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Definitions I

We assume a set σ of symbols, also called atoms.

A positive literal is an atom; a negative literal is the negation of an
atom.

A rule r is an expression

h← a1 ∧ · · · ∧ an ∧ ¬b1 ∧ · · · ∧ ¬bm

where h, a1, . . . , an, b1, . . . , bm are atoms.

If m = n = 0, we simply write h.

We will mostly treat the body of such a rule as a set of literals
B = {a1, . . . , an,¬b1, . . . ,¬bm}, and define B+ := {a1, . . . an} and
B− := {b1, . . . , bm}.
An interpretation I is a set of atoms. We write I |= B if B+ ⊆ I and
B− ∩ I = ∅.
A program is a set of rules.
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Definitions II

An interpretation M is a model of a program P if for every rule
h← B of P, if M |= B, then h ∈ M.

A model is minimal if no proper subset of it is a model.

A model M is supported if for every h ∈ M, there is a rule h← B
such that M |= B.
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Example

Let P1 = {b ← ¬a}.

{} is not a model;

{b} is a model that is minimal and supported;

{a} is a model that is minimal but not supported; and

{a, b} is a model that is neither minimal nor supported.

The precedence graph:

ab

−

Negation is stratified.
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Example

Let P2 =

{
b ← a
a← b

{} is a model that is minimal and supported;

{a} is not a model;

{b} is not a model; and

{a, b} is a model that is supported but not minimal.
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Example

Let P3 =

{
b ← ¬a
a← a

{} is not a model;

{a} is a model that is minimal and supported;

{b} is a model that is minimal and supported; and

{a, b} is a model that is neither minimal nor supported.

But intuitively, {a} is self-supporting, (i.e., supported through a cyclic
derivation).

ab

−

Negation is stratified.
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Stable model (without using B+ or B−)

Definition 1

The Gelfond-Lifschitz transform (or reduct) of a program P with respect
to an interpretation M, denoted PM , is a negation-free program
constructed as follows. For every rule of P, of the form

h← a1, . . . , an,¬b1, . . . ,¬bm,

do the following:

if m ≥ 1 and M contains some bi (1 ≤ i ≤ m), then remove the rule;

otherwise add h← a1, . . . , an to PM .

An interpretation M is a stable model of P if it is the unique minimal

model of PM .

Note: if P is negation-free, then PM = P.
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Stable model: Some intuition

For M to be stable, the reduct PM must contain a rule that allows us to
derive bi . Such a rule must be of the form:

bi ← c1, . . . , cℓ.

Note: If ℓ = 0, then bi is given as a fact.

Recall that PM contains no negation.
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Stable model (using B+ and B−)

Definition 2

The Gelfond-Lifschitz transform (or reduct) of a program P with respect
to an interpretation M, denoted PM , is a negation-free program
constructed as follows: for every rule h← B of P,

if B− ∩M ̸= ∅, then remove the entire rule; and

if B− ∩M = ∅, then remove the negative literals from the rule.

An interpretation M is a stable model of P if it is the unique minimal

model of PM .

Informally, the Gelfond-Lifschitz transform first removes every rule h← B
such that M ̸|= B− (whence M |= {h← B}), and then removes all negative
literals from the remaining rules.

Why does PM have a unique minimal model? See Bases de Données II.

But is the unique minimal model of PM necessarily also a model of P? We
will see shortly that this is indeed the case.
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Example

Let P3 =

{
b ← ¬a
a← a

We have P
{a}
3 =

{
b ← ¬a
a← a

=

{
a← a

We have P
{b}
3 =

{
b ← ¬a
a← a

=

{
b.
a← a

{a} is a model that is minimal and supported, but not stable;

{b} is a stable model.

Informally, atoms in a stable model must be derivably truea once we
accept (without derivation!) that atoms not in the model are false.

aand therefore must occur in rule heads

{a} is not stable, because a cannot be derived from ¬b;
{b} is a stable, because b can be derived from ¬a.
Jef Wijsen (UMONS) ASP February 27, 2024 11 / 97



See [Tru18, Theorem 2.10]:

Theorem 3

If M is a stable model of a variable-free program P, then M is a minimal
model of P that, moreover, is supported.

The converse does not hold (see previous example).
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Two Stable Models

Let P4 =

{
b ← ¬a
a← ¬b

We have P
{a}
4 =

{
b ← ¬a
a← ¬b =

{
a.

{a} is a stable model; and

by symmetry, {b} is a stable model.

ab

−

−

Negation is not stratified.

Informally, a is derivably true once we accept that b is false (and vice
versa).
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No Stable Model

Let P5 = {a← ¬a}.
{} is not a model;
{a} is a model that is minimal but not supported (and therefore not
stable by Theorem 3).

By Definition 2, the model {a} is not stable, because it is not the unique

minimal model of P
{a}
5 = {}.

a

−

Negation is not stratified.
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The Empty Program

Let P0 = {}, the empty program. Show the following:

every interpretation is a model of P0; and

the empty model is the only stable model of P0.

Jef Wijsen (UMONS) ASP February 27, 2024 15 / 97



Example

Let P6 = {a← a ∧ ¬a}.
The model {} is stable because it is the unique minimal model of

P
{}
6 = {a← a}.

The precedence graph:

a

−

Negation is not stratified.
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Caveat

clingo ASP allows negative literals in rule heads (and double negations).
For example,

not cold :- sunny.

cold :- not not cold.

sunny :- not cold.

We will only consider negation-free rule heads.
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Different but Equivalent Characterization of Stable Models

Definition 4

The Faber-Pfeifer-Leone transform of a program P with respect to an
interpretation M, denoted fpl(P,M), is the program that contains all (and
only) the rules h← B of P for which M |= B holds true.

