , n+ 1}, ak is equal to ωkaprov = ωkb(M(A) + 1).

The fact that ak is distinct from the value ωk needed by the FFT solver does

not change the solution. Indeed, the systems(
ωkb(M(A) + 1) · 1− b · A

)
X =

[
1 · · · 1

]⊤
and (

ωk · 1− b

b(M(A) + 1)
· A
)
X =

1

b(M(A) + 1)
·
[
1 · · · 1

]⊤

88 Rustoner: Computing Ranks Efficiently

have exactly the same solutions. A condition that every ak has to verify is

that |ak| ≥ aprov . By our choice of using roots of the unity, this condition is

indeed respected:

|ak| =
∣∣∣ωkb(M(A) + 1)

∣∣∣ = |ωk| ∗ |b| ∗ |M(A) + 1| = b(M(A) + 1).

Lines 22–32 Once that all data has been gathered in V (lines 14–21), we

actually compute pij(ak) for all values i, j, 1 ≤ i < j ≤ n and k, 1 ≤ k ≤
n + 1. For each i in {1, . . . , n − 1} and j in {i + 1, . . . , n}, pij(ak) is equal

to V [k, i] − V [k, j]. We store the vector of images (pij(a1), . . . , pij(an+1)) in

the array P . We then perform the Fast Fourier Transform on P with the

solver fft, and store the result in P . At this point, for k in {1, . . . , n+1}, P [k]

contains the coefficient of the term with power k− 1 of the polynomial pij . In

particular, P [1] stores the constant coefficient. The degree of pij is at most n,

but can be strictly less. If d is the degree of pij , then the leading coefficient

of pij is stored in P [d + 1], while the entries P [d + 2], P [d + 3], . . . , P [n + 1]

are all zero. We then compute the Cauchy’s bound [59] on polynomial roots,

which in this case is equal to

1 + max
1≤k≤d

(
−P [k]

P [d+ 1]

)
.

We update a∗, and let it be the maximum among the previous bound found

and the new one. At the end of this block, a∗ is an upper bound for the roots

of all polynomials pij , and we can safely return a∗ as the desired output.

Complexity of Algorithm 3 The number of iterations of each loop is

explicit in the program. The instructions that need special attention are the

following:

� solving a linear system at line 16;

� finding the determinant of a matrix at line 17; and

� computing the Fast Fourier Transform at line 27.

The complexity of the computation in the first two items is polynomial in

the size of A. In fact, both tasks are in O(n3) where n = |A|, while there

89

are several algorithms that are even faster under under some conditions. The

Fast Fourier Transform has a complexity in O(n log n). It follows that Algo-

rithm 3 has a complexity of O(n4 log n) with n = |A|. Its actual performance

in practice strongly depends on what routine is used for solving the linear

system and what FFT solver is used. Currently, rustoner uses LAPACK and

BLAS routines for linear algebra tasks [10,92] and FFTW (the Fastest Fourier

Transform in the West) [49] for FFT tasks.

Why FFT

In this section, we motivate in more detail the use of the Fast Fourier Trans-

form as an interpolation tool in Algorithm 3. In particular, the principal

motivation is not the speed of FFT, but rather its stability from a numerical

analysis point of view. The computation of the bound a∗ is in the first place a

numerical procedure. We will first argue that our interpolation problem aims

at an objective that is slightly different from classical interpolation. Then we

will discuss the condition number of a numerical procedure, and finally we

explain why the Fast Fourier Transform is a reasonably choice for our setting.

The main objective of polynomial interpolation is to better understand a pro-

cess or function. If we can approximate an unknown function f by a polyno-

mial p, then the behavior of f can be studied by means of p. There are several

methods for polynomial interpolation [61, 93, 97]. In any case, its objective is

rarely to output the coefficients of the polynomial. This is different from our

problem where we know that the function f to be interpolated is a polynomial,

and we are interested in its coefficients. The following is a straightforward so-

lution to compute the coefficients of a polynomial. Let p(X) =
∑

0≤i≤n pi ∗Xi

be a polynomial of degree n, and let (x0, y0) , (x1, y1) , . . . , (xn, yn) be n + 1

couples such that p(xi) = yi for 0 ≤ i ≤ n. We can write all the n+1 equalities

as follows: 
1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

. . .
...

1 xn x2n · · · xnn

 ∗


p0

p1
...

pn

 =


y0

y1
...

yn

 (5.6)

The left matrix in Eq. (5.6) is a Vandermonde matrix, and is invertible if

and only if x0, x1, . . . , xn are all pairwise distinct. Since x0, x1, . . . , xn are

90 Rustoner: Computing Ranks Efficiently

n + 1 distinct points in our case, we can easily find the coefficients of our

polynomial p by means of inverting the matrix:
p0

p1
...

pn

 =


1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

. . .
...

1 xn x2n . . . xnn


−1

∗


y0

y2
...

yn

 (5.7)

The issue with inverting a matrix, in particular a Vandermonde matrix, is that

we have to take into account its condition number. The condition number [17]

of a matrix A is defined as:

κ(A) := ∥A∥
∥∥A−1

∥∥. (5.8)

This value is a measure of the sensitivity of the solution of a linear system, in

our case Eq. (5.6), to perturbations or changes in the corresponding matrix.

When κ(A) is large, the stability of the linear system is weak and small per-

turbations of A can move us far away from the actual solution. The number

κ(A) is bounded below by 1, but has no upper bound. When κ(A) = 1, we

say that A is perfectly-conditioned. On the other hand, when κ(A) is large, we

say that A is ill-conditioned. Perturbations or changes in A can be due, for

example, to rounding errors from floating point arithmetic. This is a problem

when our objective is to precisely determine the coefficients of a polynomial.

Even worse, Vandermonde matrices tend to be ill-conditioned [87]. In general,

determining the coefficients of an interpolating polynomial is an ill-conditioned

problem, for a multitude of algorithms [64,95].

Nevertheless, not all Vandermonde matrices are ill-conditioned. Let n ∈ N>0

be a natural, and ω ∈ C\{1} be such that ωn+1 = 1, an (n+ 1)-th root of the

unity. Consider the following Vandermonde matrix:

V =


1 1 1 · · · 1

1 ω ω2 · · · ωn

1 ω2 (ω2)2 · · · (ω2)n

...
...

...
. . .

...

1 ωn (ωn)2 · · · (ωn)n

 (5.9)

91

The matrix V is perfectly-conditioned, that is, κ(V) is equal to 1. The matrix
1√
n
V is called a DFT matrix and is essential to the Discrete Fourier Transform

and the Fast Fourier Transform [50].

By using complex roots of unity and the Fast Fourier Transform, we benefit

from the following advantages:

� the coefficients of each polynomial can be found with only one matrix

multiplication;

� since the condition number is κ = 1, no theoretical precision is lost

during the computation; and

� as a bonus, matrix multiplication of the DFT matrix can be done in

O(n log n) time complexity instead of the usual O(n2) [41].

5.3. Inner DL-LiteR Reasoner

The logical basis and reasoning capabilities of DL-Lite are by now well un-

derstood [23, 31, 98]. Moreover, several extensions to the original logic ex-

ist [44, 56, 86], and systems for solving ontological tasks have been devel-

oped, including translations to SAT and more logic-based approaches such

as tableau algorithms [16,69,83,84,107,121].

The reasoning capabilities of rustoner are by no means as powerful as such

reasoners. Nonetheless, we believe that rustoner is a useful tool for studying

interactions in simple ontologies and for educational purposes. The rest of

this section is organized as follows. We first show, from an abstract point of

view, how DL-LiteR ontologies are modeled in rustoner. We then exhibit the

reasoning functions of rustoner, and finally show its capabilities for exploratory

analysis.

5.3.1 The DL-LiteR Model

The syntax of DL-LiteR is the following:

� basic roles: s→ r | r−;

� complex roles: q → s | ¬s;

92 Rustoner: Computing Ranks Efficiently

� basic concepts: B → A | ∃s;

� complex concepts: C → B | ¬B.

Example 5.2

Let teaches be a role symbol (or atomic role) and Student be a concept symbol

(or atomic concept). We could interpret teaches as a relation modeling who

teaches which course, and Student as the set of people following some course.

Then

� teaches;

� teaches−;

� ¬teaches; and

� ¬(teaches−)

are all valid roles, where teaches, teaches− are basic, and ¬teaches,¬(teaches−)

are complex. In the same way

� Student;

� ¬Student;

� ∃teaches;

� ∃teaches−;

� ¬∃teaches; and

� ¬∃teaches−

are valid concepts, where Student, ∃teaches, ∃teaches− are basic, while the

other concepts are complex. Note that complex roles and concepts are char-

acterized by the use of negation.

◁

In DL-LiteR, the following types of inclusion can appear in the TBox:

concept inclusions: B ⊑ C

role inclusions: s ⊑ q.
(5.10)

93

Note that the left-hand in both types of inclusion must be basic. When the

right-hand of a TBox inclusion is negated, we say that it is a negative inclusion;

otherwise it is a positive inclusion. ABox assertions can be of two forms:

concept assertion: a : A

role assertion: (a, b) : r
(5.11)

where a, b are constants, A is a concept and r is a role. While A and r are

atomic in a first approach, for reasons that will become apparent shortly, our

technical development will also allow for negation of atomic assertions.

In our model of DL-LiteR, we add both ⊥ and ⊤ as basic constructs. A

DL-LiteR ontology in rustoner is not a couple ⟨T ,A⟩, but a triplet ⟨S, T ,A⟩
where

� S is a map where each element is of the form (symbol: type), where the

three possible types are “concept”, “role”, and “individual”;

� T is represented by an array of tuples of the form (A,B) which means

that the assertion A ⊑ B is present in T ; and

� A is represented by an array of tuples of the form (a,A) or (a, b, r)

meaning that a : A is in A or that (a, b) : r is in A.

Example 5.3

Let ⟨T ,A⟩ be the ontology with T = {A ⊑ ¬B} and A = {a : A, (c, d) : r}.

Our representation of this ontology is as follows:

� S = {(⊥ : concept), (⊤ : concept), (A : concept), (B : concept), (r :

role), (a : individual), (c : individual), (d : individual)};

� T = {(A,¬B)}; and

� A = {(a,A), (c, d, r)}.

We omit the details of the actual technical implementation.

◁

The set S always stores information about both ⊥ and ⊤; it never stores

(¬B : concept) since it suffices to keep track of the types of atomic constructs.

94 Rustoner: Computing Ranks Efficiently

The structure S serves several purposes, such as evaluating more complex

constructs and knowing when a deduction rule can be applied.

For reasoning tasks, rustoner uses deduction rules 1. Reasoning will be dis-

cussed in the next section, but we present here our conception of deduction

rules. A deduction rule is a couple (h, t) of two lists, where h is the hypothesis,

and t the consequence. Both lists are composed of elements that can represent

a TBox inclusion, an ABox assertion, or the declaration of a symbol’s type.

Example 5.4

Let the following be two different rules:

�

⊢ x : Y
⊢ X ⊑ Y ∧ ⊢ x : X

�

⊢ X ⊑ Z
⊢ X ⊑ Y ∧ ⊢ Y ⊑ Z

Note that throughout this chapter, the consequence is above the horizontal

bar, and the hypothesis is below the horizontal bar. Informally, the first rule

says that “if x is an X, and X implies Y , then x is a Y .” The second says

that “if X implies Y , and Y implies Z, then X implies Z.” The first rule will

be encoded by the following lists:

h = {(X,Y), (x : X), (x : individual), (X : concept), (Y : concept)}
t = {(x : Y), (x : individual), (Y : concept)}

(5.12)

The second rule is encoded as follows:

h = {(X,Y), (Y,Z), (X : typ), (Y : typ), (Z : typ)}
t = {(X : Z), (X : typ), (Y : typ)}.

(5.13)

Remark that in (5.13), we do not specify a particular type, but require that

all constructs involved be of the same type “typ”. This is because this rule

applies to both concepts and roles, that is, the symbol “typ” is a placeholder

for either “concept” or “role.”

◁

1Deduction rules are at the basis of many DL reasoners - not just [31] but also so-

called ”consquence-based” reasoners that have been developed for more expressive DLs, e.g.

”Consequence-Driven Reasoning for Horn SHIQ Ontologies”, work of Yevgeny Kazakov.

95

5.3.2 DL-LiteR Reasoning in Rustoner

The only reasoning task implemented in rustoner is a check for ABox consis-

tency. It should be clear from Section 5.2 that this is sufficient for computing

the conflict matrix of an ontology and its entailed quality ranking. In addition,

rustoner implements some tools for exploratory analysis, which heavily rely on

ABox consistency checks. In this section, we explain how our implementation

of this task works.

In one of the initial works about DL-Lite, Calvanese et al. [31] specify how

to build an algorithm for checking ABox consistency in a DL-LiteR ontol-

ogy ⟨T ,A⟩. The procedure described there suffices to build a simple, non-

optimized reasoner. Our implementation follows their work, guaranteeing the

correctness of our approach. Nonetheless, as we will explain shortly, some ex-

tensions are needed because the conventional ABox consistency of [31] is not

enough to build a conflict matrix.

The remainder of this section is organized as follows. We first recall the

procedure defined in [31]. We then argue that this procedure is insufficient to

build the conflict matrix, and finally we propose our additions to the original

procedure that allows us to build the conflict matrix.

Procedure to Check ABox Consistency

Let ⟨T ,A⟩ be a DL-LiteR ontology. To check for ABox consistency, there are

mainly three steps:

1. build a database db(A) from A, which will be tested for consistency with

respect to T . We call this database the potential model ;

2. from T , build cln(T), the closure of T with respect to negative inclu-

sions; and

3. build a query qunsat from cln(T), such that qunsat answers true on db(A)

if and only if the ontology ⟨T ,A⟩ is unsatisfiable.

The potential model db(A) The structure db(A) is simply a grounding

of A:

� ∆db(A) = {a | a is a constant occurring in A};

96 Rustoner: Computing Ranks Efficiently

� adb(A) = a, for each constant a;

� Adb(A) = {a | (a : A) ∈ A} for each atomic concept A; and

� rdb(A) = {(a, b) | ((a, b) : r) ∈ A} for each atomic role r.

The negative closure cln(T) The negative closure cln(T) can be built

from T as follows. Every TBox negative inclusion in T is present in cln(T).

Then we apply the following rules to cln(T) until no more inclusions are added.

Recall that in our notation, the consequence is above the horizontal bar.

� dr(1):

⊢ X ⊑ ¬Z
⊢ X ⊑ Y ∧ (⊢ Y ⊑ ¬Z ∨ ⊢ Z ⊑ ¬Y)

� dr(2):

⊢ ∃r ⊑ ¬X
⊢ r ⊆ s ∧ (⊢ ∃s ⊑ ¬X ∨ ⊢ X ⊑ ¬∃s)

� dr(3):

⊢ ∃r− ⊑ ¬X
⊢ r ⊆ s ∧ (⊢ ∃s− ⊑ ¬X ∨ ⊢ X ⊑ ¬∃s−)

� dr(4):

⊢ r ⊆ ¬q
⊢ r ⊆ s ∧ (⊢ s ⊆ ¬q ∨ ⊢ q ⊆ ¬s)

� dr(5):

⊢ ∃r ⊑ ¬∃r ⊢ ∃r− ⊑ ¬∃r− ⊢ r ⊆ ¬r
⊢ ∃r ⊑ ¬∃r ∨ ⊢ ∃r− ⊑ ¬∃r− ∨ ⊢ r ⊆ ¬r

The notation dr(i) stands for deduction rule i. The use of disjunction in

the hypothesis of a rule is a convenient syntactic shorthand, with its natural

meaning. For example, dr(2) is a shorthand for the following two rules:

97

⊢ ∃r ⊑ ¬X
⊢ r ⊆ s ∧ ∃s ⊑ ¬X

and

⊢ ∃r ⊑ ¬X
⊢ r ⊆ s ∧ X ⊑ ¬∃s

Likewise, the use of multiple consequences, as in dr(5), is a syntactic short-

hand with the meaning that each of the consequences can be derived whenever

the hypothesis can be derived. The encoding of these shorthand rules is as

follows:

� if a disjunction appears in the hypothesis, then more than one list h

appears in the body of the rule; and

� if more than one expression appears in the thesis, then more than one

list t appears in the head.

For example, dr(5) would be represented as

((h1, h2, h3), (t1, t2, t3)).

Whenever some hi can be derived, then every ti will be derived. This proce-

dure terminates. Indeed, since the alphabet of concept names and role names

is fixed, there are only finitely many valid concepts and roles that can be

constructed, and thus only a finite number of TBox inclusions can be added.

Consistency check Consistency checking is done by means of execut-

ing qunsat on db(A). The query qunsat is a disjunction qunsat =
∨

i qi where

each qi is generated from a negative inclusion in cln(T) as follows. To shorten

the theoretical development, we will use the shortcut g(r, a, b) for roles, where

g(r, a, b) = r′(a, b) if r = r′, and g(r, a, b) = r′(b, a) if r = (r′)−1.

1. if A ⊑ ¬B ∈ cln(T), then some qi equals

(∃x, A(x) ∧B(x)) ;

2. if A ⊑ ¬∃r ∈ cln(T), then some qi equals

(∃x, A(x) ∧ (∃y, g(r, x, y))) ;

98 Rustoner: Computing Ranks Efficiently

3. if ∃r ⊑ ¬B ∈ cln(T) then some qi equals

(∃x, (∃y, g(r, x, y)) ∧B(x)) ;

4. if ∃r ⊑ ¬∃s ∈ cln(T), then some qi equals

(∃x, (∃y, g(r, x, y)) ∧ (∃z, g(s, x, z))) ;

5. if r ⊆ ¬s ∈ cln(T), then some qi equals

(∃x,∃y, g(r, x, y) ∧ g(s, x, y)) .

