
XQuery Notes

Jef Wijsen

June 16, 2019

1 XPath Expressions

XQuery supports XPath expressions. Every XQuery implementation must support the fol-
lowing axes: self, child, descendant, descendant-or-self, attribute, and parent. The
following axes are optional: ancestor, ancestor-or-self, following, following-sibling,
preceding, and preceding-sibling. XQuery does not support the namespace axis.

For example,

doc("catalog.xml")//car[color="blue"]/price

returns

<price unit="BEF">115000</price>

The function call doc("catalog.xml") opens catalog.xml and returns its root node. The
file catalog.xml is the one used in the XSLT Notes:

<?xml version="1.0"?>

<!--The name of this file is catalog.xml-->

<catalog>

<car> <model>Renault CLIO</model>

<color>blue</color>

<price unit="BEF">115000</price></car>

<bike> <height>56</height>

<price unit="EUR">500</price></bike>

<go-kart> <price unit="BEF">3000</price></go-kart>

<car> <model>Peugeot Partner</model>

<color>red</color>

<price unit="EUR">12000</price></car>

</catalog>

2 Constructing Sequences and Elements

A sequence is an ordered collection of zero or more items. An item is either an atomic value
(a string, a number, a date, a boolean, an URI) or a single node. A node conforms to one
of the seven node kinds (see XSLT Notes); a node may have other nodes as children. There
is no distinction between a single item and a sequence of length one containing that item.
A typed value is a sequence of zero or more atomic values. XQuery supports operators to
construct sequences:

<seq-expr>

The expression (3,4,5,6,7)

results in {(3,4,5,6,7)}

1

The range expression 3 to 7

also generates {3 to 7}

There is no notion of nested sequences: (3 to 4,((5,6),7))

also generates {(3 to 4,((5,6),7))}

Sequences are not limited to atomic values:

(<i>{{(1,<two/>,3)}}</i>,4 to 7)

generates {(<i> {(1,<two/>,3)} </i>,4 to 7)}

</seq-expr>

The direct element constructor <seq-expr>. . . </seq-expr> creates a seq-expr element
node. In a direct element constructor, single curly braces { and } delimit enclosed expres-
sions, distinguishing them from literal text. Enclosed expressions are evaluated and replaced
by their value, whereas material outside curly braces is simply treated as literal text. Dou-
bled curly braces {{ and }} represent the characters { and } (see line 9). Here is the result
of the above query:

<seq-expr>

The expression (3,4,5,6,7)

results in 3 4 5 6 7

The range expression 3 to 7

also generates 3 4 5 6 7

There is no notion of nested sequences: (3 to 4,((5,6),7))

also generates 3 4 5 6 7

Sequences are not limited to atomic values:

(<i>{(1,<two/>,3)}</i>,4 to 7)

generates <i>1<two/>3</i>4 5 6 7

</seq-expr>

In the following example, the sequence constructor (, ,) creates a sequence of three
element nodes. The curly braces enclosing $bef within the direct element constructor <price

unit="BEF">...</price> are used to indicate that $bef has to be evaluated rather than
treated as text.

let $bef:=1000000

return

(

<price unit="BEF"> { $bef } </price>,

<price unit="CHF"> { round($bef div 26.0019) } </price>,

element price { attribute unit {"EUR"}, round($bef div 40.3399) }

)

The result is:

<price unit="BEF">1000000</price>

<price unit="CHF">38459</price>

<price unit="EUR">24789</price>

Computed element constructors can compute element names:

let $bef:=1000000, $p:="prix"

return

<convertisseur>

{ element {$p} { attribute unit {"BEF"}, $bef } }

{ element {$p} { attribute unit {"CHF"}, round($bef div 26.0019) } }

{ element {$p} { attribute unit {"EUR"}, round($bef div 40.3399) } }

</convertisseur>

2

The result is:

<convertisseur>

<prix unit="BEF">1000000</prix>

<prix unit="CHF">38459</prix>

<prix unit="EUR">24789</prix>

</convertisseur>

3 Comparison Operators

The value comparison operators eq, ne, lt, le, gt, ge are used to compare two single non-
node values. They raise an error if either operand is a sequence of length greater than one.

The general comparison operators =, !=, <, <=, >, >= can deal with operands that are
sequences, providing implicit “existential” semantics for both operands. That is, if θ denotes
a general comparison operator, then (a1, . . . , an) θ (b1, . . . , bm) ⇔ ∃ai∃bj : ai θ bj . Thus,
two sequences of atomic values are equal under “=” if they have an atomic value in common.

There are two node comparison operators in XQuery: is and is not. These operators
compare the identity of two nodes. Two nodes may have a different identity even though
their names and values are the same. The order comparison operators << and >> test whether
the first operand node precedes/follows the second one in document order.