Theorem 5 (Theorem 3.6 in [FPL11])

M is a stable model of P ⇐⇒ M is a minimal (w.r.t. ⊆)
model of fpl(P,M).
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Comparison

Let r be the following rule:

h← a1 ∧ · · · ∧ an ∧ ¬b1 ∧ · · · ∧ ¬bm

For any program P containing r ,

if b1 ̸∈ M and · · · and bm ̸∈ M, then

if a1, . . . , an ∈ M, then fpl(P,M) contains r , and PM contains
h← a1 ∧ · · · ∧ an;
if ai ̸∈ M for some i , then fpl(P,M) does not contain r , but PM still
contains h← a1 ∧ · · · ∧ an;

if bj ∈ M for some j , then PM and fpl(P,M) contain no rules
corresponding to r .
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Example

Let P3 =

{
b ← ¬a
a← a

We have fpl(P3, {a}) =
{

b ← ¬a
a← a

=

{
a← a

We have fpl(P3, {b}) =
{

b ← ¬a
a← a

=

{
b ← ¬a

{a} is not a minimal model of fpl(P3, {a});
{b} is a minimal model of fpl(P3, {b}).
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Rules with Empty Head = Constraints

A rule
← a1 ∧ · · · ∧ an ∧ ¬b1 ∧ · · · ∧ ¬bm (1)

can be regarded as shorthand for

h← a1 ∧ · · · ∧ an ∧ ¬b1 ∧ · · · ∧ ¬bm ∧ ¬h (2)

where h is a fresh atom not occurring elsewhere.

Rationale: Let M be an interpretation for a program containing (2).
Assume that {a1, . . . , an} ⊆ M and {b1, . . . , bm} ∩M = ∅. Two cases can
occur:

Case that h ̸∈ M. Then the Gelfond-Lifschitz transform contains
h← a1 ∧ · · · ∧ an. Since h ̸∈ M, M is not stable.

Case that h ∈ M. Then the Gelfond-Lifschitz transform contains no rule
with head h. Since h is not supported, M is not stable.

To conclude, there is no stable model that satsfies the body of rule (1).
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Indexing



b
a1← b
a2← b

...
a99← b

In clingo ASP, one can write:

b.

a(I) :- b, I=1..99.
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Choice

In clingo ASP, one can write:

b.

3 { a(I) : I=1..99 } 7 :- b.

Every stable model contains b, and contains at least 3 and at most 7 atoms
of {a1, . . . , a99}. For example, {b, a11, a23, a37, a41} is a stable model.

In principle, such a rule can be written as a normal variable-free logic
program as previously defined. For example,

b.

1 { a(I) : I=1..2 } 1 :- b.

has the same stable models as:
b
a1← b,¬a2
a2← b,¬a1
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Sudoku

Assume a classical Sudoku. Number the nine 3× 3-squares as follows:

1 2 3

4 5 6

7 8 9

Number the nine cells within each 3× 3-square in the same way. The jth
cell within the ith 3× 3-square has index (i , j). Each cell (i , j) can store
one number k ∈ {1, . . . , 9}.
We define 9× 9× 9 propositional variables. The variable aijk is true if cell
(i , j) stores k , and is false otherwise.
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A Sudoku Program

% Every cell stores at least one number.

1 { a(I,J,K) : K=1..9 } :- I=1..9, J=1..9.

% Within each 3x3-square, every number occurs at least once.

1 { a(I,J,K) : J=1..9 } :- I=1..9, K=1..9.

% Indices belonging to a Same Column.

isc(1,4). isc(4,7). isc(1,7).

isc(2,5). isc(5,8). isc(2,8). isc(3,6). isc(6,9). isc(3,9).

isc(I,J) :- isc(J,I).

isc(I,I) :- I=1..9.

% Indices belonging to a Same Row.

isr(1,2). isr(2,3). isr(1,3).

isr(4,5). isr(5,6). isr(4,6). isr(7,8). isr(8,9). isr(7,9).

isr(I,J) :- isr(J,I).

isr(I,I) :- I=1..9.

% Distinct cells in same row/column cannot store the same number.

eq(I,J,I,J) :- I=1..9, J=1..9.

:- a(I,J,K), a(II,JJ,K), isc(I,II), isc(J,JJ), not eq(I,J,II,JJ).

:- a(I,J,K), a(II,JJ,K), isr(I,II), isr(J,JJ), not eq(I,J,II,JJ).
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The Prefilled Cells

a(1,2,6). a(1,8,9). a(1,9,3).

a(2,4,4). a(2,6,3). a(2,8,8). a(2,9,5).

a(4,2,3). a(4,3,6). a(4,5,5). a(4,6,1). a(4,7,4).

a(5,3,4). a(5,7,2).

a(6,3,5). a(6,4,4). a(6,5,8). a(6,7,3). a(6,8,9).

a(8,1,5). a(8,2,6). a(8,4,1). a(8,6,2).

a(9,1,7). a(9,2,3). a(9,8,5).

6
4 3

9 3 8 5

3 6 4 5
5 1 4 8

4 2 3 9

5 6 7 3
1 2

5
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Wrap Up

For every program P and interpretation M, the following are
equivalent:

1 M is a stable model of P.
2 M is the unique minimal model of PM .
3 M is a minimal model of fpl(P,M).

Property. Every atom in a stable model is derivably true when atoms
not in the model are fixed to false. For example, the atom a is
derivably true in {a← ¬b, b ← ¬a} when we fix b to false.

Property. If h← B ∧ ¬h is the only rule with head h in a given
program P, then no stable model of P satisfies B.
A syntax shorthand for this rule is: ← B.