It is proved in [31] that the procedure described above decides ABox con-

sistency for DL-LiteR ontologies. Moreover, since DL-LiteR TBoxes are re-

stricted to inclusions, concept assertions, and role assertions, it can be verified

that every TBox in DL-LiteR is conflict bounded with bound 2.

Our aim is to compute supporters and refuters, as defined in Definition 3.1,

by checking for ABox consistency. However, the following technical difficulty

occurs. For supporters, Definition 3.1 contains a test ⟨T , B⟩ |= α. Of course,

such a test can be performed by using query entailment and query rewrit-

ing [16]. However, for reasons of simplicity and uniformity, we have chosen to

replace the previous test by an equivalent test that checks for the inconsistency

of ⟨T , B ∪ {¬αi}⟩. This latter test, however, uses a negated atom ¬αi in the

ABox, a feature that is not present as such in the approach of [31]. Indeed, the

algorithm in [31] is developed for conventional DL-Lite and DL-Lite related

ontologies where assertions of the form a : ¬C are disallowed. However, as we

will explain shortly, this feature can be added with minor effort. We first give

a concrete example that illustrates the technical difficulty.

Example 5.5

Let ⟨T ,A⟩ be an ontology with T = {A ⊑ B,B ⊑ C} and A = {a : A, a : C}.

Clearly, {a : A} is a supporter of {a : C}. Indeed, if we apply the definition of

supporter, ⟨T , {a : A, a : ¬C)}⟩ |= ⊥, while ⟨T , {a : A}⟩ ̸|= ⊥. Here, it should

be noted that a : ¬C is equivalent ¬(a : C).

The reason why ⟨T , {a : A, a : ¬C)}⟩ |= ⊥ is obviously that T logically implies

A ⊑ C, and therefore a : A implies a : C, contradicting a : ¬C. However,

99

this explanation uses negated assertions and a “positive” closure, two features

that are not needed in the ABox consistency checks of [31].

◁

In the following section, we explain that with a simple extension of the pro-

cedure in [31], we are able to compute refuters and supporters by using only

checks for ABox consistency.

Extended ABox Consistency Procedure

From Example 5.5, two difficulties become evident. The first is that {a : A, a :

¬C} is not a valid DL-LiteR ABox. This can be solved by allowing, at the

moment of checking consistency, negative ABox assertions to appear in the

ABox. The second difficulty is more subtle and comes from the conception

of the algorithm devised in [31] to detect ABox inconsistency. In fact, even

if negative ABox assertions would be allowed, the original algorithm would

answer that ⟨T , {a : A, a : ¬C}⟩ is a consistent ontology. The reason for this

is that the TBox positive inclusion A ⊑ C does not occur in cln(T), and even

if it did, qunsat does not check for violations of positive inclusions, that is,

qunsat contains no queries of the form

∃x, A(x) ∧ ¬C(x).

Thus, our framework requires to detect the inconsistency of

⟨T , {a : A, a : ¬C)}⟩ relative to the inferred positive inclusion A ⊑ C.

To this end, we extend the procedure of [31] as follows. We will allow negated

assertions a : ¬C (or equivalently ¬(a : C)) in both ABoxes and queries. We

will use the notation a : ¬∗C with the meaning that “the assertion a : ¬C
is present in the ABox.” This is different from the usual negation ¬(a : C)

which means that “a : C is not present in the ABox.” Then, a : ¬∗C will be

treated as a usual assertion in db(A) and qunsat .

We add positive deduction rules to the set of rules dr(1)–dr(5) to make cln(T)

not only contain all negative inclusions entailed by T , but also all entailed

positive inclusions. Then we add new subqueries to qunsat to detect violations

of positive inclusions. The added deduction rules are the following:

� dr(6):

100 Rustoner: Computing Ranks Efficiently

⊢ X ⊑ Z
⊢ X ⊑ Y ∧ ⊢ Y ⊑ Z

� dr(7):

⊢ X ⊑ ∃s
⊢ r ⊆ s ∧ ⊢ X ⊑ ∃r

� dr(8):

⊢ X ⊑ ∃s−1

⊢ r ⊆ s ∧ ⊢ X ⊑ ∃r−1

� dr(9):

⊢ r ⊆ q

⊢ r ⊆ s ∧ ⊢ s ⊆ q

� dr(10):

⊢ r ⊆ s ⊢ r−1 ⊆ s−1

⊢ r ⊆ s ∨ ⊢ r−1 ⊆ s−1

The logical closure with respect to T will still be denoted cln(T). Its compu-

tation starts with T , and then repeatedly applies all inference rules until no

new inclusions can be inferred.

If α is an assertion of the form a : C where C is not negated, then the potential

model db(A) is allowed to contain a : ¬∗C, with the meaning that ¬α is present

as such in the ABox.

The query qunsat is extended with a number of new subqueries qi, as follows:

1. if A ⊑ B ∈ cln(T), then some qi equals

(∃x, A(x) ∧ ¬∗B(x)) ;

2. if A ⊑ ∃r ∈ cln(T), then some qi equals

(∃x, A(x) ∧ (∃y, ¬∗g(r, x, y))) ;

101

3. if ∃r ⊑ B ∈ cln(T), then some qi equals

(∃x, (∃y, g(r, x, y)) ∧ ¬∗B(x)) ;

4. if ∃r ⊑ ∃s ∈ cln(T), then some qi equals

(∃x, (∃y, g(r, x, y)) ∧ (∃z,¬∗g(s, x, z))) ;

5. if r ⊆ s ∈ cln(T), then some qi equals

(∃x,∃y, g(r, x, y) ∧ ¬∗g(s, x, y)) .

Significantly, a negated atom in a subquery qi holds true if the ABox contains

a corresponding negated assertion. Recall that we use ¬∗ to make explicit the

search for negated assertions in the potential model db(A). For example, the

subquery (∃x,A(x) ∧ ¬∗B(x)) is true if (and only if) for some a, the ABox

contains both a : A and a : ¬∗B. This is in contrast with the usual use of

negation where a : ¬B would be true if db(A) does not contain a : B.

We now explain how we find refuters and supporters in the case of DL-LiteR.

Let α be an assertion in A. Since TBoxes in DL-LiteR are conflict bounded

with bound 2, it follows that all refuters and supporters are singletons. For

an assertion β ∈ A, the following tests apply:

� {β} is a refuter of α if and only if ⟨T , {α, β}⟩ |= ⊥. In this case, we use

the classical ABox consistency test, which creates db({α, β}), and finds

cln(T) with rules dr(1)–dr(5). The query qunsat can be restricted to

subqueries for conflicts with negative inclusions;

� {β} is a supporter of α if and only of ⟨T , {¬α, β}⟩ |= ⊥. In this case, we

use our augmented ABox consistency test, which produces db({¬α, β}),

and creates cln(T) using rules dr(6)–dr(10). The subquery qunsat uses

only the subqueries assoiated with positive inclusions.

Example 5.6

Consider the ontology T = {A ⊑ B,B ⊑ C,A ⊑ ¬D} and A = {a : A, a :

C, a : D}. We apply the previously described procedure to find that {a : A}
is a supporter of a : C and a refuter of a : D.

102 Rustoner: Computing Ranks Efficiently

To find that a : A is a refuter of a : D, we check for consistency of the ABox

{a : A, a : D} with respect to T . In this case the rules used are the original

ones, and cln(T) = {A ⊑ ¬D}. The only subquery of qunsat is ∃x,A(x)∧D(x),

which is satisfied by {a : A, a : D}.

To find that a : A is a supporter of a : C we use the second procedure. Using

all rules, cln(T) also includes positive inclusions:

cln(T) = T ∪ {A ⊑ C}.

The query qunsat is larger, as we include the search for violations of positive

inclusions:

qunsat =(∃x, A(x) ∧ ¬∗B(x)) ∨ (∃x, B(x) ∧ ¬∗C(x))∨
(∃x, A(x) ∧ ¬∗C(x)).

(5.14)

Since the query qunsat is satisfied by {a : A, a : ¬C}, it is correct to conclude

that {a : A} is a supporter of a : C.

◁

5.3.3 Exploratory Analysis with Rustoner

Rustoner also contains a graphical tool that can be used to better understand

ontologies. It provides three different functionalities given a TBox T and an

ABox A:

� show the closure cln(T) as a graph which keeps track of the rules that

generated each new TBox inclusion;

� show the consequences of T acting on A ; and

� show the conflict graph relative to the conflict matrix of ⟨T ,A⟩.

We show each functionality by means of an example.

Example 5.7

Consider the small TBox:

Tex1 = {A ⊑ B,B ⊑ C,C ⊑ ¬A}.

103

"LV2 A ⊑ ¬ B"

"R1: X⊑¬Y → Y⊑¬X"

"R1"

"LV1 B ⊑ ¬ A"

"R2"

"LV2 A ⊑ ¬ A"

"R2: X⊑Y, Y⊑Z → X⊑Z"

"R2"

"LV1 A ⊑ C"

"LV0 C ⊑ ¬ A"

"R1""R2"

"LV0 A ⊑ B"

"R2"

"LV1 A ⊑ ¬ C"

"LV0 B ⊑ C"

Figure 5.1: Consequences of Tex1

For exploratory analysis, it is useful to have a visual help of how the TBox

inclusions in T interact with deduction rules. Figure 5.1 shows how this can

be visualized in rustoner.

The graph in Figure 5.1 should be read as follows. The oval blue nodes contain

TBox inclusions. The labels LV0, LV1, . . . specify at which level the inclusions

are derived: LV0 inclusions are part of the given TBox, and inclusions at level

LVi are derived by applying an inference rule that uses at least one inclusion at

level LVj with j = i− 1. The red boxes indicate the rules that were applied.

◁

Example 5.8

Let ⟨T ,A⟩ be the following ontology:

T = {A ⊑ ∃r}, A = {a : A, (a, b) : r}. (5.15)

Figure 5.2 shows the result of making explicit the consequences of T acting

on A. The green oval nodes are ABox assertions, which were not present

in Example 5.7. The levels LV0 and LV1 are as explained in that previous

example.

◁

Example 5.9

104 Rustoner: Computing Ranks Efficiently

"<abi>LV1 a : ∃ r"

"R3: a:X, X⊑Y → a:Y"

"R3"

"<tbi>LV0 A ⊑ ∃ r" "<abi>LV0 a : A" "R1: (a,b):r → a:∃r, b:∃r^-"

"R1"

"<abi>LV0 a, b: r"

"R1"

"<abi>LV1 b : ∃ INV r"

Figure 5.2: Deduction graph of (Tex2 ,Aex2)

John : Professor, v: 1.0018560833972223

John, KR: attends, v: 0.9172976391734095 Ava : Student, v: 1.0421260040186242

DB2 : Course, v: 1.040498167431316

KR : Course, v: 1.0807680880527177John, DB2: teaches, v: 0.9613579159659066

Ava, IA: attends, v: 1

Bob, KR: attends, v: 1

Kevin: Professor, v: 1

Figure 5.3: Deduction graph of (Tex2 ,Aex2)

For the conflict graph, let ⟨T ,A⟩ be the following ontology:

T =



Professor ⊑ Person,

Student ⊑ Person,

Person ⊑ ¬Course,
Student ⊑ ¬Professor,
∃teaches ⊑ Professor,

∃attends ⊑ Student,

∃teaches− ⊑ Course,

∃attends− ⊑ Course


A =



John : Professor

Ava : Student

DB2 : Course

KR : Course

(John,DB2) : teaches

(John,KR) : attends

(Ava, IA) : attends

(Bob,KR) : attends

Kevin : Professor


◁

In the case of DL-LiteR, supporters and refuters are singletons. Thus the con-

flict matrix can be seen as a weighted adjacency matrix of a graph. This graph

is depicted in Figure 5.3. Each node has two different pieces of information:

the ABox assertion, and the quality rank computed using a stabilized bound

a∗ (given b, in this case b = 1). A red arrow from node n1 to n2 means that

the assertion in node n1 refutes the assertion in node n2. A green arrow from

node n1 to n2 means that the assertion in node n1 supports the assertion in

105

node n2.

5.4. Experimental Results

We have experimentally validated the rustoner software. Rustoner consists of

two parts: an interface for the ranking algorithm, and a lightweight reasoner

for the DL-LiteR logic. We first tested the ranking algorithm, which takes as

input a square matrix and produces a stabilized ranking. We then tested the

reasoner in rustoner on the following tasks:

� the ABox consistency check for a given ABox A with respect to a

TBox T ;

� the construction of the conflict matrix Af with respect to an ontology

⟨T ,A⟩; and

� the entire procedure of producing a stabilized ranking given an ontology

⟨T ,A⟩.

The remainder of this section describes our experimental setup and results.
The experiments were executed on the following laptop:

2017 Dell XPS 15 9000 9560 Laptop: 15.6in

Intel Quad-Core i7-7700HQ

1TB SSD

16GB DDR4

NVIDIA GTX 1050

5.4.1 Ranking of General Matrices

We evaluated rustoner’s ranking algorithm, which takes as input a zero-

diagonal square matrix and computes its stabilized ranking. The input matrix

is an n×n matrix Af of the form given in Eq. (3.5). The matrix construction

itself is not considered in this first experiment.

The algorithm will first apply the optimization induced by Proposition 3.3,

which consists in removing independent assertions, as defined in Definition 3.3.

Recall that if αi is independent, then the ith row and the ith column of the

input matrix are all zero. We define the density d as the fraction of assertions

106 Rustoner: Computing Ranks Efficiently

that are not independent. Thus, a density equal to 1 means that there are no

independent assertions.

Example 5.10

Let A be the following matrix: 
0 2 0 4

1 0 0 4

0 0 0 0

3 5 0 0

 .
Rustoner will suppose that this matrix comes from an ABox

A = {α1, α2, α3, α4},

in which the assertion α3 is independent. The densitiy of this matrix is 3
4 . In

a preprocessing step, rustoner will reduce this matrix to0 2 4

1 0 4

3 5 0

 .
After the ranking, the assessment for the assertion α3 is obtained by the

expression ν(α3) = c
a in Proposition 3.3.

◁

For values of n between 10 and 1000, random matrices were generated. Den-

sities d varying from 0.1 to 1 were then obtained by making some assertions

independent. Making αi independent is tantamount to setting the ith row and

the ith column equal to all zero.

To gain in robustness during the test, we performed two types of iterations:

� for each matrix, the ranking was performed an adaptive number of times

to reduce CPU noise [4, 34,58]; and

� each combination of (n, d) was tested a minimum of 50 times, and

tests were repeated until the standard deviation of the execution times

dropped below a given threshold.

The results of these experiments are shown in Figure 5.4. A zoom of this

image for n ≤ 450 is given in Figure 5.5.

107

10 50 100 150 200 250 300 350 400 450 500 600 700 800 900 1000
number of assertions

10
30

60

100

150

200

250

300

400

450

500

tim
e(

s)

Rank finding, variable interaction density
density 0.1
density 0.2
density 0.3
density 0.4
density 0.5
density 0.6
density 0.7
density 0.8
density 0.9
density 1

Figure 5.4: Execution time for finding a stabilized assessment in function of

the number of ABox assertions.

10 50 100 150 200 250 300 350 400 450
number of assertions

0

1

2

3

4

5

6

7

8

9

10

12

14

16

tim
e(

s)

Rank finding, variable interaction density
density 0.1
density 0.2
density 0.3
density 0.4
density 0.5
density 0.6
density 0.7
density 0.8
density 0.9
density 1

Figure 5.5: Execution time for finding a stabilized assessment in function of

the number of ABox assertions (up to 450 assertions).

108 Rustoner: Computing Ranks Efficiently

A

B

¬C

D

E r

s

∃r .⊤

Figure 5.6: A directed graph representing a TBox.

5.4.2 Reasoner in Rustoner

To test the capabilities of the reasoner in rustoner, we produced synthetic on-

tologies, as described next. To create these synthetic ontologies, three different

vocabularies where used:

� concept names where generated using as source the 1500 most used nouns

in english: [5];

� role names where generated using as source the 1000 most common verbs

in english: [1];

� individual names where randomly generated on demand.

Synthetic TBoxes

To generate a TBox, we followed the vision of a TBox as a directed graph [16].

For example, the directed graph of Figure 5.6 represents the TBox T = {A ⊑
B,A ⊑ ¬C,D ⊑ E,E ⊑ ∃r .⊤, r ⊑ s}.

To generate these graphs we used several hyperparameters:

� nr: number of axioms involving roles present in the TBox;

� nc: number of axioms involving concepts present in the TBox;

� dr: the maximal length of a chain of role inclusions;

109

� dc: the maximal length of a chain of concept inclusions;

� er: for an ordered pair of role nodes, the probability to insert a directed

edge from the first node to either the second one or its negation;

� ec: for an ordered pair of concept nodes, the probability to insert a di-

rected edge from the first node to either the second node or its negation;

� cr: whenever a directed edge from role r to either s or ¬s is to be

inserted, we pick the endpoint ¬s with probability cr, creating a negative

role inclusion;

� cc: whenever a directed edge from concept C to either D or ¬D is to be

inserted, we pick the endpoint ¬D with probability cc;

� ir: the probability of inverting a role in a role inclusion;

� exc: the probability of creating a concept of the form ∃r.⊤ instead of

using a concept name in a concept inclusion.