If an operator or function requires an atomic value but finds something else instead,
then the atomic value may be obtained by a process called atomization. For example,
<i>3</i>+<j>5</j> evaluates to 8; the elements <i>3</i> and <i>5</i> are automati-
cally atomized into 3 and 5. A sequence is atomized by atomizing each individual item of
the sequence.

For example, the query

<comparison>

(3)=3 is {(3)=3}.

(3,4,5)=(5,6,7) is {(3,4,5)=(5,6,7)}.

()=() is {()=()}!

(<i>3</i>)=(3) is {(<i>3</i>)=(3)} due to atomization.

</comparison>

yields the following result:

<comparison>

(3)=3 is true.

(3,4,5)=(5,6,7) is true.

()=() is false!

(<i>3</i>)=(3) is true due to atomization.

</comparison>

4 Quantified and Conditional Expressions

The query

<quantified>

{every $x in 1 to 10 satisfies

(some $y in 0 to 5, $z in 1 to 5 satisfies $x = $y + $z)}

</quantified>

yields the following result:

3

<quantified>

true

</quantified>

The then branch in the following query will be executed if the XPath expression returns the
empty sequence; otherwise the else branch is chosen.

<cond>{

if (empty(doc("catalog.xml")//price[@unit="BEF"]))

then "all prices converted"

else "still some old prices"

}</cond>

5 FLWOR Expressions

5.1 Syntax

The syntax of FLWOR expressions is given by:

(ForClause | LetClause)+ WhereClause? OrderByClause? “return” ExprSingle

The symbol ExprSingle includes quantified expressions, conditional expressions, and FLWOR
expressions.

for $i in 1 to 3

for $j in 1 to $i

return <row>{$i}:{$j}</row>

;

<row>1:1</row>

<row>2:1</row>

<row>2:2</row>

<row>3:1</row>

<row>3:2</row>

<row>3:3</row>

Compare the preceding query with the following one.

for $i in 1 to 9

let $j := 1 to $i

return <row>{$i}:{$j}</row>

;

<row>1:1</row>

<row>2:1 2</row>

<row>3:1 2 3</row>

<row>4:1 2 3 4</row>

<row>5:1 2 3 4 5</row>

<row>6:1 2 3 4 5 6</row>

<row>7:1 2 3 4 5 6 7</row>

<row>8:1 2 3 4 5 6 7 8</row>

<row>9:1 2 3 4 5 6 7 8 9</row>

5.2 Comparison with SQL

Figure 1 shows that the XQuery FLWOR expression seems to be inspired by SQL. The
XQuery query of Figure 1 does not yield a well-formed XML document:

<name>An</name>

<company>ULB</company>

<name>Ed</name>

<company>UMH</company>

The following query returns a well-formed XML document:

4

<?xml version="1.0" standalone="no" ?>

<!--The name of this file is emp.xml-->

<employees>

<emp>

<name>Ed</name>

<sal>100</sal>

<company>UMH</company>

</emp>

<emp>

<name>Tim</name>

<sal>50</sal>

<company>UCL</company>

</emp>

<emp>

<name>An</name>

<sal>75</sal>

<company>ULB</company>

</emp>

</employees>

EMP Name Sal Company
Ed 100 UMH
Tim 50 UCL
An 75 ULB

for $a in doc("emp.xml")/*/emp

where number($a/sal) gt 60

order by number($a/sal)

return ($a/name, $a/company)

FROM EMP a

WHERE a.Sal > 60

ORDER BY a.Sal

SELECT a.Name, a.Company

Figure 1: Comparison between XQuery and SQL.

<answer>{

for $a in doc("emp.xml")/*/emp

where number($a/sal) gt 60

order by number($a/sal)

return <emp>{ $a/name,

$a/company

}</emp>

}</answer>

;

<answer>

<emp>

<name>An</name>

<company>ULB</company>

</emp>

<emp>

<name>Ed</name>

<company>UMH</company>

</emp>

</answer>

For all products that are red or blue, get the Euro price and the color.

<blue-red-products>{

for $product in doc("catalog.xml")/catalog/*

where $product/color=("blue","red")

return element { name($product) }

{ <price unit="EUR">{

if ($product/price/@unit="EUR")

then $product/price/text()

else round($product/price div 40.3399)

}</price>,

$product/color

}

}</blue-red-products>

The function name() returns the name of an element node. The result of this query:

5

<blue-red-products>

<car> <price unit="EUR">2851</price>

<color>blue</color></car>

<car> <price unit="EUR">12000</price>

<color>red</color></car>

</blue-red-products>

5.3 Join Queries

The file cy.xml stores locations of companies.