Corollary. If a program P with rule h← ¬h has a stable model, then
P must contain at least one other rule with head h.
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ASP vs. Stratified Datalog

See [EIK09, Theorem 5] for the following result:

Theorem 6

Stable model semantics and stratified Datalog semantics coincide on
Datalog programs with stratified negation.

Thus, stable model semantics extends stratified Datalog semantics to
programs in which negation is not stratified.
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Models

person(donald).

happy(X) :- person(X), not happy(X).

This program is not in stratified Datalog.

{person(donald), happy(donald)} is a model, but
happy(donald) is not supported within this model.

We use the Closed World Assumption (CWA): facts not in the model
are false.

{person(donald)} violates the second rule, and therefore is not a
model.

{person(donald), happy(donald), person(melania),

happy(melania)} is also a model, but only person(donald) is
supported within this model.
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Supported Models

person(donald).

man(X) :- person(X), not female(X).

female(X) :- person(X), not man(X).

This program is not in stratified Datalog.

{person(donald), man(donald)} is a model in which
man(donald) is supported (by means of the middle rule). This will be
a necessary (but not a sufficient) property for a model to be stable.

{person(donald), female(donald)} is another stable model.

{person(donald), man(donald), female(donald)} is a model,
but not a stable one: neither man(donald) nor female(donald) is
supported within this model.
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Definitions

An atom (or fact) is an expression R(c1, . . . , cn) where R is an n-ary
relation name and c1, . . . , cn are constants.

A positive literal is a fact; a negative literal is the negation of a fact.

If B is a set of literals, then B+ is the set of positive literals in B, and
B− := {A | ¬A ∈ B}.
Rules and programs are as in Datalog (but negation need not be
stratified).

A ground instance of a program rule is any variable-free rule that can
be obtained by substituting constants for variables in the rule.

The grounding of a program P, denoted ground(P), is the program
consisting of all ground instances of rules in P.

An interpretation is a set of facts.

An interpretation M is a model of a program P if it is a model of
ground(P). Notice that ground(P) is a variable-free logic program for
which models have been previously defined.
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Stable Models

Let P be a program, where we assume that all database facts are listed in
the program.

Definition 7

The Gelfond-Lifschitz transform (or reduct) of a program P with respect
to a set M of facts, denoted PM , is a negation-free and variable-free
program constructed as follows: for every rule h← B of ground(P),

if B− ∩M ̸= ∅, then remove the entire rule; and

if B− ∩M = ∅, then remove the negative literals from the rule.

A set M of facts is a stable model of P if it is the unique minimal model
of PM .
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Supported Models

A model M of a program P is supported if for every fact h ∈ M, there
exists a rule h← B in ground(P) such that M |= B.

It does not immediately follow from Definition 7 that every stable model
M of P is also a model of P (because P ̸= PM in general). It can be
shown that Theorem 3 also holds for programs with variables:

Theorem 8

If M is a stable model of a program P, then M is a model of P that,
moreover, is minimal and supported.
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Example: No Stable Model

Lat P be the following program:

person(donald).

happy(X) :- person(X), not happy(X).

Let M = {person(donald), happy(donald)}. Then, the reduct PM is
the following program:

person(donald).

happy(donald) :- person(donald), not happy(donald).

The unique minimal model of PM is {person(donald)}. Since M is
distinct from the unique minimal model of PM , it follows that M is not a
stable model.
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Example: Two Stable Models

Let P be the following program:

person(donald).

man(X) :- person(X), not female(X).

female(X) :- person(X), not man(X).

Let M1 = {person(donald), man(donald)}. Then, the reduct PM1 is
the following program:

person(donald).

man(donald) :- person(donald), not female(donald).

female(donald) :- person(donald), not man(donald).

The unique minimal model of PM1 is {person(donald), man(donald)}.
Since M1 is equal to the unique minimal model of PM1 , it follows that M1

is a stable model.
Exercise: Show that M2 = {person(donald), female(donald)} is
another stable model, but that M1 ∪M2 is not a stable model.
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Graph 3-Colorability

Assume a finite set of edge-facts, for example:

edge(1,2). edge(1,3). edge(2,3).

The following program finds all 3-colorings:

adjacent(X,Y) :- edge(X,Y).

adjacent(X,Y) :- edge(Y,X).

vertex(X) :- adjacent(X,Y).

green(X) :- vertex(X), not red(X), not blue(X).

blue(X) :- vertex(X), not red(X), not green(X).

red(X) :- vertex(X), not blue(X), not green(X).

:- adjacent(X,Y), red(X), red(Y).

:- adjacent(X,Y), blue(X), blue(Y).

:- adjacent(X,Y), green(X), green(Y).
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Rules with Empty Head=Integrity Constraints

:- adjacent(X,Y), red(X), red(Y).

is tantamount to:

happy(donald) :- adjacent(X,Y), red(X), red(Y),

not happy(donald).

Assume, toward a contradiction, the existence of a stable model that
contains adjacent(i,j), red(i), red(j). Such a model must contain
happy(donald) in order to satisfy the latter rule. But happy(donald)
will not be supported within that model, contradicting that the model is
stable.
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Correctness proof

Claim 1

If the input is a 3-colorable graph, then the program has a stable model.

Proof (sketch).

Let γ be a valid 3-coloring of the input graph with co-domain {r , b, g}.
Let M be a set of facts such that for every vertex i ,

if γ(i) = r , then M contains red(i);

if γ(i) = b, then M contains blue(i); and

if γ(i) = g , then M contains green(i).