We created TBoxes with the number of axioms in three different intervals:

[10, 20], [50, 60], or [100, 110]. We changed the value of the hyperparameters

to gain a variety of TBoxes for each of the three intervals.

Synthetic ABoxes

ABoxes were created relative to a TBox. For each TBox constructed with

the procedure described in the preceding subsection, a family of ABoxes was

created. In the following, we will use the term interaction for an ordered pair

of assertions (α, β) such that β is present in a supporter or a refuter of α,

that is, for some B ⊆ A we have that I(T,B, α, β) is different from zero or

I(F,B, α, β) is different from zero. An interaction is positive if β supports

α, and negative if β refutes α. We specify our method for creating synthetic

ABoxes.

We used three hyperparameters in the case of ABoxes:

� n: number of assertions;

� i: proportion of interactions (both positive and negative); and

110 Rustoner: Computing Ranks Efficiently

� c: proportion of conflicts (only negative interactions).

Note that necessarily c ≤ i. Recall that all DL-LiteR TBoxes are conflict-

bounded with bound 2. Thus all refuters and supporters have cardinality

equal to 1, that is, if β is involved in a positive (resp. negative) interaction

with α, then {β} is a supporter (resp. refuter) of α. To build an ABox,

a TBox is taken as input. We first generate a random number of individual

names I such that n
4 ≤ |I| ≤ n.

To generate the necessary number of conflicts, we iterate the next procedure:

we choose randomly an ordered pair of concepts or roles such that there exists

a directed path from the first assertion to the negation of the second assertion;

we then choose randomly a pair of individuals from I if a pair of roles was

selected or a single individual from I if a pair of concepts was selected. We

build the following assertions:

� if a role pair (r ,¬s) and a pair of individuals (a, b) were selected, we

insert the two assertions (a, b) : r and (a, b) : s. Note that a path from

r to ¬s means that r ⊑ ¬s is entailed by the TBox.

� if a concept pair (C,¬D) and an individual a were selected, we insert two

assertions a : C and a : D.

This creation of conflicts terminates when the proportion c is attained. To

generate the remainder of interactions, we follow the same schema, with the

difference that we only consider paths from assertions (concepts or roles) to

non-negated assertions.

After creating the number of assertions needed to meet the required proportion

of interaction, we produce the remaining number of assertions needed to arrive

at n assertions. Therefore, it remains to generate approximately (n− ⌊n ∗ i⌋)
assertions, which are also randomly generated. We check that no additional

interactions are produced during this step by comparing with the already

created assertions. For each TBox, we generated ABoxes with a density of

interaction taking values in {0.1, 0.2, 0.5, 1.0}.

We comment on the results. Figure 5.7 shows that execution times for check-

ing ABox consistency behave chaotically. Other figures are available in Ap-

pendix F. We think that this behavior is due to our implementation of the

111

200 400 600 800 1000
number of assertions

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

tim
e(

s)

ABox consistency check, number of axioms between 100 and 110.
density 0.1
density 0.2
density 0.5
density 1.0

Figure 5.7: Execution time for ABox consistency check, for TBoxes with size

vary between 100 and 110.

ABox consistency check, which searches for a pair of conflicting assertions un-

til such a conflict is found. Our generation of ABoxes makes that the duration

of such a search is unpredictable.

The second part of the test involves the construction of the conflict matrix Af

and the computation of a stabilized ranking. The results are closer to our

theoretical results and our intuition: larger densities of interaction and larger

ABoxes result in larger execution times. Figures 5.8 and 5.9 show that the

computation of a stabilized ranking takes more time than the construction of

the conflict matrix. However, this may no longer be true for description logics

where supporters and refuters can be of size ≥ 1. Recall that in DL-LiteR,

which is used in our experiments, supporters and refuters are singletons.

5.5. Conclusion

Rustoner was developed as a tool for the fast computation of quality ranks for

ABox assertions. Its reasoner has been extended to a graphical tool for the

exploratory analysis of DL-LiteR ontologies.

112 Rustoner: Computing Ranks Efficiently

200 400 600 800 1000
number of assertions

0

20

40

60

80

tim
e(

s)

Matrix building, number of axioms between 100 and 110.
density 0.1
density 0.2
density 0.5
density 1.0

Figure 5.8: Execution time for building the conflict matrix, for TBoxes with

size varying between 100 and 110.

200 400 600 800 1000
number of assertions

0

200

400

600

800

tim
e(

s)

Ranking of ABox, number of axioms between 100 and 110.
density 0.1
density 0.2
density 0.5
density 1.0

Figure 5.9: Execution time for finding a stabilized assessment, for TBoxes

with size varying between 100 and 110.

113

In the future, we want to explore two different paths to further enhance rus-

toner. First, we want to speed up the computation of the stabilized bound a∗

by detecting that some polynomials pij do not contribute to the final bound

and hence can be omitted. Second, we want to augment rustoner with more

reasoning capabilities and possibly to more powerful Description Logics lan-

guages, for example, SHIQ.

114 Rustoner: Computing Ranks Efficiently

CHAPTER 6

Conclusion

This thesis developed and investigated approaches to deal with the incon-

sistency problem in knowledge bases. A first contribution is a new OBDA

mapping language for linking databases and Description Logics. This map-

ping language allows for the decidability of some desirable properties related

to data quality, as stated by Theorem 2.4. Moreover, Theorem 2.5 states that

the mapping language can also be used to deduce database constraints from

an ontology.

The second part of this thesis developed a framework to not only quantify

the quality of data in knowledge bases, but also to use this quantification in

aggregate-based repairs, called G-repairs. The ranking entailed by this quan-

tification takes into account the user’s knowledge and can be computed for

ontologies defined in any DL. Theorem 3.7 states that, once a conflict matrix

has been obtained, finding a stabilized ranking is a tractable procedure. While

building the conflict matrix is a procedure that always terminates, its com-

putational complexity depends of the Description Logic used. Significantly,

Theorem 3.8 settles a tractable case of practical interest.

We defined a new notion of aggregate-based repairs, called G-repairs, which

generalizes some existing repair notions. It is assumed that database facts

(or ABox assertions) are associated with weights, which can result from the

quantified approach in Chapter 3. G-repairs are then defined in terms of aggre-

gation operators over such weighted databases. We studied the computational

115

116 Conclusion

complexity of repair-checking and some related problems. Theorem 4.6 and

Theorem 4.7 state how the complexity of these problems depend on some

desirable properties of the aggregation operator used.

Finally, we presented rustoner, a program that implements the ranking proce-

dure of Chapter 3. Rustoner also contains an exploratory tool for DL-LiteR

ontologies.

We end this thesis by listing some interesting problems for future research.

� Chapter 2 introduced an OBDA setting that allows generating an ABox

from a relational database. It is an open problem to extend and combine

this setting with the quantified approach developed in later chapters of

this thesis.

� The ranking procedure of Chapter 3 is static, in the sense that the ABox

is supposed to be fixed. It is worthwhile to study how such a ranking

can be maintained while additions and deletions take place in the ABox.

� The practically important notion of conflict-bounded TBox in Chapter 3

is semantically defined. It would be interesting to study syntactically

restricted fragments of logics that guarantee conflict-boundedness.

� Theorem 4.7 in Chapter 4 establishes that reasoning about G-repairs

quickly becomes intractable when aggregation functions are full-combi-

natorial. It is an interesting open question to develop polynomial-time

approximation algorithms for such reasoning tasks.

� It would be interesting to study logical languages that allow express-

ing aggregation functions as a query, for example, first-order logic with

aggregation [76]. It is an open question to syntactically characterize

families of queries that meet the desirable semantic properties defined

in Chapter 4.

� It is an open task to extend rustoner with the OBDA framework devel-

oped in Chapter 2, and to allow for more expressive description logics,

for example, SHIQ.

� In this thesis, we focused on database repairing and left open the problem

of Consistent Query Answering (CQA) [118] when multiple repairs are

117

possible. It would be interesting to combine CQA with the quantified

approaches developed in this thesis.

To conclude, we believe that a quantified approach is the right answer to the

inconsistency problem in database and knowledge base systems. Paraphrasing

Lord Kelvin, “Understanding goes through quantification.”

118 Conclusion

Appendices

119

APPENDIX A

Semantics of Relational Algebra

Operators

A database db associates to each relation nameR a finite relation over sort(R).

We write Rdb to denote the relation associated to R by db. For every algebra

expression E, we recursively define eval(E,db), the result of E on db. If X

is a set of attributes, then we write domX for the set of all tuples over X.

� for every relation name R, eval(R,db) = Rdb;

� eval(σA=cE,db) = {t ∈ eval(E,db) | t(A) = c};

� eval(σA=BE,db) = {t ∈ eval(E,db) | t(A) = t(B)};

� eval(πXE,db) = {t[X] | t ∈ eval(E,db)};

� if sort(E1) = X1 and sort(E2) = X2, then eval(E1 ⋊⋉ E2,db) = {t ∈
domX1∪X2 | t[X1] ∈ eval(E1,db) and t[X2] ∈ eval(E2,db)};

� if sort(E1) = X1 and sort(E2) = X2, then eval(E1 ⋉ E2,db) = {t[X1] |
t ∈ domX1∪X2 , t[X1] ∈ eval(E1,db), and t[X2] ∈ eval(E2,db)};

� eval(δfE,db) = {f(t) | t ∈ eval(E,db)};

� eval(E1 ∪ E2,db) = eval(E1,db) ∪ eval(E2,db);

� eval(E1 − E2,db) = eval(E1,db) − eval(E2,db).

121

122 Semantics of Relational Algebra Operators

APPENDIX B

Proofs for Chapter 2

B.1. Proofs of Theorem 2.1 and Corollaries 2.2

and 2.3

We use the following helping lemma. We write free(φ) for the set of free

variables of a first-order formula φ.

Lemma B.1. Let ψ and ∃v⃗φ be formulas such that free(ψ) ⊆ free(∃v⃗φ). Then,

ψ ∧ ∃v⃗φ ≡ ∃v⃗ (φ ∧ ψ).

Proof. Since free(ψ) ⊆ free(∃v⃗φ), the sequence v⃗ contains no variables of

free(ψ). Consequently, we can place ψ within the scope of ∃v⃗.

Proof of Theorem 2.1. We associate to each attribute A a fresh variable zA.

In our construction, if E is an Entity-expression with sort(E) = {A1, . . . , An},

then JEK will be a formula with free variables zA1 , . . . , zAn . The mapping J·K
is inductively defined as follows:

� Let sort(R) = {A1, . . . , An}, in that order. Then, JRK =

R(zA1 , . . . , zAn);

� JσA=cEK = JEK ∧ (zA = c);

� JσA=BEK = JEK ∧ (zA = zB);

123

124 Proofs for Chapter 2

� JπXEK = ∃zB1 · · · ∃zBℓ
JEK where {B1, . . . , Bℓ} = sort(E) \X;

� JE1 ⋉ E2K = JE1K ∧ JπXE2K where X = sort(E1) ∩ sort(E2);

� JδA1,A2,...,An→B1,B2,...,BnEK is the formula obtained from JEK by (1) re-

naming bound variables zBi in JEK, and then (2) replacing each free

occurrence of zAi with zBi (for 1 ≤ i ≤ n);

� JE1 ∪ E2K = JE1K ∨ JE2K; and

� JE1 − E2K = JE1K ∧ ¬JE2K.

We show that JEK is a finite formula for every Entity-expression E. Define

the weight of an Entity-expression E, denoted w(E), as the weighted number

of algebraic operators in it, where the weight of ⋉ is 2, and the weight of all

other operators is 1. Since w(E1 ⋉ E2) = w(E1) + w(E2) + 2 and w(πXE2) =

w(E2) + 1, it follows w(πXE2) < w(E1 ⋉ E2). Then, since the function J·K is

applied recursively to arguments of strictly smaller weights, its computation

terminates.

It is straightforward to show that for every Entity-expression E with sort(E) =

{A1, . . . , An}, JEK is a domain-independent formula φ(zA1 , . . . , zAn) in rela-

tional calculus such that for every database db, for all a1, . . . , an ∈ dom,

{A1 : a1, . . . , An : an} ∈ eval(E,db) if and only if db |= φ(a1, . . . , an). In

the remainder, we show that JEK is equivalent to a guarded formula. We

note here that JEK as defined above is not automatically guarded. For ex-

ample, for sort(R) = sort(S) = {A,B} and E = πA(R ∪ S), we obtain

JEK = ∃zB (R(zA, zB) ∨ S(zA, zB)), a formula that is not guarded.

We can write every Entity-expression in union normal form, by exhaustively

125

applying the following rules to subexpressions until no more rules apply:

σA=c(E ∪ F) ≡ σA=cE ∪ σA=cF

σA=B(E ∪ F) ≡ σA=BE ∪ σA=BF

πX(E ∪ F) ≡ πXE ∪ πXF
E ⋉ (F ∪G) ≡ (E ⋉ F) ∪ (E ⋉G)

(E ∪ F) ⋉G ≡ (E ⋉G) ∪ (F ⋉G)

δf (E ∪ F) ≡ δfE ∪ δfF
E − (F ∪G) ≡ (E − F) ⋉ (E −G)

(E ∪ F) −G ≡ (E −G) ∪ (F −G)

In what follows, if x⃗ is a sequence of variables, then the set of the variables that

occur in x⃗ is also denoted x⃗. We next show that if F is a union-free Entity-

expression, then for some k ≥ 0, JF K is equivalent to a guarded formula of the

form

∃v1 · · · ∃vk (R(x⃗) ∧ ψ) , (B.1)

with the same free variables as JF K, where R(x⃗) is a relation atom, ψ is a

guarded formula, and x⃗ ⊇ free(ψ). The proof is by structural induction on F .

� If F = R, then R(zA1 , . . . , zAn) ∧ R(zA1 , . . . , zAn) is equivalent to JF K
and has the desired form.

� Assume F = σA=cE. Thus, JF K = JEK ∧ (zA = c). By the induction

hypothesis, we can assume

JEK ≡ ∃w⃗ (S(y⃗) ∧ ϕ) ,

a guarded formula in which ϕ is also guarded and y⃗ ⊇ free(ϕ). From

zA ∈ free(JEK) = free(JF K), it follows that zA occurs in y⃗. Then,

JF K ≡ ∃w⃗ (S(y⃗) ∧ (ϕ ∧ zA = c)) ,

a guarded formula of the desired form (B.1).

� Assume F = σA=BE. The reasoning is similar to the previous item.

126 Proofs for Chapter 2

� Assume F = πXE. Let X = {A1, . . . , An} and let (sort(E) \X) =

{B1, . . . , Bℓ}. Thus,

JF K = ∃zB1 · · · ∃zBℓ
JEK,

where

free(JEK) = {zA1 , . . . , zAn , zB1 , . . . , zBℓ
}

and

free(JF K) = {zA1 , . . . , zAn}.

By the induction hypothesis, we can assume

JEK ≡ ∃w⃗ (S(y⃗) ∧ ϕ) ,

a guarded formula in which ϕ is also guarded and y⃗ ⊇ free(ϕ). Since

zB1 , . . . , zBℓ
are free variables of JEK, they will occur in y⃗. Then,

JF K ≡ ∃zB1 · · · ∃zBℓ
∃w⃗ (S(y⃗) ∧ ϕ) ,

a guarded formula of the desired form.

� Assume F = E1⋉E2. Let X = sort(E1)∩ sort(E2). Thus, JE1 ⋉ E2K =

JE1K∧JπXE2K. By the induction hypothesis, we can assume that JπXE2K
is guarded. Let X = {A1, . . . , An}. We have

free(JπXE2K) = {zA1 , . . . , zAn} ⊆ free(JE1K).

By the induction hypothesis, we can assume

JE1K ≡ ∃w⃗ (S(y⃗) ∧ ϕ) ,

a guarded formula in which ϕ is also guarded and y⃗ ⊇ free(ϕ). Then,

JF K ≡ ∃w⃗ (S(y⃗) ∧ ϕ) ∧ JπXE2K.

By Lemma B.1,

JF K ≡ ∃w⃗ (S(y⃗) ∧ (ϕ ∧ JπXE2K)) ,

a guarded formula of the desired form, because y⃗ ⊇ {zA1 , . . . zAn}.

127

� Assume F = δfE. This case is obvious.

� Assume F = E1 − E2. Thus, JF K = JE1K ∧ ¬JE2K with free(JE1K) =

free(JE2K). By the induction hypothesis, we can assume that JE2K is

guarded, hence ¬JE2K is guarded. By the induction hypothesis, we can

assume

JE1K ≡ ∃w⃗ (S(y⃗) ∧ ϕ) ,

a guarded formula in which ϕ is also guarded and y⃗ ⊇ free(ϕ). Then,

JF K ≡ ∃w⃗ (S(y⃗) ∧ ϕ) ∧ ¬JE2K.

By Lemma B.1,

JF K ≡ ∃w⃗ (S(y⃗) ∧ (ϕ ∧ ¬JE2K)) ,

a guarded formula of the desired form.

To conclude the proof, since E is in union normal form, the rule JE1 ∪ E2K =

JE1K ∨ JE2K will now lead to a disjunction of guarded formulas, all of the

form (B.1). Since a disjunction of guarded formulas is guarded, it follows that

for every Entity-expression E, we can construct a guarded formula that, on all

database instances, returns the same answers as E. This concludes the proof.

