Tuple Relational Calculus

Jef Wijsen

Université de Mons (UMONS)

May 14, 2018

臣

∢ ≣⇒

```
S[S#, SNAME, STATUS, CITY]
P[P#, PNAME, COLOR, WEIGHT, CITY]
SP[S#, P#, QTY)]
```

Get all pairs of city names such that a supplier located in the first city supplies a part stored in the second city.

 $\{s.4, p.5 \mid S(s) \land P(p) \land \exists r(SP(r) \land s.1 = r.1 \land r.2 = p.1)\}$ $\{s.4, p.5 \mid \exists r(S(s) \land P(p) \land SP(r) \land s.1 = r.1 \land r.2 = p.1)\}$

・ 回 ト ・ ヨ ト ・ ヨ ト …

Get supplier names for suppliers who supply all red parts.

SELECT FROM WHERE	s.SNAME S AS s NOT EXISTS (SELECT FROM WHERE AND	* P AS p p.COLOR = 'Red' NOT EXISTS (SELECT FROM WHERE AND	* SP AS r r.S# = s.S# r.P# = p.P#)) ;
-------------------------	-----------------------------------	--------------------------------	--	--------------------------------	--

$$\{s.2 \mid S(s) \land \forall p \in P(p.3 = \text{`red'} \rightarrow \exists r \in SP(r.1 = s.1 \land r.2 = p.1))\}$$

 $\{s.2 \mid S(s) \land \neg \exists p \in P(p.3 = \text{`red'} \land \neg \exists r \in SP(r.1 = s.1 \land r.2 = p.1))\}$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

3

Alphabet

- Relation names R, S, T, \ldots , each of fixed arity in $\{1, 2, \ldots\}$.
- Tuple variables r, s, t, \ldots , each of fixed arity.

Terms

- Every constant is a term.
- If r is a tuple variable of arity n and $i \in \{1, 2, ..., n\}$, then r.i is a term.

Atomic formulas

- If *R* is a relation name and *r* a tuple variable, both of the same arity, then *R*(*r*) is an atomic formula.
- If u₁ and u₂ are terms, then u₁ = u₂ is an atomic formula.
 - Every atomic formula is a formula.
 - If φ₁ and φ₂ are formulas, then ¬φ₁, φ₁ ∧ φ₂, φ₁ ∨ φ₂ are formulas.
 - If φ is a formula with free tuple variable r, then ∃rφ and ∀rφ are formulas.
 <□><∂><∂><≥><≥><≥

Alphabet

- Relation names R, S, T, \ldots , each of fixed arity in $\{1, 2, \ldots\}$.
- Tuple variables r, s, t, \ldots , each of fixed arity.

Terms

- Every constant is a term.
- If r is a tuple variable of arity n and i ∈ {1, 2, ..., n}, then r.i is a term.

Atomic formulas

- If *R* is a relation name and *r* a tuple variable, both of the same arity, then *R*(*r*) is an atomic formula.
- If u_1 and u_2 are terms, then $u_1 = u_2$ is an atomic formula. Formulas
 - Every atomic formula is a formula.
 - If φ₁ and φ₂ are formulas, then ¬φ₁, φ₁ ∧ φ₂, φ₁ ∨ φ₂ are formulas.
 - If φ is a formula with free tuple variable r, then ∃rφ and ∀rφ are formulas.
 <□><∂><⇒><⇒><≥><≥><≥

Alphabet

- Relation names R, S, T, \ldots , each of fixed arity in $\{1, 2, \ldots\}$.
- Tuple variables r, s, t, \ldots , each of fixed arity.

Terms

- Every constant is a term.
- If r is a tuple variable of arity n and i ∈ {1, 2, ..., n}, then r.i is a term.

Atomic formulas

- If R is a relation name and r a tuple variable, both of the same arity, then R(r) is an atomic formula.
- If u_1 and u_2 are terms, then $u_1 = u_2$ is an atomic formula.
 - Every atomic formula is a formula.
 - If φ₁ and φ₂ are formulas, then ¬φ₁, φ₁ ∧ φ₂, φ₁ ∨ φ₂ are formulas.
 - If φ is a formula with free tuple variable r, then ∃rφ and ∀rφ are formulas.

Alphabet

- Relation names R, S, T, \ldots , each of fixed arity in $\{1, 2, \ldots\}$.
- Tuple variables r, s, t, \ldots , each of fixed arity.