Assume that M contains red(i). Then M contains neither blue(i) nor
green(i). Then red(i) is supported within M because of the program
rule

red(X) :- vertex(X), not blue(X), not green(X).
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Correctness proof (other direction)

Claim 2

If the program has a stable model, then the input graph is 3-colorable.

Proof (sketch).

Let M be a stable model. Whenever M contains vertex(i), it must also
contain green(i), blue(i), or red(i) (because of the three rules “in
the middle”). Assume, toward a contradiction, that M contains two such
facts, say green(i) and blue(i). Then green(i) is not supported
within M, contradicting that M is stable.
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Data Complexity

ASP ≃
Datalog with (possibly unstratified) negation

+
stable model semantics

Claim 3

ASP has NP-hard data complexity.

Proof.

Deciding whether a graph is 3-colorable is known to be NP-complete. The
desired result then follows from Claims 1 and 2.
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Clingo

The database file graphK3.lp is:

edge(1,2). edge(1,3). edge(2,3).

Execution of the command

clingo my3coloring.lp graphK3.lp 0

yields:

Answer: 1

green(1) red(2) blue(3)

[. . . ]

Answer: 6

blue(1) red(2) green(3)

SATISFIABLE

Models : 6
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Discussion

ASP programming is different from database querying: a database
query maps a database to a uniquely defined set of tuples (called
query answer), whereas an ASP program yields all stable models (also
called answer sets).

Stable model semantics is a conservative extension of stratified
Datalog semantics (which you studied in Bases de données II). Thus,
stratified Datalog programs return unique stable models.
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Choice

The following program has 8 = 23 stable models:

person(donald). person(melania). person(jeb).

happy(X) :- person(X), not unhappy(X).

unhappy(X) :- person(X), not happy(X).

In clingo ASP, choice can be more succinctly expressed by using curly
braces {. . . }:

person(donald). person(melania). person(jeb).

{ happy(X) : person(X) }.
unhappy(X) :- person(X), not happy(X).
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Cardinality Constraints: At Least Two Happy Persons

The following program has 4 stable models:

person(donald). person(melania). person(jeb).

equal(X,X) :- person(X).

happy(X) :- person(X), not unhappy(X).

unhappy(X) :- person(X), not happy(X).

goodModel :- happy(X), happy(Y), not equal(X,Y).

:- not goodModel.

In clingo ASP, cardinality constraints can be more succinctly expressed by
using ℓ{. . . }u:

person(donald). person(melania). person(jeb).

2 { happy(X) : person(X) }.
unhappy(X) :- person(X), not happy(X).
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Cardinality Rules

adjacent(X,Y) :- edge(X,Y).

adjacent(X,Y) :- edge(Y,X).

vertex(X) :- adjacent(X,Y).

1 { red(X); green(X); blue(X) } 1 :- vertex(X).

:-adjacent(X,Y), red(X), red(Y).

:-adjacent(X,Y), blue(X), blue(Y).

:-adjacent(X,Y), green(X), green(Y).

Caveat: This is fundamentally different from disjunction in rule heads (see
later).
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Syntactic Sugar?!

The following two ground programs have the same stable models:

vertex(42).

1 { red(42); green(42); blue(42) } 1 :- vertex(42).

and

vertex(42).

red(42) :- vertex(42), not green(42), not blue(42).

green(42) :- vertex(42), not red(42), not blue(42).

blue(42) :- vertex(42), not red(42), not green(42).

Data versus program

Variables in ASP range over finite domains that come from the input data.
ASP constructs may be more easily understood when programs with
variables are viewed as compact representations of variable-free programs.
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Cardinality Rules in Clingo (Example)

r(1). r(2). r(3). r(4).

%*

The stable models of the following program have the

same r-facts as the program with the single rule:

1 { select(X) : r(X) }.
*%

select(X) :- r(X), not reject(X).

reject(X) :- r(X), not select(X).

goodModel :- r(X), select(X).

goodModel :- not goodModel.

#show select/1.
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Cardinality Rules in Clingo (Example)

r(1,a). r(2,a).

r(2,b). r(3,b).

r(3,c). r(4,c).

s(a). s(b).

1 { select(X) : r(X,Y) } 1 :- s(Y).

#show select/1.

There are two stable models:

Answer: 1

select(1) select(3)

Answer: 2

select(2)

SATISFIABLE
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Data Complexity

In database theory, we distinguish between a database of facts, and a
program that is mostly fact-free. In logic programming, this
distinction is usually blurred.

For every program P, define eval(P) as the following decision
problem:

Given a database db, does db ∪ P have a stable model?

Note that if P1,P2 are distinct programs, then eval(P1) and eval(P2)
are different problems. These problems are also different from the
following decision problem:

Given a program P and a database db, does db∪P have a stable
model?
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Data Complexity of (Disjunction-Free) Programs

Claim 4

For every disjunction-free program P, eval(P) is in NP.

Proof (sketch).

We can guess a stable model M of db ∪ P, and test in polynomial time
whether it is indeed a stable model. The test uses Definition 7 (i.e., test
whether M is the minimal model of PM). This test does not take more
than polynomial time, because ground(P) is of polynomial size in the
length of P.
To see why the latter claim is true, let ℓ be the length of P. The number
of variables in P cannot be greater than ℓ. Let n be the number of
constants that occur in db or P. With at most ℓ variables and n
constants, we can construct at most nℓ distinct valuations. Note that
although nℓ can be huge, it is nevertheless polynomial, because ℓ is fixed
(i.e., P is not part of the input).
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Definitions

A rule is an expression

h1 ∨ · · · ∨ hℓ ← a1 ∧ · · · ∧ an ∧ ¬b1 ∧ · · · ∧ ¬bm

where h1, . . . , hℓ, a1, . . . , am,¬b1, . . . ,¬bm are atoms. Possibly ℓ = 0.