Proof of Corollary 2.2. Let E be an Entity-expression. Then, π{}E is an

Entity-expression which returns either ∅ or {{}} (a singleton containing the

empty tuple), interpreted as false and true, respectively. Note that

eval(E,db) = ∅

if and only if eval(
(
π{}E

)
,db) = ∅. By Theorem 2.1, π{}E can be translated

in a Boolean guarded formula φ, with constants, such that E and φ agree on

all database instances. Let C be the set of constant symbols that occur in E,

and let

ψ :=
∧

a, b ∈ C

a ̸= b

¬(a = b).

128 Proofs for Chapter 2

Then, φ ∧ ψ is a guarded formula, and eval(E,db) ̸= ∅ for some database

db if and only if φ ∧ ψ is satisfiable. The desired results follows, because

(i) satisfiability of guarded formulas with constant symbols is decidable [111],

and (ii) the guarded fragment has the finite model property. The latter prop-

erty is important, because a database is a finite model. The role of ψ is

to enforce a Herbrand interpretation for constant symbols, as is common in

database theory.

To illustrate the role of ψ, consider E = π{}(σA=0(σA=1R)) with sort(R) =

{A}, which agrees with φ = ∃x (R(x) ∧ x = 0 ∧ x = 1) on all database in-

stances. In fact, φ is false on all database instances. Note, however, that φ

is satisfied by the structure A with RA = {⟨a⟩} and 0A = 1A = a. The latter

structure, however, is not a model of ¬(0 = 1) ∧ φ.

Proof of Corollary 2.3. Every Relationship-expression combines Entity-

expressions by means of the operators σA=c, σA=B, ⋊⋉, δf , ∪, and −. These

operators are projection-free, and hence their translation in first-order logic

introduces no quantifiers. By Theorem 2.1, for every Entity-expression E

with sort(E) = {A1, . . . , An}, we can compute a formula φ(zA1 , . . . , zAn) in

GF that is logically equivalent to E. If we combine such formulas without

introducing quantifiers, the result will belong to GF .

Let E be a Relationship-expression. By what precedes, we can construct a for-

mula φ in GF that is logically equivalent to E. As in the proof of Corollary 2.2,

the closed formula

φ ∧
∧

a, b ∈ C

a ̸= b

¬(a = b),

where C is the set of constant symbols in E, is guarded and ensures that

different constant symbols are interpreted by different values, as is common

in database theory. The desired result follows, because (i) satisfiability of

guarded formulas is decidable, also in the presence of constant symbols [111],

and (ii) the guarded fragment has the finite model property. The latter prop-

erty is important, because a database is a finite model. This concludes the

proof.

129

B.2. Proof of Theorem 2.4

We will use two helping lemmas. The following helping lemma shows that

the set of role assertions generated by an RDAD can be obtained by a single

algebra expression.

Lemma B.2. Let ρ := [E1/f1, E2/f2, E] : r be a (not necessarily join-free)

RDAD. Let X1 = sort(E1) and X2 = sort(E2). Define F := (E ⋉ δf1E1) ⋉
δf2E2. Then, for every database db, the set of role assertions generated by ρ

from db is

{
(
ι ◦ f1−1 (t[f1 (X1)]), ι ◦ f2−1 (t[f2 (X2)])

)
: r | t ∈ eval(F,db) },

where ◦ is function composition.

Proof. We show equality with the set defined by Definition 2.5.

⊆ Assume t1 ∈ eval(E1,db), t2 ∈ eval(E2,db), and f1(t1) ∪ f2(t2) ⊆ t for

some t ∈ eval(E,db). Then, t ∈ eval(F,db). We have f1 (t1) = t[f1 (X1)],

thus t1 = f1
−1 (t[f1 (X1)]). Likewise for the second position.

⊇ Assume t ∈ eval(F,db), hence t ∈ eval(E,db). Then,

f1
−1 (t[f1 (X1)]) ∈ eval(E1,db).

Thus, there exists t1 ∈ eval(E1,db) such that

t1 = f1
−1 (t[f1 (X1)]) .

The following helping lemma states a useful syntactic simplification: we can

assume that all Entity-expressions and Relationship-expressions that occur in

CDADs and RDADs are union-free.

Lemma B.3. For every set M of CDADs and (not necessarily join-free)

RDADs, there exists a set M′ such that

1. for every CDAD E : C in M′, we have that E is union-free;

130 Proofs for Chapter 2

2. for every RDAD [E1/f1, E2/f2, E] : r in M′, we have that E1, E2, and

E are union-free; and

3. for every database db, M(db) = M′(db).

Proof. Obviously,

E ⋊⋉ (F ∪G) ≡ (E ⋊⋉ F) ∪ (E ⋊⋉ G)

(E ∪ F) ⋊⋉ G ≡ (E ⋊⋉ G) ∪ (F ⋊⋉ G)

Let [E/f, F/g,H] : r be an RDAD in M. Using the two previous equivalences

together with those in the proof of Theorem 2.1, we can rewrite E ≡ E1 ∪
E2 ∪ · · · ∪ Ee where each Ei is union-free. Likewise, F ≡ F1 ∪ F2 ∪ · · · ∪ Ff

and H ≡ H1∪H2∪ · · ·∪Hh. Now replace, in M, the RDAD [E/f, F/g,H] : r

with all RDADs

[Ei/f, Fj/g,Hk] : r for all 1 ≤ i ≤ e, 1 ≤ j ≤ f, 1 ≤ k ≤ h

It is obvious that on every db, this replacement does not change the set of

role assertions generated. It is even simpler to make CDADs union-free.

Proof of Theorem 2.4. In Section 2.4, we assumed a total order ≤att on the

set att of attributes. This order is commonly used in database theory to

switch between different representations for tuples (see, e.g., [6, p. 32]): When

we list a tuple {A1 : a1, . . . , Ak : ak}, it is assumed that the attributes are

written according to ≤att, i.e., A1 ≤att A2 ≤att · · · . Then, this tuple can also

be represented as the ordered tuple s = (a1, . . . , ak) over {A1, . . . , Ak}, and

we denote each ai as s(Ai). For a technical reason that will become apparent

shortly, for all sets S,U such that S ⊆ U ⊆ att, we assume a function castS 7→U

that maps ordered tuples over S to ordered tuples over U , as follows: for every

ordered tuple s over S, castS 7→U (s) is the ordered tuple u over U such that s

and u agree on all attributes of S, and u(A) = ε for every A ∈ U \ S, where

ε is a fixed fresh constant. For example, if s is the ordered tuple (a, c) over

{A,C} and U = {A,B,C,D}, then cast{A,C}7→U (s) = (a, ε, c, ε), an ordered

tuple over U . Clearly, such a function castS 7→U is injective.

131

Let

U :=

(⋃
E:C∈M

sort(E)

)
∪

 ⋃
[E1/f1,E2/f2,E]:r∈M

sort(E1) ∪ sort(E2)

 .

The set U contains all attributes that are used to create individual names.

For example, let U = {Lastname, Firstname, Hotel , City}. Let s =

(Hilton, Paris) be an ordered tuple. Then,

cast{Lastname,Firstname}7→U (s) = (Hilton, Paris, ε, ε)

has the same arity, but is distinct from

cast{Hotel ,City}7→U (s) = (ε, ε, Hilton, Paris).

Since ordered tuples over U now one-to-one correspond to individual names,

we can assume that

ι =
⋃
S⊆U

castS 7→U ,

which defines an injective mapping.

From here on, we use m for |U |. By our hypothesis, there exists a guarded first-

order formula φT that is equivalent to T . Let φT ,m be the formula obtained

from φT by replacing all occurrences of every variable x with x1, . . . , xm. It

can be seen that φT ,m will be guarded. For example, if

φT = ∀x∀y (r(x, y) → ((∀z (r(x, z) → A(z))) → B(x))) ,

then

φT ,2 = ∀x1, x2∀y1, y2

(
r(x1, x2, y1, y2) →
((∀z1, z2 (r(x1, x2, z1, z2) → A(z1, z2))) → B(x1, x2))

)
.

Note that unary and binary predicates in φT become, respectively, m-ary and

2m-ary in φT ,m. Furthermore, it is understood that x1, . . . , xm = y1, . . . , ym

is a shorthand for
∧m

i=1 xi = y1.

We now show how a join-free RDAD σ = [E1/f1, E2/f2, E] : r is expressed in

GF . By Lemma B.3, we can assume without loss of generality that E1, E2,

and E are union-free. Let F = (E ⋉ δf1E1) ⋉ δf2E2. Since E is a join-free

132 Proofs for Chapter 2

Relationship-expression, it follows that F is an Entity-expression, which will

be union-free. Following the proof of Theorem 2.1 and using Lemma B.2, F

can be translated into an equivalent guarded formula

ϕσ(x⃗1, x⃗2, x⃗3) = ∃y⃗ (S(x⃗1, x⃗2, x⃗3, y⃗) ∧ ψ(x⃗1, x⃗2, x⃗3, y⃗)) ,

where x⃗1 is an ordered tuple over sort(δf1E1), x⃗2 is an ordered tuple

over sort(δf2E2), and x⃗3 is an ordered tuple over (sort(E) \ sort(δf1E1)) \
sort(δf2E2). That is, if we let X1 = sort(E1) and X2 = sort(E2), then the

following are equivalent for all c⃗1 ∈ dom|x⃗1|, c⃗2 ∈ dom|x⃗2|:

� db |= ϕσ(c⃗1, c⃗2, c⃗3) for some c⃗3 ∈ dom|x⃗3|;

� the role assertion (castX1 7→U (c⃗1), castX2 7→U (c⃗2)) : r is generated by σ

from db. Note incidentally that in this cast operator, c⃗1 is considered

as an ordered tuple over X1, and c⃗2 as an ordered tuple over X2.

The following closed formula φσ in GF captures the semantics of the RDAD

σ:

φσ = ∀x⃗1∀x⃗2∀x⃗3∀y⃗

(
S(x⃗1, x⃗2, x⃗3, y⃗) →
(ψ(x⃗1, x⃗2, x⃗3, y⃗) → r(castX1 7→U (x⃗1), castX2 7→U (x⃗2)))

)
.

Likewise, for every CDAD C : E with sort(E) = X and E union-free, we can

construct a guarded formula

ϕC:E(x⃗) = ∃y⃗ (S(x⃗, y⃗) ∧ ψ(x⃗, y⃗)) ,

where x⃗ is an ordered tuple over X, such that the following are equivalent for

every c⃗ ∈ dom|x⃗|:

� db |= ϕC:E(c⃗);

� castX 7→U (c⃗) : C is generated by C : E from db.

The following closed formula φσ in GF captures the semantics of the CDAD

C : E:

φC:E = ∀x⃗∀y⃗ (S(x⃗, y⃗) → (ψ(x⃗, y⃗) → C(castX 7→U (x⃗))) .

133

Now define

Γ1 := φT ,m ∧

(∧
σ∈M

φσ

)
∧

(∧
σ∈Σ

σ

)

Γ2 := φT ,m ∧

(∧
σ∈M

φσ

)
∧ ¬

(∧
σ∈Σ

σ

)

Γ3 := ¬φT ,m ∧

(∧
σ∈M

φσ

)
∧

(∧
σ∈Σ

σ

)

which are three closed formulas in GF . Note that σ ranges over all CDADs

and RDADs in M. By construction, we obtain the following equivalences:

� (Σ,M, T) is a “yes”-instance to Satisfiability if and only if Γ1 is

satisfiable.

� (Σ,M, T) is a “yes”-instance to Non-Fathfulness if and only if Γ2 is

satisfiable.

� (Σ,M, T) is a “yes”-instance to Non-Protection if and only if Γ3 is

satisfiable.

Since satisfiability of guarded formulas is decidable, the desired result obtains.

For Global-Consistency, for every E : C in M, let ψE:C be the closed

first-order formula that is logically equivalent to π{}E. For every RDAD σ =

[E1/f1, E2/f2, E] : r in M, let ψσ be be the closed first-order formula that is

logically equivalent to π{}((E ⋉ δf1E1) ⋉ δf2E2). By Theorem 2.1 and since

all RDADs in M are join-free, if σ is a CDAD or an RDAD in M, then ψσ is

expressible in GF . Then, Global-Consistency is equivalent to satisfiability

of the following closed formula in GF :

Γ4 := φT ,m ∧

(∧
σ∈M

φσ ∧ ψσ

)
∧

(∧
σ∈Σ

σ

)

This concludes the proof.

134 Proofs for Chapter 2

B.3. Proof of Theorem 2.5

Proof of Theorem 2.5 (Sketch). We show the construction of Σ′. From [31], it

follows that unsatisfiability in DL-Litecore can only arise due to some negative

inclusion C ⊑ ¬D implied by the TBox that is violated in the ABox. The

negative inclusion C ⊑ ¬D can be of four different forms, where A,B denote

concept names, and r, s role names:

� A ⊑ ¬B. Then, for all CDADs E : A and F : B in M such

that sort(E) = sort(F), Σ′ contains a formula stating emptiness of

π{}(E ⋉ F).

� A ⊑ ¬∃r. Then, for every CDAD E : A and RDAD [F1/g, F2/g
′, F] : r in

M such that sort(E) = sort(F1), Σ′ contains a formula stating emptiness

of π{}
(
E ⋉ δg−1

(
δg(F1) ⋉

(
F ⋉ δg′F2

)))
.

� ∃r ⊑ ¬A. This is equivalent to A ⊑ ¬∃r, which is of the form in the

previous item.

� ∃r ⊑ ¬∃s. Then, for all RDADs [E1/f,E2/f
′, E] : r and

[F1/g, F2/g
′, F] : s in M such that sort(E1) = sort(F1), Σ′ contains

a formula stating emptiness of

π{}
(
δf−1

(
δf (E1) ⋉

(
E ⋉ δf ′E2

))
⋉ δg−1

(
δg(F1) ⋉

(
F ⋉ δg′F2

)))
.

From the construction, it follows that for every database db, db |= Σ′ if and

only if (T ,M(db)) is a consistent knowledge base.

Finally, if all RDADs are join-free, then all previous algebra expressions are

actually Entity-expressions, and thus, by Theorem 2.1, can be expressed in

GF .

APPENDIX C

Background from Algebra

We recall some notions of linear algebra [14, 72] that are used in this thesis,

particularly in Chapters 3 and 5.

Vector Spaces

Vector spaces over R are a building block for linear algebra. The vector space

Rn, with dimension n, is used in our study of inconsistencies. Operators

include coordinate-wise sum and multiplication by a scalar. Although finite

vector spaces over the real numbers can take several forms, it can be shown

that, modulo isomorphism, they are all equal to Rn for some natural number

n.

Norms Norms can be seen as functions that measure the size of the elements

in a vector space, or as functions that output the distance between an element

and the null vector. A function

∥.∥ : Rn → R≥0

is a norm over Rn if it satisfies the following three properties:

� ∥v∥ = 0 if and only if v = 0, the null vector of Rn;

� for all v in Rn and all t ∈ R, we have that ∥t ∗ v∥ = |t| ∗ ∥v∥; and

135

136 Background from Algebra

� Triangular inequality: for all v, u in Rn we have that ∥v + u∥ ≤ ∥v∥+∥u∥.

Let x = (x1, . . . , xn) be a vector in Rn. Common norms are the following:

� 1-norm ∥x∥1 :=
∑n

i=1 |xi|;

� 2-norm or euclidean distance ∥x∥2 :=
(∑n

i=1 |xi|2
) 1

2 ; and

� infinity norm ∥x∥∞ := max1≤i≤n |xi|.

Linear Operators For vector spaces Rn and Rm, a linear operator is any

function f : Rn → Rm such that for all u, v in Rn and all t in R, we have

f(t ∗ u+ v) = t ∗ f(u) + f(v). A function g : Rn → Rm is affine if there exists

a linear operator f : Rn → Rm and u0 ∈ Rm such that for all v in Rn we have

that g(v) = u0 + f(v).

Matrices

Let n,m be two natural numbers. The space of matrices of dimension n×m

with coefficients in R is not only a vector space, but also a representation of

linear operators from Rn to Rm. We illustrate this by two examples.

Matrix Multiplication If A is a matrix of dimension n × m, and B is

a matrix of dimension m × p, then their multiplication AB is a matrix of

dimension n × p. This multiplication coincides with the composition of two

linear operators: A is a linear operator from Rn to Rm, B is a linear operator

from Rm to Rp, and AB is the linear operator from Rn to Rp that is the

composition of A and B.

In the case that n = m, the matrix A is called square and is a function from

Rn to itself. We write 1 for the square matrix A that is the identity function

over Rn.

Linear Systems A linear system of equations with m unknowns x1, . . . , xm

and n equations, contains, for every i ∈ {1, 2, . . . , n}, an equality∑
1≤j≤m

aijxj = bj .

137

This system can be represented as a matrix equation AX = b where A is a

matrix of dimension n×m whose (i, j)-th coordinate is aij , and b is a vector

of dimension n whose j-th coordinate is bj .

A linear system has a unique solution if and only if the matrix A that defines

the equation is invertible. A matrix is invertible if there exists another matrix,

denoted A−1, such that AA−1 = A−1A = 1. This is only possible for square

matrices, in which case the solution X is given by

X = A−1b.