Terms

- Every constant is a term.
- If r is a tuple variable of arity n and i ∈ {1, 2, ..., n}, then r.i is a term.
- Atomic formulas
 - If R is a relation name and r a tuple variable, both of the same arity, then R(r) is an atomic formula.
- If u_1 and u_2 are terms, then $u_1 = u_2$ is an atomic formula. Formulas
 - Every atomic formula is a formula.
 - If φ_1 and φ_2 are formulas, then $\neg \varphi_1$, $\varphi_1 \land \varphi_2$, $\varphi_1 \lor \varphi_2$ are formulas.
 - If φ is a formula with free tuple variable r, then ∃rφ and ∀rφ are formulas.

A query is an expression of the form

 $\{L \mid \varphi\}$

where

- L is a list of terms;
- φ is a formula;
- whenever r.i is a term in L, then r is a free tuple variable of φ .

Abbreviations

Abbreviations

- $\varphi_1 \rightarrow \varphi_2$ is an abbreviation for $\neg \varphi_1 \lor \varphi_2$
- $\exists r \in R(\varphi)$ is an abbreviation for $\exists r(R(r) \land \varphi)$
- $\forall r \in R(\varphi)$ is an abbreviation for $\forall r(R(r) \rightarrow \varphi)$
- $u_1 \neq u_2$ is an abbreviation for $\neg(u_1 = u_2)$

Notice that these abbreviations make sense:

$$\forall r \in R(\varphi) \equiv \neg \neg \forall r \in R(\varphi) \equiv \neg \neg \forall r (R(r) \rightarrow \varphi) \equiv \neg \exists r \neg (\neg R(r) \lor \varphi) \equiv \neg \exists r (R(r) \land \neg \varphi) \equiv \neg \exists r \in R(\neg \varphi)$$

Semantics

...

- A tuple variable of arity *n* ranges over **dom**^{*n*}.
- R(r) is true if tuple r belongs to relation R.
- $\exists r \varphi$ is true if there exists $r \in \mathbf{dom}^n$ that makes φ true (where n is the arity of r).
- In tuple relational calculus, we also have the problem domain dependence.

 $\{r.1 \mid R(r) \lor \exists s(S(s))\}$ $\{r.1 \mid \neg R(r)\}$

How to express {r.1 | R(r) ∨ S(r)} in SQL?
 SQL is a mix of tuple relational calculus and relational algebra.

・ 回 ト ・ ヨ ト ・ ヨ ト

Semantics

- A tuple variable of arity *n* ranges over **dom**^{*n*}.
- R(r) is true if tuple r belongs to relation R.
- $\exists r \varphi$ is true if there exists $r \in \mathbf{dom}^n$ that makes φ true (where n is the arity of r).
- . . .
- In tuple relational calculus, we also have the problem of domain dependence.

$$\{r.1 \mid R(r) \lor \exists s(S(s))\}$$
$$\{r.1 \mid \neg R(r)\}$$

How to express {r.1 | R(r) ∨ S(r)} in SQL?
 SQL is a mix of tuple relational calculus and relational algebra.

Exercise

Get pairs (n_1, n_2) of supplier names such that the parts supplied by n_1 is a subset of the parts supplied by n_2 .

$$\{ s_1.2, s_2.2 \mid S(s_1) \land S(s_2) \land \forall r_1 \in SP \\ (r_1.1 = s_1.1 \to \exists r_2 \in SP(r_2.1 = s_2.1 \land r_2.2 = r_1.2)) \}$$

$$\{ s_1.2, s_2.2 \mid S(s_1) \land S(s_2) \land \neg \exists r_1 \in SP \\ (r_1.1 = s_1.1 \land \neg \exists r_2 \in SP(r_2.1 = s_2.1 \land r_2.2 = r_1.2)) \}$$

SELECT FROM	s1.SNAME, s2.SNAME S AS s1, S AS s2				
WHERE	NOT EXISTS (SELECT	*		
		FROM	SP AS r1		
		WHERE	r1.S# = s1.S#		
		AND	NOT EXISTS (SELECT	*
				FROM	SP AS r2
				WHERE	r2.S# = s2.S#
				AND	r2.P# = r1.P#);

(4回) (4回) (4回)

臣