We can treat the head of such a rule as a set H = {h1, . . . , hℓ}.
An interpretation I is a model of a program P if for every rule H ← B
in P, if I |= B, then H ∩ I ̸= ∅.
The Gelfond-Lifschitz transform of a disjunctive program is defined in
the same way as for normal programs.

An interpretation M is a stable model of P if it is a minimal model
of PM .
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Example

P

a|b|c :- not c.

P{a} = P{b} = {a ∨ b ∨ c ← ∅}. Therefore, since both {a} and {b}
are minimal models of {a ∨ b ∨ c ← ∅}, they are stable models of P.

P{c} = {}. Since {c} is not a minimal model of the empty program,
it is not a stable model.

Note that clingo uses the symbol | (vertical bar) rather than ∨.
Furthermore, | can be replaced with ; (semicolon).
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Faber-Pfeifer-Leone Transform

Same content as slide 18. Replace “program” with “disjunctive program.”
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Disjunctive Heads Are a True Extension

P

a|b.

b :- a.

a :- b.

{a, b} is a stable model of P,
because {a, b} is a minimal
model of P{a,b} = P.

Q

b :- not a.

a :- not b.

b :- a.

a :- b.

Q{a,b}

b :- a.

a :- b.

{a, b} is not a stable model
of Q, because the unique
minimal model of Q{a,b}

is {}.
Thus, P and Q are not equivalent.
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Caveat: Disjunction ̸= Choice

The program

a ; b. % which can also be written as: a | b.

1 {c ; d}.
has six models:

Answer: 1

a d

Answer: 2

a c

Answer: 3

a c d

Answer: 4

b d

Answer: 5

b c

Answer: 6

b c d

SATISFIABLE
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Disjunctive Datalog

In disjunctive Datalog, the head of a rule can be a disjunction of
atoms.

See also [EGM97, Example 2]. The following negation-free disjunctive
Datalog program has a minimal model containing colored if and
only if the input graph is 3-colorable:

adjacent(X,Y) :- edge(X,Y).

adjacent(X,Y) :- edge(Y,X).

vertex(X) :- adjacent(X,Y).

green(X) | blue(X) | red(X) :- vertex(X).

notColored :- adjacent(X,Y), red(X), red(Y).

notColored :- adjacent(X,Y), blue(X), blue(Y).

notColored :- adjacent(X,Y), green(X), green(Y).

notColored | colored.

The fourth rule assigns a color to each vertex. If notColored is not
derivable from the assignment, a minimal model is obtained by
including colored.
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Disjunctive Rule Heads in clingo ASP

A program is called disjunctive if some rule heads are disjunctions of
two or more atoms.

The Potassco User Guide says:
In general, the use of disjunction may increase computational com-
plexity. We thus suggest to use “choice constructs” instead of
disjunction, unless the latter is required for complexity reasons.

It is known that disjunctive programs can solve problems that are hard
for NPNP = ΣP

2 . If NP
NP ̸= NP, then these problems are not in NP.

Consequently, the proof of Claim 4 must fail for disjunctive programs.
Can you see where it fails?
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Choice vs. Disjunctive Rule Heads

The construct of choice in clingo ASP is strictly less powerful than
disjunction in rule heads:

choice rules can always be equivalently rewritten in rules with atomic
rule heads; but
disjunction in rule heads cannot be eliminated from disjunctive
programs that solve a NPNP-hard problem (unless NPNP = NP).
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A Problem Obviously in NPcoNP: ∃∀3-Coloring

∃∀3-coloring:
Input: An undirected graph G = (V ,E ) and a partition of its

vertices in two subsets X ,A (i.e., X ∪A = V and X ∩A = ∅).
Question: Is there a 3-coloring of the subgraph induced by X that

cannot be extended to a 3-coloring of G?1

It may be helpful to think of the vertices in X and A as, respectively,
eXists-vertices and forAll-vertices.

1The subgraph induced by X is the graph whose vertex-set is X and whose edge-set
is {{u, v} ∈ E | u, v ∈ X}.
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For example, we claim that the following is a “yes”-instance of
∃∀3-coloring:
edge(1,2). edge(1,3). edge(2,4). edge(3,4). edge(2,3).

x(1). x(4). a(2). a(3).

1∃

2∀

3∀

4∃ ⇝ 1∃

2∀

3∀

4∃

To prove our claim, note that the subgraph induced by X = {1, 4} has an
empty edge-set. If we color 1 7→ red and 4 7→ blue, then we must have
2 ̸7→ red, 3 ̸7→ red, 2 ̸7→ blue, 3 ̸7→ blue. However, 2 and 3 cannot both be
green, because they are adjacent.
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Program P for ∃∀3-coloring

adjacent(X,Y) :- edge(X,Y). adjacent(X,Y) :- edge(Y,X).

red(X) | blue(X) | green(X) :- x(X).

red(Y) | blue(Y) | green(Y) :- a(Y).

w :- adjacent(X,Y), red(X), red(Y). % To support w (cf. below)

w :- adjacent(X,Y), blue(X), blue(Y). % and satisfy constraints,

w :- adjacent(X,Y), green(X), green(Y). % some a-vertex has the

% same color as one of its neighbors.

red(Y) :- w, a(Y). % Since w is in each stable model (cf. below),

blue(Y) :- w, a(Y). % each stable model assigns 3 colors to

green(Y) :- w, a(Y). % each a-vertex.

w :- not w. % w is in each stable model, supported by another rule.

:- x(X), x(Y), adjacent(X,Y), red(X), red(Y).

:- x(X), x(Y), adjacent(X,Y), blue(X), blue(Y).