Determinant The determinant of a square matrix, denoted det(A), is a real

number. In this thesis, we use the following properties of determinants:

� the determinant det(A) of a matrix A is non-zero if and only A is in-

vertible;

� Cramer’s Rule: if AX = b is a matrix equation, and A is invertible, then

the solution vector is given by the following expression:

X = (x1, . . . , xn) =
1

det(A)
(det(A1), . . . ,det(An)),

where Ai is the matrix obtained from A by replacing the i-th column

with the vector b;

� if f is an affine function from the real numbers R to the space of matrices

of dimension n × n, then the expression det(f(a)) is a polynomial in a

for every a in R.

It should be noted that vector spaces of matrices can also be equipped with

norms. We will use the following result that relates such norms to linear

systems.

Theorem C.1 (Banach’s Lemma). LetM be a square matrix with the property

that ∥M∥ < 1 for some operator norm ∥·∥. Then the matrix 1−M is invertible

and

(1−M)−1 =
∑
n≥0

Mn.

This result is also known as Neumann’s Lemma.

138 Background from Algebra

APPENDIX D

Proofs for Chapter 3

Proof of Proposition 3.1. The proof of the first two items is straightforward.

We next prove the last item. Assume B is a refuter of α, and B′ is a supporter

of α. Consequently,

(a) ⟨T , B⟩ is consistent;

(b) ⟨T , B ∪ {α}⟩ is inconsistent;

(c) ⟨T , B′⟩ is consistent; and

(d) ⟨T , B′⟩ |= α.

From (c) and (d), it follows ⟨T , B′ ∪ {α}⟩ is consistent.

We first show B ⊈ B′. Assume for a contradiction that B ⊆ B′, hence

B ∪ {α} ⊆ B′ ∪ {α}. From (b) and our assumption that the underlying

Description Logic is monotonic, it follows that ⟨T , B′ ∪ {α}⟩ is inconsistent, a

contradiction.

Finally, we show B′ ⊈ B. Assume for a contradiction B′ ⊆ B. From (d)

and our assumption that the underlying Description Logic is monotonic, it

follows ⟨T , B⟩ |= α. By (a), it follows ⟨T , B ∪ {α}⟩ is consistent, which con-

tradicts (b).

Proof of Proposition 3.2. First note that both A and A′ denote the same set,

139

140 Proofs for Chapter 3

thus the behavior of f over A′ is identical to the behavior of f over A. Let

1 ≤ i, j ≤ n, we have that

A
f
ρ(i),ρ(j) =

∑
B⊆A

f(B) ∗
(
I(F,B, αρ(i), αρ(j)) − I(F,B, αρ(i), αρ(j))

)
= (I(F,B, βi, βj) − I(F,B, βi, βj))

= A′
f
i,j .

The first assertion of the proposition is thus proved.

Now let Pρ be the function from the space of square matrices n×n to itself such

that for any matrix A we have that Pρ(A)i,j = Aρ(i),ρ(j) for all 1 ≤ i, j ≤ n. It

is known that ρ being a permutation implies that Pρ is a linear bijection that

fixes the identity matrix and that is also a multiplicative morphism, that is,

for all square matrices A,B we have that Pρ(AB) = Pρ(A)Pρ(B). Moreover,

Pρ(Af) = A′f .

Now let (a, b, c) be any triple of reals and let
(
a · 1− b · Af

)
be the system

matrix. We obtain that

Pρ

(
a · 1− b · Af

)
= a · Pρ(1) − b · Pρ(Af) = a · 1− b · A′f .

From the properties of Pρ, it follows that
(
a · 1− b · Af

)
is invertible if and

only if
(
a · 1− b · A′f

)
is invertible. Indeed, the existence of a multiplicative

inverse for
(
a · 1− b · Af

)
is equivalent to the existence of a multiplicative

inverse for
(
a · 1− b · A′f

)
.

Suppose now that
(
a · 1− b · Af

)
is invertible. Then the assessment ν is

uniquely defined by the vector

x =
(
a · 1− b · Af

)−1
·
[
c c · · · c

]⊺
and the assessment ν ′ is uniquely defined by the vector

x′ =
(
a · 1− b · A′f

)−1
·
[
c c · · · c

]⊺

141

We get that

x′i =

n∑
j=1

(
a · 1− b · A′f

)−1

i,j
∗ c =

n∑
j=1

(
Pρ

(
a · 1− b · Af

))−1

i,j
∗ c

=
n∑

j=1

Pρ

((
a · 1− b · Af

)−1
)

i,j

∗ c =
n∑

j=1

(
a · 1− b · Af

)−1

ρ(i),ρ(j)
∗ c

= xρ(i)

and the last assertion of the proposition holds.

Proof of Proposition 3.3. Let α be an independent assertion in A. By Propo-

sition 3.2, we can suppose that α = αn without lost of generality. By definition

of ν and αn being independent, we get that

ν(αn) =
c

a
+
c

b

∑
B⊆A

f(B) ∗
∑
β∈A

ν(β) ∗ (I(T,B, αn, β) − I(F,B, αn, β))


=
c

a

∑
B⊆A

f(B) ∗
∑
β∈A

ν(β) ∗ 0


=
c

a
.

Let Af be the conflict matrix relative to ⟨T ,A⟩ and f . Let (a, b, c) be a triple

of real numbers, and let A =
(
a · 1− b · Af

)
. Since αn is independent, the

following equations hold for all i distinct from n:

Ai,n = −b ∗
∑
B⊆A

f(B) ∗ (I(T,B, αi, αn) − I(F,B, αi, αn)) = 0

and

An,i = −b ∗
∑
B⊆A

f(B) ∗ (I(T,B, αn, αi) − I(F,B, αn, αi)) = 0

In the same way, let A′ =
(
a · 1− b · A′f

)
where A′f is the conflict matrix

relative to ⟨T ,A\{α}⟩. Let Γ be the function that to every square matrix A

142 Proofs for Chapter 3

of dimension (n− 1) × (n− 1) associates the following matrix:

Γ(A)i,j =


Ai,j if i ≤ n− 1 and j ≤ n− 1;

An,n = a;

0 otherwise.

That is, Γ is an injection from the space of square matrices (n− 1) × (n− 1)

to the space of square matrices n× n. It is known that Γ is a linear bijection

that is also a multiplicative morphism, and that its image is contained in the

following subspace of matrices:

S = {A matrix of dimension n× n | ∀i ̸= n,Ai,n = An,i = 0}.

Since Γ(A′) = A, it holds that A is invertible if and only if A′ is invertible.

Consequently, the triple (a, b, c) produces a unique assessment for ⟨T ,A⟩ if

and only if it produces a unique assessment for ⟨T ,A\{αn}⟩. It is now correct

to conclude that the first affirmation of the proposition holds.

Let αi ∈ A\{αn} be an assertion. Then,

ν(αi) =

((
a · 1− b · Af

)−1 [
c c · · · c

]⊺)
i

=

n∑
j=1

Ai,j ∗ c =

n−1∑
j=1

Ai,j ∗ c =

n−1∑
j=1

A′
i,j ∗ c

=

((
a · 1− b · A′f

)−1 [
c c · · · c

]⊺)
i

= ν ′(αi)

and the second affirmation of the proposition also holds.

Proof of Proposition 3.4. Both inequalities are immediate from the definition

of unrefuted and unsupported assertions respectively. If α is unrefuted:

ν(α) =
c

a
+
c

b

∑
B⊆A

f(B) ∗
∑
β∈A

ν(β)I(T,B, α, β)

 ≥ c

a
;

143

and that α in unsupported:

ν(α) =
c

a
− c

b

∑
B⊆A

f(B) ∗
∑
β∈A

ν(β)I(F,B, α, β)

 ≤ c

a
.

Proof of Theorem 3.7. Clearly, if xc is the solution to

(a · 1− b ·M) ·X =
[
c c · · · c

]⊺
with c > 0, and x1 is the solution to

(a · 1− b ·M) ·X =
[
1 1 · · · 1

]⊺
,

then xc = c ·x1. Since xc and x1 are rank-equivalent, we can fix c = 1 without

loss of generality. Define aprov as follows:

aprov := 1 + |b| ∗ (n− 1)

(
max

1≤i,j≤n
|Mij |

)
.

By the Levy-Desplanques theorem, for every a ≥ aprov, the matrix

(a · 1− b ·M) is invertible. For every a ≥ aprov, we write xa for the unique

solution of the equation

(a · 1− b ·M) ·X =
[
1 1 · · · 1

]⊺
.

For a ≥ aprov, define δij(a) := xai − xaj , where xai is the ith coordinate of xa.

We will show that there is a value a∗ ≥ aprov such that for all a1, a2 ≥ a∗, for

all 1 ≤ i < j ≤ n, δij(a1) and δij(a2) have the same sign, which implies that

xa1 and xa2 are rank-equivalent.

Define the following matrix S|i in function of a, for 1 ≤ i ≤ n:

(S|i(a))ℓk =

(a · 1− b ·M)ℓk if k ̸= i

1 if k = i
(D.1)

That is, S|i is obtained from (a · 1− b ·M) by replacing the ith column with[
1 1 · · · 1

]⊺
. By Cramer’s Rule, we have

xai =
det
(
S|i(a)

)
det (a ∗ 1− b ∗M)

, (D.2)

144 Proofs for Chapter 3

and consequently

δij(a) =
det
(
S|i(a)

)
− det

(
S|j(a)

)
det (a · 1− b ·M)

. (D.3)

Since the determinants det (·) are polynomial expressions, the following are all

polynomials of degree at most n:

� pi(a) = det
(
S|i(a)

)
;

� pj(a) = det
(
S|j(a)

)
; and

� p(a) = det (a · 1− b ·M).

If a ≥ aprov, then since the polynomial p(a) does not vanish, the sign of δij(a)

is fully determined by the expression

det
(
S|i(a)

)
− det

(
S|j(a)

)
. (D.4)

Let pij = pi − pj for 1 ≤ i < j ≤ n. We determine a∗ such that for all a ≥ a∗

and for all 1 ≤ i < j ≤ n, the sign of pij(a) does not change (i.e., is either

always positive or always negative). Note that the sign of pij not changing is

equivalent to the sign of pji not changing, so we can assume i < j without loss

of generality.

In the remainder of the proof, we show that the desired a∗ exists and can be

computed in polynomial time in n. Pick n+1 real numbers V = {a1, . . . , an+1},

all greater than aprov. Compute

pij(ak) = det
(
S|i(ak)

)
− det

(
S|j(ak)

)
(D.5)

for all ak ∈ V and 1 ≤ i < j ≤ n. The set

{pij(ak) | 1 ≤ i < j ≤ n, 1 ≤ k ≤ n+ 1}

can be computed in polynomial time in n, because it involves n(n+ 1) deter-

minants (i.e., det
(
S|i(ak)

)
for 1 ≤ i ≤ n and 1 ≤ k ≤ n+1), each of which can

be computed in polynomial time in n. For all 1 ≤ i < j ≤ n, the polynomial

pij can be computed from {(a1, pij(a1)), . . . , (an+1, pij(an+1))} in polynomial

time using, for example, Lagrange interpolation. The number of polynomials

145

to compute is n(n−1)
2 (i.e., polynomially many), and each of them has at most

n coefficients. We will represent the polynomial pij by its coefficients, i.e., by

⟨(pij)0, . . . , (pij)nij ⟩ where each (pij)ℓ is the coefficient of degree ℓ, and nij ≤ n

is the polynomial’s degree. We now define a∗ij as

a∗ij := max

(
aprov, 2 + max

0≤ℓ≤nij−1

−(pij)ℓ
|(pij)nij |

)
.

By Cauchy’s bound [59] on positive real roots of polynomials, if x0 is a root

of pij , then x0 < a∗ij . This implies that if a1, a2 > a∗ij , then pij(a1) and pij(a2)

have the same sign (i.e., either both positive or both negative), and therefore,

by definition of δij , we have xa1i < xa1j if and only if xa2i < xa2j . Finally, let

a∗ = max
1≤i<j≤n

a∗ij ,

which can be computed in polynomial time. By our construction, if follows

that for all a1, a2 > a∗, the solutions xa1 , xa2 exist and are rank-equivalent.

Finally, we incidentally note that a slightly better bound is obtained by letting

a∗ = max

(
aprov, 2 + max

1≤i<j≤n,0≤ℓ≤nij−1

−(pij)ℓ
|(pij)nij |

)
. (D.6)

This concludes the proof.

146 Proofs for Chapter 3

APPENDIX E

Proofs for Chapter 4

Proof of Theorem 4.2. The following is a well-known NP-complete prob-

lem [51]:

PROBLEM: INDEPENDENT SET

Input: A simple graph G = (V,E); a positive integer k ≤ |V |.
Question: Does G have an independent set I with cardinality

|I| ≥ k?

This problem is also referenced as MAX INDEPENDENT SET in the litera-

ture. There is a straightforward polynomial-time many-one reduction from

the problem INDEPENDENT SET to REPAIR-EXISTENCE(COUNT,2). We show

next a polynomial-time many-one reduction from INDEPENDENT SET to the

complement of REPAIR-CHECKING(COUNT,2). Let G = (V,E), k be an input

to INDEPENDENT SET. Let I be a set of fresh vertices such that |I| = k− 1.

Let F be the set of all edges {u, v} such that u ∈ I and v ∈ V . Clearly, I is

an inclusion-maximal independent set of the graph H := (V ∪ I, E ∪ F), and

the pair H, I is a legal input to REPAIR-CHECKING(COUNT,2). It is now easily

verified that G has an independent set of cardinality ≥ k if and only if I is

not a COUNT-repair of H. This concludes the proof.

Proof of Lemma 4.4. Let G ∈ AGGpoly be a function that is monotone under

priority. Let H, I, q be an input to SUITABILITY-CHECKING(G,b). If G▷w(I) <

147

148 Proofs for Chapter 4

q or I is not an independent set, return “no”; otherwise the saturation condi-

tion in the definition of q-suitable sets remains to be verified. To this end, com-

pute in polynomial time the set S mentioned in Definition 4.8. Then compute

in polynomial time its subset S′ := {v ∈ S | I ∪ {v} is an independent set}.

By Definition 4.5, I is saturated (and hence q-suitable) if and only if there is no

nonempty set J ⊆ V \I such that I∪J is independent and G▷w(I) ≤ G▷w(I∪J).

Consequently, by Definition 4.8, I is saturated if and only if S′ = ∅, which can

be tested in polynomial time.

Proof of Lemma 4.5. Let H, q be an input to REPAIR-EXISTENCE(G,b). We

can compute in polynomial time the value m defined as follows:

m := max{G▷w(J) | J is an independent set of H with |J | ≤ k}. (E.1)

Since G is k-combinatorial, every repair I of H satisfies G▷w(I) = m. Thus,

the answer to REPAIR-EXISTENCE(G,b) is “yes” if q = m, and “no” otherwise.

Proof of Theorem 4.6. Let G ∈ AGGpoly
(k) ∩AGGpoly

mon. Let H, I be an input to

the problem REPAIR-CHECKING(G,b). We can compute, in polynomial time,

the value m defined by (E.1) in the proof of Lemma 4.5. If G▷w(I) < m, return

“no”; otherwise we solve SUITABILITY-CHECKING(G,b) with input H, I, m,

which is in P by Lemma 4.4. In particular, if H, I, m is a “no”-instance of the

problem SUITABILITY-CHECKING(G,b), return “no”. If we have not answered

“no” so far, then G▷w(I) = m and I is an m-suitable set of H; in this case,

return “yes”. It is clear that this decision procedure is correct and runs in

polynomial time.

Proof of Theorem 4.7. Membership in NP follows from Theorem 4.1. The

NP-hardness proof is a polynomial-time many-one reduction from 3SAT. To

this end, let φ be an instance of 3SAT with k clauses. Let (q1, q2, . . . , qn)

with n > k be the output of the task defined in Definition 4.10. Let w

be the weight function that maps each i to qi (1 ≤ i ≤ n), and let Q :=

G▷w({1, . . . , n}). Assume for the sake of contradiction that for some strict

149

subset N of {1, . . . , n}, we have G▷w(N) = Q. Since G is not k-combinatorial,

|N | ≥ k+1. Then the sequence (qi)i∈N of length < n witnesses that G is not k-

combinatorial, contradicting that Definition 4.10 requires a shortest witness.

We conclude by contradiction that N ⊊ {1, 2, . . . , n} implies G▷w(N) ̸= Q.

Since G is ⊆-monotone, it follows that N ⊊ {1, 2, . . . , n} implies G▷w(N) < Q.

The reduction constructs, in polynomial time in the length of φ, a weighted

graph H = ((V,w′), E) as follows. If the ith clause of φ is ℓ1 ∨ ℓ2 ∨ ℓ3, where

ℓ1, ℓ2, ℓ3 are positive or negative literals, then (i, ℓ1), (i, ℓ2), (i, ℓ3) are vertices

of V that form a triangle in E, and these three vertices are mapped to qi by w′.

For every propositional variable p, if (i, p) and (j,¬p) are vertices, then they

are connected by an edge. Finally, we add isolated fresh vertices vk+1, vk+2,

. . . , vn, and let w′(vj) = qj for k+ 1 ≤ j ≤ n. We claim that the following are

equivalent:

1. φ has a satisfying truth assignment; and

2. H has a G-repair I such that G▷w′(I) ≥ Q.

For the direction 1 ⇒ 2 , let τ be a satisfying truth assignment for φ. Con-

struct I as follows. First, I includes {vk+1, vk+2, . . . , vn}. Then, for i ranging

from 1 to the number k of clauses, if the ith clause of φ is ℓ1 ∨ ℓ2 ∨ ℓ3, we pick

g ∈ {1, 2, 3} such that ℓg evaluates to true under τ , and add (i, ℓg) to I. In

this way, I contains exactly one vertex from each triangle. Moreover, since τ

is a truth assignment, we will never insert into I both (i, p) and (j,¬p) for a

same propositional variable p. By construction, I is an independent set of H

containing n elements, and G▷w′(I) = G▷w({1, . . . , n}) = Q.