<?xml version="1.0" standalone="no"?>

<!--The name of this file is cy.xml-->

<companies>

<cy> <cname>UMH</cname>

<loc>Mons</loc>

<loc>Charleroi</loc></cy>

<cy> <cname>UCL</cname>

<loc>Louvain</loc></cy>

<cy> <cname>ULB</cname>

<loc>Bruxelles</loc></cy>

</companies>

Get names of employees who work for a company located in Mons or Brussels; order employees
by increasing salary.

for $emp in doc("emp.xml")//emp

for $cy in doc("cy.xml")//cy

where $emp/company = $cy/cname

and $cy/loc = ("Mons","Bruxelles")

order by number($emp/sal)

return $emp/name

;
<name>An</name>

<name>Ed</name>

The first for clause binds the variable $emp to the binding sequence doc("emp.xml")//emp.
The second for clause binds the variable $cy to the binding sequence doc("cy.xml")//emp.
The two for clauses produce a stream of tuples; each tuple is a combination of values in the
respective binding sequences. Thus, the tuple stream is the Cartesian product of the binding
sequences.

See Section 3 for the comparison $cy/loc = (”Mons”,”Bruxelles”). Would the comparison
$emp/company = $cy/cname need to be changed if an employee can work for more than one
company?

Same query, using more XPath style:

for $emp in doc("emp.xml")//emp

for $cy in doc("cy.xml")//cy[cname=$emp/company]

where $cy/loc="Mons" or $cy/loc="Bruxelles"

order by number($emp/sal)

return $emp/name

5.4 Aggregate Queries

Who earns the highest salary?

6

let $emp := doc("emp.xml")//emp

for $a in $emp

where $a/sal = max($emp/sal)

return $a/name

; <name>Ed</name>

6 Functions

What is the most expensive product?

declare namespace my="my.uri";

declare function my:toBEF ($p as element(price)) as element(price)

{

if ($p/@unit="BEF") then $p

else if ($p/@unit="EUR") then <price unit="BEF">{40.3399*$p}</price>

else error("Unknown Unit")

};

<most-expensive-product>{

let $max := max(doc("catalog.xml")/catalog/*/my:toBEF(price))

return doc("catalog.xml")/catalog/*[my:toBEF(price) = $max]

}</most-expensive-product>

The result of this query is:

<most-expensive-product>

<car>

<model>Peugeot Partner</model>

<color>red</color>

<price unit="EUR">12000</price>

</car>

</most-expensive-product>

Note:

• The default namespace for function names is the namespace of the XQuery core function
library, which is bound to the prefix fn. So max is shorthand for fn:max. The namespace
for the function toBEF is bound to the prefix my.

• The sequence type element(price) refers to an element named price. The use of the
term “sequence type” (rather than, e.g., “value type”) comes from the fact that every
XQuery value is actually a sequence: a single value is a sequence of length one.

• max() is defined for (sequences of) atomic values, not for elements. Atomization ex-
tracts atomic values from elements. The following query, e.g., yields true:

3 eq sum((<a>1,2))

7

7 Elaborated Example

The elaborated example of the XSLT Notes (Section 4), stated in XQuery.

declare namespace my="my.uri";

declare function my:toBEF ($p as element(price)) as element(price)

{

if ($p/@unit="BEF")

then $p

else if ($p/@unit="EUR")

then <price unit="BEF">{round(40.3399*$p)}</price>

else <price>?</price>

};

<HTML>

<BODY>

<H1>Cars</H1>

<TABLE BORDER="3">

<TR><TH>Car Model</TH><TH>Price</TH></TR>

{

for $car in doc("catalog.xml")//car

return

<TR><TD> { $car/model/text() } </TD>

<TD> { ($car/my:toBEF(price))/text() } </TD>

</TR>

}

</TABLE>

<H1>Bikes</H1>

<TABLE BORDER="3">

<TR><TH>Frame Height</TH><TH>Price</TH></TR>

{

for $bike in doc("catalog.xml")//bike

return

<TR><TD> { $bike/height/text() } </TD>

<TD> { ($bike/my:toBEF(price))/text() } </TD>

</TR>

}

</TABLE>

</BODY>

</HTML>

Here is the result:

<HTML>

<BODY>

<H1>Cars</H1>

<TABLE BORDER="3">

<TR>

<TH>Car Model</TH>

<TH>Price</TH>

</TR>

<TR>

<TD>Renault CLIO</TD>

<TD>115000</TD>

8

</TR>

<TR>

<TD>Peugeot Partner</TD>

<TD>484079</TD>

</TR>

</TABLE>

<H1>Bikes</H1>

<TABLE BORDER="3">

<TR>

<TH>Frame Height</TH>

<TH>Price</TH>

</TR>

<TR>

<TD>56</TD>

<TD>20170</TD>

</TR>

</TABLE>

</BODY>

</HTML>

9