:- x(X), x(Y), adjacent(X,Y), green(X), green(Y).
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Intuition I

Here is an informal description of the functioning of the program.

Because of “w :- not w,” every stable model must contain w. Then the
Gelfond-Lifschitz transform will contain “red(Y):-w,a(Y),”
“blue(Y):-w,a(Y),” and “green(Y):-w,a(Y)” (modulo replacements of
Y by constants). Consequently, every stable model assigns three colors to
each a-vertex.

A model M containing w is not supported (and hence not stable) unless
there is a rule “w :- B” such that M |= B (and therefore “not w” ̸∈ B).
There are three such rules in the program, and the bodies of those rules
each require that two adjacent vertices have the same color. At least one of
these adjacent vertices must be an a-vertex, because the last three rules
stipulate that adjacent x-vertices have distinct colors.
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Intuition II

A model M is not stable unless it is a minimal model of its Gelfond-Lifschitz
transform. The crux now is that if the a-vertices are 3-colorable (given a
3-coloring of the x-vertices), then there is a smaller model of the
Gelfond-Lifschitz transform: one that does not contain w and assigns only
one color (instead of three) to each a-vertex.

Indeed, since no two adjacent vertices have the same color in such a
3-coloring, the body of the rule “w :- adjacent(X,Y), red(X),

red(Y)” is false, and does not insert w (likewise for blue and green).
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Correctness Proof I

Let M be a stable model. We observe the following:

M must contain w (because of the rule w :- not w). Thus PM

consists of all rules of ground(P) except w :- not w. Since M is a
minimal model of PM , we have that M contains each of red(Y),
blue(Y), and green(Y), for every a-vertex Y.

It is also clear that M contains at least one of red(X), blue(X), or
green(X), for every x-vertex X. Assume toward a contradiction that
M contains both red(X) and blue(X) for some x-vertex X. It can be
seen that M \ {blue(X)} is also a model, contradicting that M is
minimal. We conclude by contradiction (and symmetry) that M
contains exactly one of red(X), blue(X), or green(X), for every
x-vertex X.
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Correctness Proof II

We now show:
P has a stable model ⇐⇒ the answer to ∃∀3-coloring is “yes”

=⇒ Let M be a stable model of P. Let γ be a coloring of the x-vertices
such that γ(X ) equals r , b, or g depending on whether M contains,
respectively, red(X), blue(X), or green(X), for every x-vertex X .
Assume toward a contradiction that γ can be extended to a valid
3-coloring of G , denoted γ+. Let I be the interpretation that contains
red(V), blue(V), or green(V) depending on whether γ+(V ) equals,
respectively, r , b, or g , for every vertex V . We let I not contain w. It can
now be seen that I is a model of PM such that I ⊊ M, contradicting that
M is a stable model of P. We conclude by contradiction that γ cannot be
extended to a valid 3-coloring of G .
⇐= Let γ be a valid 3-coloring of the subgraph induced by X that

cannot be extended to a 3-coloring of G . Let I be the interpretation that
contains exactly one of red(X), blue(X), or green(X) depending on
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Correctness Proof III

whether γ(X ) equals, respectively, r , b, or g , for every x-vertex X .
Furthermore, I contains w and contains each of red(Y), blue(Y), and
green(Y) for every a-vertex Y . Notice that P I consists of all rules of
ground(P) except w :- not w, and I is a model of P I . We show that I is
a minimal model of P I , which implies that I is a stable model of P.
Assume toward a contradiction that there is a model M of P I such that
M ⊊ I . It can be seen that it must be the case that M does not contain w

and that M contains exactly one of red(Y), blue(Y), or green(Y) for
every a-vertex Y . Let γ+ be the extension of γ such that γ+(Y ) equals r ,
b, or g depending on whether I contains, respectively, red(Y), blue(Y),
or green(Y), for every a-vertex Y . Since I is a model of PM not
containing w, it follows that I falsifies the body of each rule with head w.
Therefore, γ+ is a valid 3-coloring of G that extends γ, which contradicts
our initial hypothesis that no such extension exists.
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Pitfall

Since ∃∀3-Coloring is NPNP-hard, it cannot be solved by a disjunction-free
program (unless NPNP = NP).

Therefore, in our program for ∃∀3-Coloring, it must be wrong to write

1 { red(X) ; blue(X) ; green(X) } :- x(X).

1 { red(Y) ; blue(Y) ; green(Y) } :- a(Y).

instead of

red(X) | blue(X) | green(X) :- x(X).

red(Y) | blue(Y) | green(Y) :- a(Y).
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Pwrong

Let Pwrong be the program obtained from P by replacing the rule

red(Y) | blue(Y) | green(Y) :- a(Y).

with the following three rules:

red(Y) :- a(Y), not blue(Y), not green(Y).

blue(Y) :- a(Y), not red(Y), not green(Y).

green(Y) :- a(Y), not red(Y), not blue(Y).

Pwrong does not solve ∃∀3-Coloring!!!
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What Goes Wrong in Pwrong (Compared to P)? I

Take the following “yes”-instance of ∃∀3-Coloring:

1∃

2∀

3∀

4∃

Let M =

{
w, red(1), blue(4), red(2), blue(2), green(2),

red(3), blue(3), green(3)

}
,2

which is a stable model of our correct program P.

Recall how PM
wrong is obtained:

red(2) :- a(2), not blue(2), not green(2).
...

green(3) :- a(3), not red(3), not blue(3).

Thus, PM
wrong does not require that vertices 2 and 3 be colored. It can then be

checked that I = {red(1), blue(4)} is a smaller model of PM
wrong , and therefore

M is not a stable model of Pwrong .
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What Goes Wrong in Pwrong (Compared to P)? II

We have that PM properly extends PM
wrong with the following rules:

red(2) | blue(2) | green(2) :- a(2).

red(3) | blue(3) | green(3) :- a(3).