For the direction 2 ⇒ 1 , let I be a G-repair such that G▷w′(I) ≥ Q. Then,

from our construction of H and our previous result that Q can only be attained

if all qis are aggregated, it follows that for every i ∈ {1, . . . , k}, there is a

literal ℓ in the ith clause such that I contains the vertex (i, ℓ). Moreover,

since I is an independent set, it cannot contain both (i, p) and (j,¬p) for a

same propositional variable p. Then I obviously defines a satisfying truth

assignment for φ. This concludes the proof.

150 Proofs for Chapter 4

APPENDIX F

Experiments with Rustoner

151

152 Experiments with Rustoner

200 400 600 800 1000
number of assertions

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

tim
e(

s)

ABox consistency check, number of axioms between 10 and 20.
density 0.1
density 0.2
density 0.5
density 1.0

Figure F.1: Execution time for ABox consistency check, for TBox size varying

between 10 and 20.

200 400 600 800 1000
number of assertions

0

5

10

15

20

25

tim
e(

s)

Matrix building, number of axioms between 10 and 20.
density 0.1
density 0.2
density 0.5
density 1.0

Figure F.2: Execution time for building the conflict matrix, for TBox size

varying between 10 and 20.

153

200 400 600 800 1000
number of assertions

0

25

50

75

100

125

150

175

tim
e(

s)

Ranking of ABox, number of axioms between 10 and 20.
density 0.1
density 0.2
density 0.5
density 1.0

Figure F.3: Execution time for finding a stabilized assessment, for TBox size

varying between 10 and 20.

200 400 600 800 1000
number of assertions

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

tim
e(

s)

ABox consistency check, number of axioms between 50 and 60.
density 0.1
density 0.2
density 0.5
density 1.0

Figure F.4: Execution time for ABox consistency check, for TBox size varying

between 50 and 60.

154 Experiments with Rustoner

200 400 600 800 1000
number of assertions

0

10

20

30

40

50

60

70

tim
e(

s)

Matrix building, number of axioms between 50 and 60.
density 0.1
density 0.2
density 0.5
density 1.0

Figure F.5: Execution time for building the conflict matrix, for TBox size

varying between 50 and 60.

200 400 600 800 1000
number of assertions

0

100

200

300

400

500

600

700

tim
e(

s)

Ranking of ABox, number of axioms between 50 and 60.
density 0.1
density 0.2
density 0.5
density 1.0

Figure F.6: Execution time for finding a stabilized assessment, for TBox size

varying between 100 and 110

Bibliography

[1] 1000 common verbs in english. https://7esl.com/english-verbs/.

Last Accessed: 2021-08-10.

[2] Amount of data created, consumed and stored 2010-2015. https://www.

statista.com/statistics/871513/worldwide-data-created/. Lat-

est Access: 12-07-2021.

[3] Big data growth statistics to blow your mind (or, what is a

yottabyte anyway?). https://www.aparavi.com/resources-blog/

data-growth-statistics-blow-your-mind. Latest Access: 12-07-

2021.

[4] Top 1500 used english nouns. https://blog.kevmod.com/2016/06/

benchmarking-minimum-vs-average/. Last Accessed: 2021-08-10.

[5] Top 1500 used english nouns. https://www.talkenglish.com/

vocabulary/top-1500-nouns.aspx. Last Accessed: 2021-08-10.

[6] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of

Databases. Addison-Wesley, 1995. URL: http://webdam.inria.fr/

Alice/.

[7] Foto N. Afrati and Phokion G. Kolaitis. Repair checking in inconsis-

tent databases: algorithms and complexity. In Ronald Fagin, editor,

Database Theory - ICDT 2009, 12th International Conference, St. Pe-

tersburg, Russia, March 23-25, 2009, Proceedings, volume 361 of ACM

155

https://7esl.com/english-verbs/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.aparavi.com/resources-blog/data-growth-statistics-blow-your-mind
https://www.aparavi.com/resources-blog/data-growth-statistics-blow-your-mind
https://blog.kevmod.com/2016/06/benchmarking-minimum-vs-average/
https://blog.kevmod.com/2016/06/benchmarking-minimum-vs-average/
https://www.talkenglish.com/vocabulary/top-1500-nouns.aspx
https://www.talkenglish.com/vocabulary/top-1500-nouns.aspx
http://webdam.inria.fr/Alice/
http://webdam.inria.fr/Alice/

156 Bibliography

International Conference Proceeding Series, pages 31–41. ACM, 2009.

doi:10.1145/1514894.1514899.

[8] Geir Agnarsson, Magnús M. Halldórsson, and Elena Losievskaja. Sdp-

based algorithms for maximum independent set problems on hyper-

graphs. Theor. Comput. Sci., 470:1–9, 2013. doi:10.1016/j.tcs.2012.

11.025.

[9] Leila Amgoud and Jonathan Ben-Naim. Ranking-based semantics for

argumentation frameworks. In Weiru Liu, V. S. Subrahmanian, and Jef

Wijsen, editors, Scalable Uncertainty Management - 7th International

Conference, SUM 2013, Washington, DC, USA, September 16-18, 2013.

Proceedings, volume 8078 of Lecture Notes in Computer Science, pages

134–147. Springer, 2013. doi:10.1007/978-3-642-40381-1_11.

[10] Ed Anderson, Zhaojun Bai, Jack J. Dongarra, Anne Greenbaum,

A. McKenney, Jeremy Du Croz, Sven Hammarling, James Demmel,

Christian H. Bischof, and Danny C. Sorensen. LAPACK: a portable

linear algebra library for high-performance computers. In Joanne L.

Martin, Daniel V. Pryor, and Gary Montry, editors, Proceedings Super-

computing ’90, New York, NY, USA, November 12-16, 1990, pages 2–11.

IEEE Computer Society, 1990. doi:10.1109/SUPERC.1990.129995.

[11] Hajnal Andréka, István Németi, and Johan Benthem. Modal languages

and bounded fragments of predicate logic. Journal of Philosophical

Logic, 27, 06 1998. doi:10.1023/A:1004275029985.

[12] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent

query answers in inconsistent databases. In Victor Vianu and Christos H.

Papadimitriou, editors, Proceedings of the Eighteenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, May

31 - June 2, 1999, Philadelphia, Pennsylvania, USA, pages 68–79. ACM

Press, 1999. doi:10.1145/303976.303983.

[13] Marcelo Arenas, Óscar Corcho, Elena Simperl, Markus Strohmaier,

Mathieu d’Aquin, Kavitha Srinivas, Paul Groth, Michel Dumontier, Jeff

Heflin, Krishnaprasad Thirunarayan, and Steffen Staab, editors. The

https://doi.org/10.1145/1514894.1514899
https://doi.org/10.1016/j.tcs.2012.11.025
https://doi.org/10.1016/j.tcs.2012.11.025
https://doi.org/10.1007/978-3-642-40381-1_11
https://doi.org/10.1109/SUPERC.1990.129995
https://doi.org/10.1023/A:1004275029985
https://doi.org/10.1145/303976.303983

157

Semantic Web - ISWC 2015 - 14th International Semantic Web Con-

ference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part

I, volume 9366 of Lecture Notes in Computer Science. Springer, 2015.

doi:10.1007/978-3-319-25007-6.

[14] S. Axler. Linear Algebra Done Right. Undergraduate Texts in Mathe-

matics. Springer International Publishing, 2014. URL: https://books.

google.be/books?id=5qYxBQAAQBAJ.

[15] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,

and Peter F. Patel-Schneider, editors. The Description Logic Handbook:

Theory, Implementation, and Applications. Cambridge University Press,

2003.

[16] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike

Sattler. An Introduction to Description Logic. Cam-

bridge University Press, 2017. URL: http://www.

cambridge.org/de/academic/subjects/computer-science/

knowledge-management-databases-and-data-mining/

introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.

97.

[17] D.A. Belsley, E. Kuh, and R.E. Welsch. Regression Diagnostics: Iden-

tifying Influential Data and Sources of Collinearity. Wiley Series in

Probability and Statistics. Wiley, 2004. URL: https://books.google.

be/books?id=0wImTJMwNgwC.

[18] Leopoldo E. Bertossi. Database repairs and consistent query answering:

Origins and further developments. In Dan Suciu, Sebastian Skritek,

and Christoph Koch, editors, Proceedings of the 38th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, PODS

2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages 48–

58. ACM, 2019. doi:10.1145/3294052.3322190.

[19] Leopoldo E. Bertossi, Loreto Bravo, Enrico Franconi, and Andrei

Lopatenko. The complexity and approximation of fixing numerical at-

tributes in databases under integrity constraints. Inf. Syst., 33(4-5):407–

434, 2008. doi:10.1016/j.is.2008.01.005.

https://doi.org/10.1007/978-3-319-25007-6
https://books.google.be/books?id=5qYxBQAAQBAJ
https://books.google.be/books?id=5qYxBQAAQBAJ
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
https://books.google.be/books?id=0wImTJMwNgwC
https://books.google.be/books?id=0wImTJMwNgwC
https://doi.org/10.1145/3294052.3322190
https://doi.org/10.1016/j.is.2008.01.005

158 Bibliography

[20] Meghyn Bienvenu. Inconsistency-tolerant ontology-based data access

revisited: Taking mappings into account. In Magdalena Ortiz and

Thomas Schneider, editors, Proceedings of the 31st International Work-

shop on Description Logics co-located with 16th International Confer-

ence on Principles of Knowledge Representation and Reasoning (KR

2018), Tempe, Arizona, US, October 27th - to - 29th, 2018., volume

2211 of CEUR Workshop Proceedings. CEUR-WS.org, 2018. URL:

http://ceur-ws.org/Vol-2211/paper-41.pdf.

[21] Meghyn Bienvenu. Inconsistency-tolerant ontology-based data access

revisited: Taking mappings into account. In Lang [71], pages 1721–1729.

doi:10.24963/ijcai.2018/238.

[22] Meghyn Bienvenu, Camille Bourgaux, and François Goasdoué. Query-

ing inconsistent description logic knowledge bases under preferred re-

pair semantics. In Carla E. Brodley and Peter Stone, editors, Pro-

ceedings of the Twenty-Eighth AAAI Conference on Artificial Intelli-

gence, July 27 -31, 2014, Québec City, Québec, Canada, pages 996–

1002. AAAI Press, 2014. URL: http://www.aaai.org/ocs/index.php/

AAAI/AAAI14/paper/view/8231.

[23] Meghyn Bienvenu, Camille Bourgaux, and François Goasdoué. Com-

puting and explaining query answers over inconsistent dl-lite knowledge

bases. J. Artif. Intell. Res., 64:563–644, 2019. doi:10.1613/jair.1.

11395.

[24] Meghyn Bienvenu, Pierre Bourhis, Marie-Laure Mugnier, Sophie Tison,

and Federico Ulliana. Ontology-mediated query answering for key-value

stores. In Carles Sierra, editor, Proceedings of the Twenty-Sixth Inter-

national Joint Conference on Artificial Intelligence, IJCAI 2017, Mel-

bourne, Australia, August 19-25, 2017, pages 844–851. ijcai.org, 2017.

doi:10.24963/ijcai.2017/117.

[25] Meghyn Bienvenu and Riccardo Rosati. Tractable approximations of

consistent query answering for robust ontology-based data access. In

Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd Inter-

national Joint Conference on Artificial Intelligence, Beijing, China,

http://ceur-ws.org/Vol-2211/paper-41.pdf
https://doi.org/10.24963/ijcai.2018/238
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8231
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8231
https://doi.org/10.1613/jair.1.11395
https://doi.org/10.1613/jair.1.11395
https://doi.org/10.24963/ijcai.2017/117

159

August 3-9, 2013, pages 775–781. IJCAI/AAAI, 2013. URL: http:

//www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6904.

[26] Philip Bohannon, Michael Flaster, Wenfei Fan, and Rajeev Rastogi.

A cost-based model and effective heuristic for repairing constraints by

value modification. In Fatma Özcan, editor, Proceedings of the ACM

SIGMOD International Conference on Management of Data, Baltimore,

Maryland, USA, June 14-16, 2005, pages 143–154. ACM, 2005. doi:

10.1145/1066157.1066175.

[27] Elise Bonzon, Jérôme Delobelle, Sébastien Konieczny, and Nicolas

Maudet. A comparative study of ranking-based semantics for abstract

argumentation. In Dale Schuurmans and Michael P. Wellman, edi-

tors, Proceedings of the Thirtieth AAAI Conference on Artificial In-

telligence, February 12-17, 2016, Phoenix, Arizona, USA, pages 914–

920. AAAI Press, 2016. URL: http://www.aaai.org/ocs/index.php/

AAAI/AAAI16/paper/view/12465.

[28] Richard Booth, Martin Caminada, Mikolaj Podlaszewski, and Iyad Rah-

wan. Quantifying disagreement in argument-based reasoning. In Wiebe

van der Hoek, Lin Padgham, Vincent Conitzer, and Michael Winikoff,

editors, International Conference on Autonomous Agents and Multiagent

Systems, AAMAS 2012, Valencia, Spain, June 4-8, 2012 (3 Volumes),

pages 493–500. IFAAMAS, 2012. URL: http://dl.acm.org/citation.

cfm?id=2343647.

[29] Elena Botoeva, Diego Calvanese, Benjamin Cogrel, Julien Corman, and

Guohui Xiao. A generalized framework for ontology-based data access.

In Chiara Ghidini, Bernardo Magnini, Andrea Passerini, and Paolo

Traverso, editors, AI*IA 2018 - Advances in Artificial Intelligence -

XVIIth International Conference of the Italian Association for Artificial

Intelligence, Trento, Italy, November 20-23, 2018, Proceedings, volume

11298 of Lecture Notes in Computer Science, pages 166–180. Springer,

2018. doi:10.1007/978-3-030-03840-3_13.

[30] Marco Calautti, Leonid Libkin, and Andreas Pieris. An operational

approach to consistent query answering. In Jan Van den Bussche

http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6904
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6904
https://doi.org/10.1145/1066157.1066175
https://doi.org/10.1145/1066157.1066175
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12465
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12465
http://dl.acm.org/citation.cfm?id=2343647
http://dl.acm.org/citation.cfm?id=2343647
https://doi.org/10.1007/978-3-030-03840-3_13

160 Bibliography

and Marcelo Arenas, editors, Proceedings of the 37th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, Hous-

ton, TX, USA, June 10-15, 2018, pages 239–251. ACM, 2018. doi:

10.1145/3196959.3196966.

[31] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio

Lenzerini, and Riccardo Rosati. Tractable reasoning and efficient query

answering in description logics: The DL-Lite family. J. Autom. Reason.,

39(3):385–429, 2007. doi:10.1007/s10817-007-9078-x.

[32] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and

Moshe Y. Vardi. Query processing under GLAV mappings for rela-

tional and graph databases. Proc. VLDB Endow., 6(2):61–72, 2012.

URL: http://www.vldb.org/pvldb/vol6/p61-calvanese.pdf, doi:

10.14778/2535568.2448940.

[33] Diego Calvanese, Martin Giese, Dag Hovland, and Martin Rezk.

Ontology-based integration of cross-linked datasets. In Arenas et al. [13],

pages 199–216. doi:10.1007/978-3-319-25007-6_12.

[34] Jiahao Chen and Jarrett Revels. Robust benchmarking in noisy en-

vironments. CoRR, abs/1608.04295, 2016. URL: http://arxiv.org/

abs/1608.04295, arXiv:1608.04295.

[35] Peter P. Chen. The entity-relationship model - toward a unified view

of data. ACM Trans. Database Syst., 1(1):9–36, 1976. doi:10.1145/

320434.320440.

[36] Jan Chomicki. Consistent query answering: Five easy pieces. In Thomas

Schwentick and Dan Suciu, editors, Database Theory - ICDT 2007, 11th

International Conference, Barcelona, Spain, January 10-12, 2007, Pro-

ceedings, volume 4353 of Lecture Notes in Computer Science, pages 1–17.

Springer, 2007. doi:10.1007/11965893_1.

[37] Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity main-

tenance using tuple deletions. Inf. Comput., 197(1-2):90–121, 2005.

doi:10.1016/j.ic.2004.04.007.

https://doi.org/10.1145/3196959.3196966
https://doi.org/10.1145/3196959.3196966
https://doi.org/10.1007/s10817-007-9078-x
http://www.vldb.org/pvldb/vol6/p61-calvanese.pdf
https://doi.org/10.14778/2535568.2448940
https://doi.org/10.14778/2535568.2448940
https://doi.org/10.1007/978-3-319-25007-6_12
http://arxiv.org/abs/1608.04295
http://arxiv.org/abs/1608.04295
http://arxiv.org/abs/1608.04295
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/320434.320440
https://doi.org/10.1007/11965893_1
https://doi.org/10.1016/j.ic.2004.04.007

161

[38] Jan Chomicki, Jerzy Marcinkowski, and Slawomir Staworko. Computing

consistent query answers using conflict hypergraphs. In David A. Gross-

man, Luis Gravano, ChengXiang Zhai, Otthein Herzog, and David A.

