Tuple Relational Calculus

Jef Wijsen

Université de Mons (UMONS)

May 14, 2018

Motivation

S[S\#, SNAME, STATUS, CITY]
 P[P\#, PNAME, COLOR, WEIGHT, CITY]
 SP[S\#, P\#, QTY)]

Get all pairs of city names such that a supplier located in the first city supplies a part stored in the second city.

```
SELECT s.CITY, p.CITY
FROM S AS s, SP AS r, P AS p
WHERE s.S# = r.S#
AND r.P# = p.P#;
```

$$
\begin{aligned}
& \{s .4, p .5 \mid S(s) \wedge P(p) \wedge \exists r(S P(r) \wedge s .1=r .1 \wedge r .2=p .1)\} \\
& \{s .4, p .5 \mid \exists r(S(s) \wedge P(p) \wedge S P(r) \wedge s .1=r .1 \wedge r .2=p .1)\}
\end{aligned}
$$

Motivation

Get supplier names for suppliers who supply all red parts.

```
SELECT s.SNAME
FROM S AS s
WHERE NOT EXISTS ( SELECT *
                            FROM P AS p
                            WHERE p.COLOR = 'Red'
                                    AND NOT EXISTS (
\begin{tabular}{ll} 
SELECT & \(*\) \\
FROM & SP AS r \\
WHERE & r.S\# \(=\) s.S\# \\
AND & r.P\# \(=\) p.P\# ) ;
\end{tabular}
```

$\{s .2 \mid S(s) \wedge \forall p \in P(p .3=$ 'red' $\rightarrow \exists r \in S P(r .1=s .1 \wedge r .2=p .1))\}$
$\{s .2 \mid S(s) \wedge \neg \exists p \in P(p .3=$ 'red' $\wedge \neg \exists r \in S P(r .1=s .1 \wedge r .2=p .1))\}$

Alphabet

- Relation names R, S, T, \ldots, each of fixed arity in $\{1,2, \ldots\}$.
- Tuple variables r, s, t, \ldots, each of fixed arity.

Alphabet

- Relation names R, S, T, \ldots, each of fixed arity in $\{1,2, \ldots\}$.
- Tuple variables r, s, t, \ldots, each of fixed arity.

Terms

- Every constant is a term.
- If r is a tuple variable of arity n and $i \in\{1,2, \ldots, n\}$, then $r . i$ is a term.
Atomic formulas
- If R is a relation name and r a tuple variable, both of the same arity, then $R(r)$ is an atomic formula

Formulas

- Ever. atomic formula is a formula
\qquad

Alphabet

- Relation names R, S, T, \ldots, each of fixed arity in $\{1,2, \ldots\}$.
- Tuple variables r, s, t, \ldots, each of fixed arity.

Terms

- Every constant is a term.
- If r is a tuple variable of arity n and $i \in\{1,2, \ldots, n\}$, then $r . i$ is a term.
Atomic formulas
- If R is a relation name and r a tuple variable, both of the same arity, then $R(r)$ is an atomic formula.
- If u_{1} and u_{2} are terms, then $u_{1}=u_{2}$ is an atomic formula.

Alphabet

- Relation names R, S, T, \ldots, each of fixed arity in $\{1,2, \ldots\}$.
- Tuple variables r, s, t, \ldots, each of fixed arity.

Terms

- Every constant is a term.
- If r is a tuple variable of arity n and $i \in\{1,2, \ldots, n\}$, then $r . i$ is a term.
Atomic formulas
- If R is a relation name and r a tuple variable, both of the same arity, then $R(r)$ is an atomic formula.
- If u_{1} and u_{2} are terms, then $u_{1}=u_{2}$ is an atomic formula.

Formulas

- Every atomic formula is a formula.
- If φ_{1} and φ_{2} are formulas, then $\neg \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}$ are formulas.
- If φ is a formula with free tuple variable r, then $\exists r \varphi$ and $\forall r \varphi$ are formulas.

Queries

A query is an expression of the form

$$
\{L \mid \varphi\}
$$

where

- L is a list of terms;
- φ is a formula;
- whenever $r . i$ is a term in L, then r is a free tuple variable of φ.

Abbreviations

Abbreviations

- $\varphi_{1} \rightarrow \varphi_{2}$ is an abbreviation for $\neg \varphi_{1} \vee \varphi_{2}$
- $\exists r \in R(\varphi)$ is an abbreviation for $\exists r(R(r) \wedge \varphi)$
- $\forall r \in R(\varphi)$ is an abbreviation for $\forall r(R(r) \rightarrow \varphi)$
- $u_{1} \neq u_{2}$ is an abbreviation for $\neg\left(u_{1}=u_{2}\right)$

Notice that these abbreviations make sense:

$$
\begin{aligned}
\forall r \in R(\varphi) & \equiv \neg \neg \forall r \in R(\varphi) \\
& \equiv \neg \neg \forall r(R(r) \rightarrow \varphi) \\
& \equiv \neg \exists r \neg(\neg R(r) \vee \varphi) \\
& \equiv \neg \exists r(R(r) \wedge \neg \varphi) \\
& \equiv \neg \exists r \in R(\neg \varphi)
\end{aligned}
$$

Semantics

- A tuple variable of arity n ranges over dom ${ }^{n}$.
- $R(r)$ is true if tuple r belongs to relation R.
- $\exists r \varphi$ is true if there exists $r \in \mathbf{d o m}^{n}$ that makes φ true (where n is the arity of r).
- ...

In tuple relational calculus, we also have the problem of domain denendence.

- A tuple variable of arity n ranges over dom ${ }^{n}$.
- $R(r)$ is true if tuple r belongs to relation R.
- $\exists r \varphi$ is true if there exists $r \in \mathbf{d o m}^{n}$ that makes φ true (where n is the arity of r).
- ...
- In tuple relational calculus, we also have the problem of domain dependence.

$$
\begin{gathered}
\{r .1 \mid R(r) \vee \exists s(S(s))\} \\
\{r .1 \mid \neg R(r)\}
\end{gathered}
$$

- How to express $\{r .1 \mid R(r) \vee S(r)\}$ in SQL? SQL is a mix of tuple relational calculus and relational algebra.

Get pairs $\left(n_{1}, n_{2}\right)$ of supplier names such that the parts supplied by n_{1} is a subset of the parts supplied by n_{2}.

$$
\begin{aligned}
\left\{s_{1} \cdot 2, s_{2} .2 \mid\right. & S\left(s_{1}\right) \wedge S\left(s_{2}\right) \wedge \forall r_{1} \in S P \\
& \left.\left(r_{1} \cdot 1=s_{1} \cdot 1 \rightarrow \exists r_{2} \in S P\left(r_{2} \cdot 1=s_{2} \cdot 1 \wedge r_{2} \cdot 2=r_{1} \cdot 2\right)\right)\right\}
\end{aligned}
$$

$\left\{s_{1} .2, s_{2} .2 \mid S\left(s_{1}\right) \wedge S\left(s_{2}\right) \wedge \neg \exists r_{1} \in S P\right.$

$$
\left.\left(r_{1} \cdot 1=s_{1} \cdot 1 \wedge \neg \exists r_{2} \in S P\left(r_{2} \cdot 1=s_{2} \cdot 1 \wedge r_{2} \cdot 2=r_{1} \cdot 2\right)\right)\right\}
$$

SELECT
FROM
WHERE

```
s1.SNAME, s2.SNAME
```

 S AS s1, S AS s2 NOT EXISTS (