Thus, PM does require that vertices 2 and 3 be colored.

2For the sake of simplicity, we have omitted from M and I all edge-facts, x-facts,
a-facts, and adjacent-facts.
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Exercise

Let Pcorrect? be the program obtained from P by replacing the rule

red(X) | blue(X) | green(X) :- x(X).

with the following three rules:

red(X) :- x(X), not blue(X), not green(X).

blue(X) :- x(X), not red(X), not green(X).

green(X) :- x(X), not red(X), not blue(X).

Does Pcorrect? solve ∃∀3-Coloring???
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Exercise: Complement of 3-Colorability

Let Pnot 3 colorable be the following program:

adjacent(X,Y) :- edge(X,Y). adjacent(X,Y) :- edge(Y,X).
vertex(X) :- adjacent(X,Y).

red(Y) | blue(Y) | green(Y) :- vertex(Y).

w :- adjacent(X,Y), red(X), red(Y).
w :- adjacent(X,Y), blue(X), blue(Y).
w :- adjacent(X,Y), green(X), green(Y).

red(Y) :- w, vertex(Y).
blue(Y) :- w, vertex(Y).
green(Y) :- w, vertex(Y).

w :- not w.

Prove that this program solves a coNP-hard problem:

Claim 5
For the program Pnot 3 colorable ,

if the input graph is not 3-colorable, then there is exactly one stable model;

if the input graph is 3-colorable, then there is no stable model.
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Aggregate Literals in ASP I

See [AF18].

A ground term is a variable-free term, for example, 7 and 3 + 3.

A ground aggregate element (gag) is an expression t1, . . . , tm : B
where m ≥ 1, each ti is a ground term, and B is a set of literals.

If fun is an aggregation function and θ a comparison operator
(=, <,≤, >,≥, ̸=), then an aggregate literal (or simply aggregate)
has the form

fun(t⃗1 : B1; . . . ; t⃗n : Bn) θ t (3)

where each t⃗i : Bi is a gag, and t is a ground term.

Let I be an interpretation. Let TI = {t⃗i | 1 ≤ i ≤ n and I |= Bi}.
Let VI be the multiset of all first elements of sequences in TI .
Then I is said to satisfy (3) if fun(VI ) θ t holds true.
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Aggregate Literals in ASP II

Example 9

#sum {12,1:a; 12,2:b; 12,2:c} = 24

The three gags involved are 12,1:a, 12,2:b, and 12,2:c.
For I = {a, b, c}, we have TI = {⟨12,1⟩, ⟨12,2⟩}a, and therefore
VI = {{12, 12}}. Since 12 + 12 = 24, I is a satisfying interpretation.

aDuplicates are removed! Angular brackets ⟨⟩ added for readability.

Example 10

#sum {12:a; 12:b} = 24

The two gags involved are 12:a and 12:b.
For I = {a, b}, we have TI = {12}, and therefore VI = {{12}}. Clearly, I
is a falsifying interpretation.
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Caveat

clingo ASP allows aggregate literals in rule heads; and

clingo ASP allows negative literals in rule heads (see slide 17).

We will only consider rules with heads of the form h1 ∨ · · · ∨ hℓ where each
hi is an atom. Such a rule is called normal if ℓ = 1.
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Stable Models of Programs with Aggregate Literals I

How can stable model semantics be generalized to aggregate literals?
In particular, what is the “right” extension of the Gelfond-Lifschitz
transform?

These are nontrivial questions. Consider, for example:

a :- #sum {1:not a} < 1.

clingo returns two answer sets: {} and {a}. In what respect can {a}
then be a minimal stable model?

Note:

the empty interpretation {} falsifies #sum {1:not a} < 1, and
therefore satisfies the above rule;
the interpretation {a} necessarily satisfies every rule with head a.
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Taken from [AFG15]. Let Π be the program whose only rule is

a← SUM[1 :∼ a] < 1

F ({},Π) = {} (because 1 ̸< 1)

F ({a},Π) = {a← SUM[1 : ⊥] < 1} ≡ {a← ⊤} (the empty sum is 0).
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Sum

Program clingo answers

P1 c :- #sum {12,v:not a; 12,w:not b} = 24. {c}
P2 c :- #sum {12,v:not a; 12,w:not b} = 25. {}
P3 a :- #sum {12,v:not a; 12,w:not b} = 24. UNSATISFIABLE

P4 a :- #sum {12,v:not a; 12,w:not b} = 25. {}

The Potassco User Guide says:

The weight refers to the first element of a term tuple. [. . . ] As
indicated by the curly braces, the elements within aggregates are
treated as members of a set. Hence, duplicates are not accounted
for twice.
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Cardinality Rules

Execute

gringo myprogram.lp -t

to see the grounding of the program in myprogram.lp. The program

1 {a;b}.
b :- a.

a :- b.

is grounded as:

a:-b.

b:-a.

1<=#count{0,a:a;0,b:b}.
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Disjunctive Heads vs. Cardinality Rules

See also Slide 57.

P

a|b.

{a} and {b} are the only
stable models of P.

Q

1 {a;b}.

Output of gringo:

1<=#count{0,a:a;0,b:b}.

Well, on slide 79, we excluded
from consideration rules
whose head is an aggregate
literal. . .

clingo returns the models
{a}, {b}, and {a, b}.

Thus, P and Q are not equivalent.