Evans, editors, Proceedings of the 2004 ACM CIKM International Con-

ference on Information and Knowledge Management, Washington, DC,

USA, November 8-13, 2004, pages 417–426. ACM, 2004. doi:10.1145/

1031171.1031254.

[39] Sik Chun, Joey Lam, Jeff Z. Pan, D. Sleeman, and W. Vasconcelos. On-

tology inconsistency handling : Ranking and rewriting axioms. Technical

report, 2006.

[40] Marco Console and Maurizio Lenzerini. Data quality in ontology-based

data access: The case of consistency. In Carla E. Brodley and Peter

Stone, editors, Proceedings of the Twenty-Eighth AAAI Conference on

Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada.,

pages 1020–1026. AAAI Press, 2014. URL: http://www.aaai.org/ocs/

index.php/AAAI/AAAI14/paper/view/8552.

[41] James Cooley and John Tukey. An algorithm for the machine calculation

of complex fourier series. Mathematics of Computation, 19(90):297–301,

1965.

[42] Vilhelm Dahllöf and Peter Jonsson. An algorithm for counting max-

imum weighted independent sets and its applications. In David Epp-

stein, editor, Proceedings of the Thirteenth Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA,

USA, pages 292–298. ACM/SIAM, 2002. URL: http://dl.acm.org/

citation.cfm?id=545381.545420.

[43] Cristobald de Kerchove and Paul Van Dooren. The pagetrust algorithm:

How to rank web pages when negative links are allowed? In Proceedings

of the SIAM International Conference on Data Mining, SDM 2008, April

24-26, 2008, Atlanta, Georgia, USA, pages 346–352. SIAM, 2008. doi:

10.1137/1.9781611972788.31.

[44] Ala Djeddai, Hassina Seridi, and Tarek Khadir. A new dl-lite N bool

probabilistic extension using belief. In Thomas Lukasiewicz, Rafael

https://doi.org/10.1145/1031171.1031254
https://doi.org/10.1145/1031171.1031254
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8552
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8552
http://dl.acm.org/citation.cfm?id=545381.545420
http://dl.acm.org/citation.cfm?id=545381.545420
https://doi.org/10.1137/1.9781611972788.31
https://doi.org/10.1137/1.9781611972788.31

162 Bibliography

Peñaloza, and Anni-Yasmin Turhan, editors, Proceedings of the First

Workshop on Logics for Reasoning about Preferences, Uncertainty, and

Vagueness, PRUV 2014, co-located with 7th International Joint Con-

ference on Automated Reasoning (IJCAR 2014), Vienna, Austria, July

23-24, 2014, volume 1205 of CEUR Workshop Proceedings, pages 88–

100. CEUR-WS.org, 2014. URL: http://ceur-ws.org/Vol-1205/

00010088.pdf.

[45] Jianfeng Du and Guilin Qi. Tractable computation of representa-

tive abox repairs in description logic ontologies. In Songmao Zhang,

Martin Wirsing, and Zili Zhang, editors, Knowledge Science, Engi-

neering and Management - 8th International Conference, KSEM 2015,

Chongqing, China, October 28-30, 2015, Proceedings, volume 9403 of

Lecture Notes in Computer Science, pages 28–39. Springer, 2015. doi:

10.1007/978-3-319-25159-2_3.

[46] Jianfeng Du, Guilin Qi, and Yi-Dong Shen. Weight-based consistent

query answering over inconsistent SHIQ knowledge bases. Knowl. Inf.

Syst., 34(2):335–371, 2013. doi:10.1007/s10115-012-0478-9.

[47] Ronald Fagin, Benny Kimelfeld, and Phokion G. Kolaitis. Dichotomies

in the complexity of preferred repairs. In Tova Milo and Diego Cal-

vanese, editors, Proceedings of the 34th ACM Symposium on Principles

of Database Systems, PODS 2015, Melbourne, Victoria, Australia, May

31 - June 4, 2015, pages 3–15. ACM, 2015. doi:10.1145/2745754.

2745762.

[48] Sergio Flesca, Filippo Furfaro, and Francesco Parisi. Querying and re-

pairing inconsistent numerical databases. ACM Trans. Database Syst.,

35(2):14:1–14:50, 2010. doi:10.1145/1735886.1735893.

[49] Matteo Frigo and Steven G. Johnson. The design and implementation

of FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. Special issue

on “Program Generation, Optimization, and Platform Adaptation”.

[50] Woon Siong Gan. Fast Fourier Transform, pages 17–20. Springer Sin-

gapore, Singapore, 2020. doi:10.1007/978-981-10-5550-8_5.

http://ceur-ws.org/Vol-1205/00010088.pdf
http://ceur-ws.org/Vol-1205/00010088.pdf
https://doi.org/10.1007/978-3-319-25159-2_3
https://doi.org/10.1007/978-3-319-25159-2_3
https://doi.org/10.1007/s10115-012-0478-9
https://doi.org/10.1145/2745754.2745762
https://doi.org/10.1145/2745754.2745762
https://doi.org/10.1145/1735886.1735893
https://doi.org/10.1007/978-981-10-5550-8_5

163

[51] M. R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[52] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang.

Hermit: An OWL 2 reasoner. J. Autom. Reason., 53(3):245–269, 2014.

doi:10.1007/s10817-014-9305-1.

[53] Erich Grädel. On the restraining power of guards. J. Symb. Log.,

64(4):1719–1742, 1999. doi:10.2307/2586808.

[54] Sergio Greco and Cristian Molinaro. Probabilistic query answering over

inconsistent databases. Ann. Math. Artif. Intell., 64(2-3):185–207, 2012.

doi:10.1007/s10472-012-9287-9.

[55] Eric Gribkoff, Guy Van den Broeck, and Dan Suciu. The most probable

database problem. In Proceedings of the First International Workshop

on Big Uncertain Data (BUDA), June 2014. URL: http://starai.cs.

ucla.edu/papers/GribkoffBUDA14.pdf.

[56] Maxim Haddad and Diego Calvanese. Extending dl-lite a with (single-

ton) nominals. In Thomas Eiter, Birte Glimm, Yevgeny Kazakov, and

Markus Krötzsch, editors, Informal Proceedings of the 26th International

Workshop on Description Logics, Ulm, Germany, July 23 - 26, 2013,

volume 1014 of CEUR Workshop Proceedings, pages 704–723. CEUR-

WS.org, 2013. URL: http://ceur-ws.org/Vol-1014/paper_46.pdf.

[57] Magnús M. Halldórsson and Elena Losievskaja. Independent sets in

bounded-degree hypergraphs. Discret. Appl. Math., 157(8):1773–1786,

2009. doi:10.1016/j.dam.2008.11.013.

[58] John L. Hennessy and David A. Patterson. Computer Architecture - A

Quantitative Approach, 5th Edition. Morgan Kaufmann, 2012.

[59] Holly P. Hirst and Wade T. Macey. Bounding the roots of polynomials.

The College Mathematics Journal, 28(4):292–295, 1997. URL: http:

//www.jstor.org/stable/2687152.

https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.2307/2586808
https://doi.org/10.1007/s10472-012-9287-9
http://starai.cs.ucla.edu/papers/GribkoffBUDA14.pdf
http://starai.cs.ucla.edu/papers/GribkoffBUDA14.pdf
http://ceur-ws.org/Vol-1014/paper_46.pdf
https://doi.org/10.1016/j.dam.2008.11.013
http://www.jstor.org/stable/2687152
http://www.jstor.org/stable/2687152

164 Bibliography

[60] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with in-

dividuals for the description logic SHIQ. CoRR, cs.LO/0005017, 2000.

URL: https://arxiv.org/abs/cs/0005017.

[61] J. Humpherys and T.J. Jarvis. Foundations of Applied Mathematics,

Volume 2: Algorithms, Approximation, Optimization. Other Titles in

Applied Mathematics. SIAM, 2020. URL: https://books.google.be/

books?id=yjbWDwAAQBAJ.

[62] Anthony Hunter and Matthias Thimm. Probabilistic reasoning with

abstract argumentation frameworks. J. Artif. Intell. Res., 59:565–611,

2017. doi:10.1613/jair.5393.

[63] Ihab F. Ilyas and Xu Chu. Data Cleaning. ACM, 2019. doi:10.1145/

3310205.

[64] E. Isaacson and H.B. Keller. Analysis of Numerical Methods. Dover

Books on Mathematics. Dover Publications, 1994. URL: https://

books.google.be/books?id=y77n2ySMJHUC.

[65] Akihisa Kako, Takao Ono, Tomio Hirata, and Magnús M. Halldórsson.

Approximation algorithms for the weighted independent set problem

in sparse graphs. Discret. Appl. Math., 157(4):617–626, 2009. doi:

10.1016/j.dam.2008.08.027.

[66] Benny Kimelfeld, Ester Livshits, and Liat Peterfreund. Detecting ambi-

guity in prioritized database repairing. In Michael Benedikt and Giorgio

Orsi, editors, 20th International Conference on Database Theory, ICDT

2017, March 21-24, 2017, Venice, Italy, volume 68 of LIPIcs, pages

17:1–17:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

doi:10.4230/LIPIcs.ICDT.2017.17.

[67] Steve Klabnik and Carol Nichols. The Rust Programming Language. No

Starch Press, USA, 2018.

[68] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment.

J. ACM, 46(5):604–632, 1999. URL: http://doi.acm.org/10.1145/

324133.324140, doi:10.1145/324133.324140.

https://arxiv.org/abs/cs/0005017
https://books.google.be/books?id=yjbWDwAAQBAJ
https://books.google.be/books?id=yjbWDwAAQBAJ
https://doi.org/10.1613/jair.5393
https://doi.org/10.1145/3310205
https://doi.org/10.1145/3310205
https://books.google.be/books?id=y77n2ySMJHUC
https://books.google.be/books?id=y77n2ySMJHUC
https://doi.org/10.1016/j.dam.2008.08.027
https://doi.org/10.1016/j.dam.2008.08.027
https://doi.org/10.4230/LIPIcs.ICDT.2017.17
http://doi.acm.org/10.1145/324133.324140
http://doi.acm.org/10.1145/324133.324140
https://doi.org/10.1145/324133.324140

165

[69] Vladimir Kolovski, Bijan Parsia, and Evren Sirin. Extending the

SHOIQ(D) tableaux with dl-safe rules: First results. In Bijan Par-

sia, Ulrike Sattler, and David Toman, editors, Proceedings of the 2006

International Workshop on Description Logics (DL2006), Windermere,

Lake District, UK, May 30 - June 1, 2006, volume 189 of CEUR Work-

shop Proceedings. CEUR-WS.org, 2006. URL: http://ceur-ws.org/

Vol-189/submission_26.pdf.

[70] Sik Chun Lam, Jeff Z. Pan, Derek H. Sleeman, and Wamberto Weber

Vasconcelos. A fine-grained approach to resolving unsatisfiable ontolo-

gies. In 2006 IEEE / WIC / ACM International Conference on Web

Intelligence (WI 2006), 18-22 December 2006, Hong Kong, China, pages

428–434. IEEE Computer Society, 2006. doi:10.1109/WI.2006.11.

[71] Jérôme Lang, editor. Proceedings of the Twenty-Seventh International

Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19,

2018, Stockholm, Sweden. ijcai.org, 2018. URL: http://www.ijcai.

org/proceedings/2018/.

[72] S. Lang. Linear Algebra. Springer, 2014. URL: https://books.google.

be/books?id=k_QlswEACAAJ.

[73] Dirk Leinders, Maarten Marx, Jerzy Tyszkiewicz, and Jan Van den

Bussche. The semijoin algebra and the guarded fragment. Jour-

nal of Logic, Language and Information, 14(3):331–343, 2005. doi:

10.1007/s10849-005-5789-8.

[74] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi,

and Domenico Fabio Savo. Inconsistency-tolerant semantics for descrip-

tion logics. In Pascal Hitzler and Thomas Lukasiewicz, editors, Web Rea-

soning and Rule Systems - Fourth International Conference, RR 2010,

Bressanone/Brixen, Italy, September 22-24, 2010. Proceedings, volume

6333 of Lecture Notes in Computer Science, pages 103–117. Springer,

2010. doi:10.1007/978-3-642-15918-3_9.

[75] Domenico Lembo, José Mora, Riccardo Rosati, Domenico Fabio Savo,

and Evgenij Thorstensen. Mapping analysis in ontology-based data ac-

http://ceur-ws.org/Vol-189/submission_26.pdf
http://ceur-ws.org/Vol-189/submission_26.pdf
https://doi.org/10.1109/WI.2006.11
http://www.ijcai.org/proceedings/2018/
http://www.ijcai.org/proceedings/2018/
https://books.google.be/books?id=k_QlswEACAAJ
https://books.google.be/books?id=k_QlswEACAAJ
https://doi.org/10.1007/s10849-005-5789-8
https://doi.org/10.1007/s10849-005-5789-8
https://doi.org/10.1007/978-3-642-15918-3_9

166 Bibliography

cess: Algorithms and complexity. In Arenas et al. [13], pages 217–234.

doi:10.1007/978-3-319-25007-6_13.

[76] Leonid Libkin. Elements of Finite Model Theory. Texts in

Theoretical Computer Science. An EATCS Series. Springer, 2004.

URL: http://www.cs.toronto.edu/%7Elibkin/fmt, doi:10.1007/

978-3-662-07003-1.

[77] Ester Livshits and Benny Kimelfeld. Counting and enumerating (pre-

ferred) database repairs. In Emanuel Sallinger, Jan Van den Bussche,

and Floris Geerts, editors, Proceedings of the 36th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, PODS

2017, Chicago, IL, USA, May 14-19, 2017, pages 289–301. ACM, 2017.

doi:10.1145/3034786.3056107.

[78] Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. Computing opti-

mal repairs for functional dependencies. ACM Trans. Database Syst.,

45(1):4:1–4:46, 2020. doi:10.1145/3360904.

[79] Andrei Lopatenko and Leopoldo E. Bertossi. Complexity of consistent

query answering in databases under cardinality-based and incremental

repair semantics (extended version). CoRR, abs/1605.07159, 2016. URL:

http://arxiv.org/abs/1605.07159, arXiv:1605.07159.

[80] J. Loughry, J.I. van Hemert, and L. Schoofs. Efficiently enumerating the

subsets of a set.

[81] Dany Maslowski and Jef Wijsen. Uncertainty that counts. In Henning

Christiansen, Guy De Tré, Adnan Yazici, Slawomir Zadrozny, Troels

Andreasen, and Henrik Legind Larsen, editors, Flexible Query Answer-

ing Systems - 9th International Conference, FQAS 2011, Ghent, Bel-

gium, October 26-28, 2011 Proceedings, volume 7022 of Lecture Notes

in Computer Science, pages 25–36. Springer, 2011. doi:10.1007/

978-3-642-24764-4_3.

[82] Marie-Laure Mugnier, Marie-Christine Rousset, and Federico Ulliana.

Ontology-mediated queries for NOSQL databases. In Dale Schuurmans

and Michael P. Wellman, editors, Proceedings of the Thirtieth AAAI

https://doi.org/10.1007/978-3-319-25007-6_13
http://www.cs.toronto.edu/%7Elibkin/fmt
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1145/3034786.3056107
https://doi.org/10.1145/3360904
http://arxiv.org/abs/1605.07159
http://arxiv.org/abs/1605.07159
https://doi.org/10.1007/978-3-642-24764-4_3
https://doi.org/10.1007/978-3-642-24764-4_3

167

Conference on Artificial Intelligence, February 12-17, 2016, Phoenix,

Arizona, USA, pages 1051–1057. AAAI Press, 2016. URL: http://

www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12395.

[83] Linh Anh Nguyen. Designing a tableau reasoner for description logics.

In Hoai An Le Thi, Ngoc Thanh Nguyen, and Tien Van Do, editors, Ad-

vanced Computational Methods for Knowledge Engineering - Proceedings

of 3rd International Conference on Computer Science, Applied Mathe-

matics and Applications - ICCSAMA 2015, Metz, France, 11-13 May,

2015, volume 358 of Advances in Intelligent Systems and Computing,

pages 321–333. Springer, 2015. doi:10.1007/978-3-319-17996-4_29.

[84] Linh Anh Nguyen and Joanna Golinska-Pilarek. An ExpTime tableau

method for dealing with nominals and qualified number restrictions

in deciding the description logic SHOQ. Fundam. Informaticae,

135(4):433–449, 2014. doi:10.3233/FI-2014-1133.

[85] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

pagerank citation ranking: Bringing order to the web. Technical Report

1999-66, Stanford InfoLab, November 1999. Previous number = SIDL-

WP-1999-0120. URL: http://ilpubs.stanford.edu:8090/422/.

[86] Francesco Pagliarecci, Luca Spalazzi, and Gilberto Taccari. Reasoning

with temporal aboxes: Combining dl-lite core with CTL. In Thomas

Eiter, Birte Glimm, Yevgeny Kazakov, and Markus Krötzsch, editors,

Informal Proceedings of the 26th International Workshop on Descrip-

tion Logics, Ulm, Germany, July 23 - 26, 2013, volume 1014 of CEUR

Workshop Proceedings, pages 885–897. CEUR-WS.org, 2013. URL:

http://ceur-ws.org/Vol-1014/paper_71.pdf.