Note: clingo returns the model {a, b} which does not look minimal.
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Recall of Complexity Classes I

Class Mnemonic
Second-order
quantifiers

FO relational database problems solvable in first-order logic

L
deterministic

logarithmic space
[Rei08] reachability in

undirected graphs

NL
nondeterministic
logarithmic space

reachability in
directed graphs

P
deterministic

polynomial time

NP
nondeterministic
polynomial time

there is a succinct
witness of “yes”

∃

coNP
there is a succinct
witness of “no”

∀

ΣP
2 = NPcoNP NP with coNP-oracle ∃∀

ΠP
2 = coNPNP coNP with NP-oracle ∀∃
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Recall of Complexity Classes II

We know FO ⊊ L ⊆ NL ⊆ P ⊆ NP ∩ coNP. It is an open conjecture
that all these classes are distinct.

The complement of a decision problem p, denoted p, is the decision
problem resulting from reversing the yes and no answers. Thus,
coNP = {p | p ∈ NP}. coNP is not the complement of NP.

It is an open conjecture that coNP ̸= NP. Obviously, if P = NP, then
coNP = NP.

NPNP = NPcoNP, because a coNP-oracle can be used as an NP-oracle
(and vice versa). For example, instead of asking “Is this graph
3-colorable?” to an NP-oracle, we can ask “Is this graph not
3-colorable?” to a coNP-oracle and negate the answer.

Formally, P is a class of decision problems. FP is the class of function
problems solvable in deterministic polynomial time. For example,
“Determine the number of edges of a given graph” is not a decision
problem, and is obviously in FP.
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Digression on the Class NP

Definition 11 (Nondeterministic Polynomial Time)

NP contains all (and only) those decision problems that can be solved by a
guess-and-check program such that

1 the guess (a.k.a. certificate or witness) is of polynomial size; and

2 can be checked in polynomial time.

Since 2 =⇒ 1, the item 1 is actually redundant, and can hence be omitted.
Indeed, a polynomial-time algorithm could not even read (and hence not check) an
exponential-size guess.

P ⊆ NP, because we can guess “yes” and check this guess in polynomial time (by
solving the problem!).

NP-hard problems cannot be solved in polynomial time unless P = NP.

Observation (not a theorem): Most (all?) natural problems in NP are either in P
or NP-complete. It is today not known whether this observation holds for graph
isomorphism and factoring (= Does n have a nontrivial factor smaller than k?).

ASP can solve problems in ΣP
2 , which includes NP.
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Logics Capturing Complexity Classes

Theorem 12 (Fagin)

NP=Existential Second-Order logic

Extract from [Lib04]:

Conjecture 1 (Gurevich)

There is no logic that captures P over the class of all finite structures.
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Exercise: Presence of a Directed Path From a to b.

Is there a directed path from a to b (a ̸= b) in a directed simple graph
with edge-set E?

∃T/2



∀u∀v (T (u, v)→ E (u, v))∧
∃v (T (a, v)) ∧ ¬∃u (T (u, a))
∃u (T (u, b)) ∧ ¬∃v (T (b, v))
∀u∀v ((T (u, v) ∧ v ̸= b)→ ∃w (T (v ,w)))∧
∀v∀w ((T (v ,w) ∧ v ̸= a)→ ∃u (T (u, v)))∧
¬∃u∃v∃w (T (u, v) ∧ T (u,w) ∧ v ̸= w)∧
¬∃u∃v∃w (T (u,w) ∧ T (v ,w) ∧ u ̸= v)


Informally, we guess a subset T of edges and check in FO that T
constitutes a path from a to b: a is a source with positive outdegree; b is
a sink with positive indegree; b is the only sink; a is the only source; the
outdegree of any vertex is at most 1; and the indegree of any vertex is at
most 1 (which excludes cycles).
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Encoding in ASP

% t is a subset of e.

t(U,V) :- e(U,V), not out(U,V).

out(U,V) :- e(U,V), not t(U,V).

hasOutgoing(U) :- t(U,V).

hasIncoming(V) :- t(U,V).

% t must allow starting from a, and ending in b.

:- not hasOutgoing(a). :- not hasIncoming(b).

% in t, a and b must be source and sink, respectively.

:- t(U,a). :- t(b,V).

% b is the only sink, and a the only source.

:- t(U,V), V!=b, not hasOutgoing(V).

:- t(U,V), U!=a, not hasIncoming(U).

% in- and outdegrees can be at most 1.

:- t(U,V), t(U,W), V!=W.

:- t(U,W), t(V,W), U!=V.

Jef Wijsen (UMONS) ASP February 27, 2024 92 / 97



Exercise: Absence of a Directed Path From a to b.

Is there no directed path from a to b (a ̸= b)?

∃T/2

 ∀u∀v (E (u, v)→ T (u, v))∧
∀u∀v∀w (T (u, v) ∧ T (v ,w)→ T (u,w))∧
¬T (a, b)


Informally, we guess a subset T that includes E and is transitive, but does
not contain T (a, b).

Since the problem “Is there no directed path from a to b?” is in ∃SO, it is
in NP. It follows that the complementary problem “Is there a directed
path from a to b?” is in coNP.
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Encoding in ASP

% The following program finds a stable model if and

% only if there is no directed path from a to b.

t(U,V) :- e(U,V).

t(U,V) :- t(U,W), t(W,V).

:- t(a,b).
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Encoding in Linear Datalog (which is in NL)

Our exercise showed that reachability is in NP ∩ coNP.

Of course, you already knew from Bases de données II that
reachability can be solved in linear Datalog, and hence is in NL.
Thus, ASP programs for reachability that go beyond Datalog overkill
the problem.

t(U,V) :- e(U,V).

t(U,V) :- t(U,X), e(X,V).

yes() :- t(a,b).

no() :- not yes().
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