[87] Victor Y. Pan. How bad are vandermonde matrices? SIAM J. Matrix

Anal. Appl., 37(2):676–694, 2016. doi:10.1137/15M1030170.

[88] Horacio Tellez Perez. rustoner source code. https://github.com/

hatellezp/rustoner. Accessed: 2021-05-26.

[89] Horacio Tellez Perez and Jef Wijsen. Connecting databases and on-

tologies: A data quality perspective. In Mantas Simkus and Grant E.

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12395
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12395
https://doi.org/10.1007/978-3-319-17996-4_29
https://doi.org/10.3233/FI-2014-1133
http://ilpubs.stanford.edu:8090/422/
http://ceur-ws.org/Vol-1014/paper_71.pdf
https://doi.org/10.1137/15M1030170
https://github.com/hatellezp/rustoner
https://github.com/hatellezp/rustoner

168 Bibliography

Weddell, editors, Proceedings of the 32nd International Workshop on

Description Logics, Oslo, Norway, June 18-21, 2019, volume 2373

of CEUR Workshop Proceedings. CEUR-WS.org, 2019. URL: http:

//ceur-ws.org/Vol-2373/paper-26.pdf.

[90] Horacio Tellez Perez and Jef Wijsen. Logic-based ranking of asser-

tions in inconsistent ABoxes. In Stefan Borgwardt and Thomas Meyer,

editors, Proceedings of the 33rd International Workshop on Descrip-

tion Logics (DL 2020) co-located with the 17th International Confer-

ence on Principles of Knowledge Representation and Reasoning (KR

2020), Online Event [Rhodes, Greece], September 12th to 14th, 2020, vol-

ume 2663 of CEUR Workshop Proceedings. CEUR-WS.org, 2020. URL:

http://ceur-ws.org/Vol-2663/paper-20.pdf.

[91] Horacio Tellez Perez and Jef Wijsen. Generalized weighted re-

pairs. In Troels Andreasen, Guy De Tré, Janusz Kacprzyk, Henrik

Legind Larsen, Gloria Bordogna, and S lawomir Zadrożny, editors, Flex-

ible Query Answering Systems - 14th International Conference, FQAS

2021, Bratislava, Slovakia, September 19-21, 2021, Proceedings, volume

12871 of Lecture Notes in Computer Science, pages 67–81. Springer,

2021. doi:https://doi.org/10.1007/978-3-030-86967-0_6.

[92] Chris Phillips. The performance of the BLAS and LAPACK on a shared

memory scalar multiprocessor. Parallel Comput., 17(6-7):751–761, 1991.

doi:10.1016/S0167-8191(05)80064-X.

[93] G.M. Phillips. Interpolation and Approximation by Polynomials. CMS

Books in Mathematics. Springer, 2003. URL: https://books.google.

be/books?id=87vciTxMcF8C.

[94] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De

Giacomo, Maurizio Lenzerini, and Riccardo Rosati. Linking data

to ontologies. J. Data Semantics, 10:133–173, 2008. doi:10.1007/

978-3-540-77688-8_5.

[95] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Nu-

merical Recipes in C: The Art of Scientific Computing. Numerical

http://ceur-ws.org/Vol-2373/paper-26.pdf
http://ceur-ws.org/Vol-2373/paper-26.pdf
http://ceur-ws.org/Vol-2663/paper-20.pdf
https://doi.org/https://doi.org/10.1007/978-3-030-86967-0_6
https://doi.org/10.1016/S0167-8191(05)80064-X
https://books.google.be/books?id=87vciTxMcF8C
https://books.google.be/books?id=87vciTxMcF8C
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1007/978-3-540-77688-8_5

169

Recipes in C book set. Cambridge University Press, 1992. URL:

https://books.google.be/books?id=2WFJyAEACAAJ.

[96] Badran Raddaoui. On the measure of conflicts: an argumentation-based

framework. J. Appl. Non Class. Logics, 28(2-3):240–259, 2018. doi:

10.1080/11663081.2018.1457255.

[97] Michael Revers. A survey on lagrange interpolation based on equally

spaced nodes. In Martin D. Buhmann and Detlef H. Mache, editors, Ad-

vanced Problems in Constructive Approximation, pages 153–164, Basel,

2003. Birkhäuser Basel.

[98] Riccardo Rosati. Finite model reasoning in dl-lite. In Sean Bechhofer,

Manfred Hauswirth, Jörg Hoffmann, and Manolis Koubarakis, editors,

The Semantic Web: Research and Applications, 5th European Semantic

Web Conference, ESWC 2008, Tenerife, Canary Islands, Spain, June 1-

5, 2008, Proceedings, volume 5021 of Lecture Notes in Computer Science,

pages 215–229. Springer, 2008. doi:10.1007/978-3-540-68234-9_18.

[99] Riccardo Rosati. On the complexity of dealing with inconsistency in

description logic ontologies. In Toby Walsh, editor, IJCAI 2011, Pro-

ceedings of the 22nd International Joint Conference on Artificial Intelli-

gence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 1057–1062.

IJCAI/AAAI, 2011. doi:10.5591/978-1-57735-516-8/IJCAI11-181.

[100] Juan F. Sequeda. Integrating relational databases with the seman-

tic web: A reflection. In Giovambattista Ianni, Domenico Lembo,

Leopoldo E. Bertossi, Wolfgang Faber, Birte Glimm, Georg Gottlob, and

Steffen Staab, editors, Reasoning Web. Semantic Interoperability on the

Web - 13th International Summer School 2017, London, UK, July 7-11,

2017, Tutorial Lectures, volume 10370 of Lecture Notes in Computer Sci-

ence, pages 68–120. Springer, 2017. doi:10.1007/978-3-319-61033-7\

_4.

[101] Juan F. Sequeda, Syed Hamid Tirmizi, Óscar Corcho, and Daniel P.

Miranker. Survey of directly mapping SQL databases to the seman-

tic web. Knowledge Eng. Review, 26(4):445–486, 2011. doi:10.1017/

S0269888911000208.

https://books.google.be/books?id=2WFJyAEACAAJ
https://doi.org/10.1080/11663081.2018.1457255
https://doi.org/10.1080/11663081.2018.1457255
https://doi.org/10.1007/978-3-540-68234-9_18
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-181
https://doi.org/10.1007/978-3-319-61033-7_4
https://doi.org/10.1007/978-3-319-61033-7_4
https://doi.org/10.1017/S0269888911000208
https://doi.org/10.1017/S0269888911000208

170 Bibliography

[102] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The semantic web

revisited. IEEE Intell. Syst., 21(3):96–101, 2006. doi:10.1109/MIS.

2006.62.

[103] Gerardo I. Simari, Paulo Shakarian, and Marcelo A. Falappa. A quan-

titative approach to belief revision in structured probabilistic argu-

mentation. Ann. Math. Artif. Intell., 76(3-4):375–408, 2016. doi:

10.1007/s10472-015-9476-4.

[104] Dimitrios-Emmanuel Spanos, Periklis Stavrou, and Nikolas Mitrou.

Bringing relational databases into the semantic web: A survey. Semantic

Web, 3(2):169–209, 2012. doi:10.3233/SW-2011-0055.

[105] Slawek Staworko, Jan Chomicki, and Jerzy Marcinkowski. Priori-

tized repairing and consistent query answering in relational databases.

Ann. Math. Artif. Intell., 64(2-3):209–246, 2012. doi:10.1007/

s10472-012-9288-8.

[106] Slawomir Staworko and Jan Chomicki. Consistent query answers in the

presence of universal constraints. Inf. Syst., 35(1):1–22, 2010. doi:

10.1016/j.is.2009.03.004.

[107] Andreas Steigmiller. Optimisation of tableau-based reasoning systems

for expressive description logics. PhD thesis, University of Ulm, Ger-

many, 2016. URL: https://nbn-resolving.org/urn:nbn:de:bsz:

289-oparu-4042-6.

[108] Andreas Steigmiller, Thorsten Liebig, and Birte Glimm. Konclude: Sys-

tem description. J. Web Semant., 27-28:78–85, 2014. doi:10.1016/j.

websem.2014.06.003.

[109] Kai Sun. An algorithm framework for the exact solution and im-

proved approximation of the maximum weighted independent set prob-

lem. CoRR, abs/2008.01961, 2020. URL: https://arxiv.org/abs/

2008.01961, arXiv:2008.01961.

[110] Abdelmoutia Telli, Salem Benferhat, Mustapha Bourahla, Zied

Bouraoui, and Karim Tabia. Polynomial algorithms for computing a

https://doi.org/10.1109/MIS.2006.62
https://doi.org/10.1109/MIS.2006.62
https://doi.org/10.1007/s10472-015-9476-4
https://doi.org/10.1007/s10472-015-9476-4
https://doi.org/10.3233/SW-2011-0055
https://doi.org/10.1007/s10472-012-9288-8
https://doi.org/10.1007/s10472-012-9288-8
https://doi.org/10.1016/j.is.2009.03.004
https://doi.org/10.1016/j.is.2009.03.004
https://nbn-resolving.org/urn:nbn:de:bsz:289-oparu-4042-6
https://nbn-resolving.org/urn:nbn:de:bsz:289-oparu-4042-6
https://doi.org/10.1016/j.websem.2014.06.003
https://doi.org/10.1016/j.websem.2014.06.003
https://arxiv.org/abs/2008.01961
https://arxiv.org/abs/2008.01961
http://arxiv.org/abs/2008.01961

171

single preferred assertional-based repair. Künstliche Intell., 31(1):15–

30, 2017. doi:10.1007/s13218-016-0466-4.

[111] Balder ten Cate and Massimo Franceschet. Guarded fragments with

constants. Journal of Logic, Language and Information, 14(3):281–288,

2005. doi:10.1007/s10849-005-5787-x.

[112] Camilo Thorne, Raffaella Bernardi, and Diego Calvanese. Designing

efficient controlled languages for ontologies. In Computing Meaning:

Volume 4, pages 149–173. Springer Netherlands, Dordrecht, 2014. doi:

10.1007/978-94-007-7284-7_9.

[113] Vincent A. Traag, Yurii E. Nesterov, and Paul Van Dooren. Ex-

ponential ranking: Taking into account negative links. In Leonard

Bolc, Marek Makowski, and Adam Wierzbicki, editors, Social Informat-

ics - Second International Conference, SocInfo 2010, Laxenburg, Aus-

tria, October 27-29, 2010. Proceedings, volume 6430 of Lecture Notes

in Computer Science, pages 192–202. Springer, 2010. doi:10.1007/

978-3-642-16567-2_14.

[114] Dmitry Tsarkov and Ian Horrocks. Fact++ description logic reasoner:

System description. In Ulrich Furbach and Natarajan Shankar, editors,

Automated Reasoning, Third International Joint Conference, IJCAR

2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4130

of Lecture Notes in Computer Science, pages 292–297. Springer, 2006.

doi:10.1007/11814771_26.

[115] Richard S. Varga. On recurring theorems on diagonal dominance. Linear

Algebra and its Applications, 13(1):1 – 9, 1976. URL: http://www.

sciencedirect.com/science/article/pii/0024379576900379, doi:

https://doi.org/10.1016/0024-3795(76)90037-9.

[116] Yair Wand and Richard Y. Wang. Anchoring data quality dimensions

in ontological foundations. Commun. ACM, 39(11):86–95, 1996. doi:

10.1145/240455.240479.

[117] Xi Wang and Chen Wang. Time series data cleaning: A survey. IEEE

Access, 8:1866–1881, 2020. doi:10.1109/ACCESS.2019.2962152.

https://doi.org/10.1007/s13218-016-0466-4
https://doi.org/10.1007/s10849-005-5787-x
https://doi.org/10.1007/978-94-007-7284-7_9
https://doi.org/10.1007/978-94-007-7284-7_9
https://doi.org/10.1007/978-3-642-16567-2_14
https://doi.org/10.1007/978-3-642-16567-2_14
https://doi.org/10.1007/11814771_26
http://www.sciencedirect.com/science/article/pii/0024379576900379
http://www.sciencedirect.com/science/article/pii/0024379576900379
https://doi.org/https://doi.org/10.1016/0024-3795(76)90037-9
https://doi.org/https://doi.org/10.1016/0024-3795(76)90037-9
https://doi.org/10.1145/240455.240479
https://doi.org/10.1145/240455.240479
https://doi.org/10.1109/ACCESS.2019.2962152

172 Bibliography

[118] Jef Wijsen. Foundations of query answering on inconsistent databases.

SIGMOD Rec., 48(3):6–16, 2019. doi:10.1145/3377391.3377393.

[119] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico

Lembo, Antonella Poggi, Riccardo Rosati, and Michael Zakharyaschev.

Ontology-based data access: A survey. In Lang [71], pages 5511–5519.

doi:10.24963/ijcai.2018/777.

[120] Guohui Xiao, Dag Hovland, Dimitris Bilidas, Martin Rezk, Martin

Giese, and Diego Calvanese. Efficient ontology-based data integration

with canonical iris. In Aldo Gangemi, Roberto Navigli, Maria-Esther

Vidal, Pascal Hitzler, Raphaël Troncy, Laura Hollink, Anna Tordai, and

Mehwish Alam, editors, The Semantic Web - 15th International Con-

ference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Pro-

ceedings, volume 10843 of Lecture Notes in Computer Science, pages

697–713. Springer, 2018. doi:10.1007/978-3-319-93417-4_45.

[121] Riccardo Zese, Elena Bellodi, Fabrizio Riguzzi, Giuseppe Cota, and

Evelina Lamma. Tableau reasoning for description logics and its exten-

sion to probabilities. Ann. Math. Artif. Intell., 82(1-3):101–130, 2018.

doi:10.1007/s10472-016-9529-3.

[122] Weiguo Zheng, Jiewei Gu, Peng Peng, and Jeffrey Xu Yu. Efficient

weighted independent set computation over large graphs. In 36th IEEE

International Conference on Data Engineering, ICDE 2020, Dallas, TX,

USA, April 20-24, 2020, pages 1970–1973. IEEE, 2020. doi:10.1109/

ICDE48307.2020.00216.

https://doi.org/10.1145/3377391.3377393
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.1007/978-3-319-93417-4_45
https://doi.org/10.1007/s10472-016-9529-3
https://doi.org/10.1109/ICDE48307.2020.00216
https://doi.org/10.1109/ICDE48307.2020.00216

.

.

.

Dealing with Inconsistencies in Knowledge Bases

This thesis develops and studies theoretical frameworks for dealing with incon-

sistencies in database and knowledge-base systems. A first framework defines

a mapping language for expressing rules that take a relational database in-

stance as input, and produce an ABox in some description logic (DL). Given

a family of mapping rules, it is desirable that every database instance that is

consistent with respect to some given integrity constraints maps to an ABox

that is consistent with respect to a given TBox. While it is generally unde-

cidable whether this and other desirable properties obtain, it is shown that

decidability can be achieved under some moderate syntactic restrictions.

A second framework addresses the problem of repairing ABoxes that are in-

consistent with respect to a given TBox. It introduces a novel approach for

computing a numeric credibility score for each ABox assertion, by combining

a user-defined initial scoring with logical arguments and counterarguments de-

rived from the TBox. Once a credibility score has been established for each

ABox assertion (or, in general, for each fact of a knowledge base), it is natural

to define repairs as consistent subsets of the ABox with maximum aggregate

credibility score, according to some aggregation function. It is studied how

the computational complexity of recognizing such repairs depends on certain

characteristics of the aggregation function.

In addition to these theoretical developments, a software system has been built

that implements the computational approach underlying the second frame-

work.

	Introduction
	Context and Contributions of the Thesis
	Background from Database Theory
	Background from Description Logics

	Connecting Databases to Ontologies
	Motivation
	Related Work
	Introductory Example
	Preliminaries
	Preliminaries from Database Theory
	Relational Algebra
	Specialization of Predicate Logic to Database Theory
	The Guarded Fragment of First-Order Logic

	Entity-Expressions and Relationship-Expressions
	The Mapping Language
	Reasoning Problems
	Conclusion

	Assertion Ranking in Ontologies
	Motivation
	Motivating Example
	Related Work
	Theoretical Framework
	Refuters and Supporters
	Aggregated Credibility
	ABox Assessment
	Ranking of ABox Assertions

	Framework Instantiation
	Properties of the Assessment
	Solving the Instantiated Framework
	Solution Existence
	Convergence Towards a Fixed Ranking
	Computational Complexity

	Credibility and Aggregated Credibility
	Conclusion

	Weighted Repairs
	Motivation
	Related Work
	Preliminaries
	Repair Checking and Related Problems
	Main Tractability Theorem
	Monotone Under Priority
	k-Combinatorial
	Main Tractability Theorem

	On Full-Combinatorial Aggregation Functions
	Conclusion

	Rustoner: Computing Ranks Efficiently
	Introduction
	Technical Details

	How to Compute Ranks
	Computing a Conflict Matrix
	Computing a Stabilized Rank

	Inner DL-LiteR Reasoner
	The DL-LiteR Model
	DL-LiteR Reasoning in Rustoner
	Exploratory Analysis with Rustoner

	Experimental Results
	Ranking of General Matrices
	Reasoner in Rustoner

	Conclusion

	Conclusion
	Appendices
	Semantics of Relational Algebra Operators
	Proofs for Chapter ??
	Proofs of Theorem ?? and Corollaries ?? and ??
	Proof of Theorem ??
	Proof of Theorem ??

	Background from Algebra
	Proofs for Chapter ??
	Proofs for Chapter ??
	Experiments with Rustoner
	Bibliography

