XSLT Notes *

Jef Wijsen
May 10, 2019

Contents
1 XML 2
1.1 Well-Formed XML Document 2
1.2 XML Trees o e e 2
1.3 Valid XML Document 3
2 XPath 3
2.1 Location Step 3
2.2 AXeS . .. e 4
2.3 Node Tests 6
2.3.1 Testsfor Any Node 6
2.3.2 Tests for Element, Attribute, and Namespace Nodes 6
2.3.3 Tests for Text, Comment, and Processing-Instruction Nodes 6
2.4 Location Path 6
2.5 Abbreviations 7
2.6 Predicates e 8
2.7 Comparison of Node-sets 8
2.8 Pitfalls 9
3 XSLT 9
3.1 XSL Stylesheet 9
3.2 XSLT Processing Model 9
3.3 Matching 11
3.4 Executing the Template o o 11
3.5 Built-In Template Rules o 12
3.6 Priority Processing 13
3.7 Multiple Processing 14
3.8 Context and Current Node, 14
3.9 Eliminating Duplicates o o 15
3.10 Variables 15
3.11 Creating Element and Attribute Nodes 16
4 Elaborated Example 17
5 Exercises 17
5.1 Questions 17
5.2 ANSWETS 19

*The larger part of this document is based on the W3C specifications and recommendations available at
http://www.w3.org/. The examples are mine.

<?7xml version="1.0"7>
<7xml-stylesheet type="text/xsl" href="tree-view.xsl"?>
<catalog tax="no" city="Mons" xmlns="iURL" xmlns:q="qURL">
<!--A comment-->
Spaces are
<car EUR="12000">Peugeot Partner</car>
not easy
<q:bike cm="56"/>
</catalog>

Figure 1: Well-formed XML document.

xml-stylesheet type="text/xsl” href="tree-view.xsl”

o catalog

not easy (&lke)
(om)
Figure 2: Tree representation of the well-formed XML document in Fig. 1.

1 XML
1.1 Well-Formed XML Document

Fig. 1 shows a well-formed XML document. Elements of type car are delimited by the start-
tag <car> and the end-tag </car>. The text between the start-tag and end-tag is called the
element’s content. The element of type bike has no content and is said to be empty. The
element of type catalog contains five children. An element is said to have mized content if
it contains character data, optionally (sic) interspersed with child elements. Attributes are
used to associate name-value pairs with elements. Attribute specifications may appear only
within start-tags and empty-element tags. An attribute name must not appear more than
once in the same start-tag or empty-element tag. A well-formed XML document has a single
root element, also called the document element. The root element in the running example is
of type catalog.

1.2 XML Trees

XPath models an XML document as a tree. The tree contains nodes. There are seven types
of nodes:

1. element nodes There is an element node for every element in the document.

2. the root node Note that the element node for the document element (catalog in the

current example) is not the root node, but a child of the root node. So the root node
has no corresponding element or attribute in the XML document.

3. text nodes Character data is grouped into text nodes. As much character data as pos-
sible is grouped into each text node: a text node never has an immediately following
or preceding sibling that is a text node.

4. attribute nodes Each element node has an associated (possibly empty) set of attribute
nodes; the element is the parent of each of these attribute nodes; however, an attribute
node is not a child of its parent element.’

5. namespace nodes As for attribute nodes, a namespace node is not a child of its parent
element.

6. processing instruction nodes
7. comment nodes

Fig. 2 shows the tree representation of the XML document in Fig. 1, containing sixteen
nodes: the root node labeled root, three element nodes, three text nodes, four attribute
nodes, three namespace nodes (diamonds), one processing instruction node (shadowbox),
and one comment node. Note that the XML declaration <?xml version="1.0"7> is not
part of the tree. Attribute order is not significant in XML.

Hint 1 The XSLT and CSS stylesheets tree-view.xsl and tree-view.css available at
http://skew.org/xml/stylesheets/treeview/html/ transform any XML document into
an HTML document showing the tree representation of the XML document. Simply download
both stylesheets and add to your XML document a processing instruction

<7xml-stylesheet type="text/xsl" href="tree-view.xsl"?>

to ask Microsoft Internet Explorer to do the transformation.

1.3 Valid XML Document

A walid XML document is a well-formed XML document which also conforms to the rules
of a Document Type Definition (DTD). W3C supports an alternative to DTD called XML
Schema.

The DTD of Fig. 3 specifies that a catalog contains zero or more cars, bikes, or go-karts.
All vehicles have a price expressed in EUR or BEF. In addition, bikes store the frame height.
Cars also contain the model and optionally the color. Fig. 4 shows a valid XML document;
the tree representation appears in Fig. 5.

2 XPath

2.1 Location Step

A location step selects nodes relative to the context node; it has three parts:
1. an axis,
2. a node test preceded by ::, and

3. zero or more predicates each in square brackets, which use arbitrary expressions to
further refine the set of nodes selected by the location step.

IFor this reason, I use a dotted line between an attribute node and its parent element node.

<!ELEMENT catalog (car|bike|go-kart)*>
<!ELEMENT car (model,color?,price)>
<!ELEMENT bike (height,price)>

<!ELEMENT go-kart (price)>

<!ELEMENT model (#PCDATA)>

<!ELEMENT color (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT height (#PCDATA)>

<!ATTLIST price unit (EUR|BEF) #REQUIRED>

Figure 3: DTD stored at http://ssi.umh.ac.be/jefXML/cat.dtd.

<?7xml version="1.0"7>
<!DOCTYPE catalog SYSTEM "http://ssi.umh.ac.be/jefXML/cat.dtd">

<catalog>
<car>
<model>Renault CLIO</model>
<color>blue</color>
<price unit="BEF">115000</price>
</car>
<bike>
<height>56</height>
<price unit="EUR">500</price>
</bike>
<go-kart>
<price unit="BEF">3000</price>
</go-kart>
<car>
<model>Peugeot Partner</model>
<color>red</color>
<price unit="EUR">12000</price>
</car>
</catalog>

Figure 4: Valid XML document.

For example,
child::pricel[attribute: :unit="EUR"]

selects the price element children of the context node that have a unit attribute with value
EUR. The node test price is true for a price element node.

2.2 Axes

An axis specifies the tree relationship between the “target” nodes and the context node. The
thirteen axes are:

e self
The self axis contains just the context node itself.

e parent and child
The parent axis contains the parent of the context node. Every node other than the
root node has exactly one parent, which is either an element node or the root node.

(model) (color) (price) (helght) (price) (price) (model) (color) (price)

\ (o)
Renault CLIO 115000 3000 Peugeot Partner @ 12000

Figure 5: Tree representation of the valid XML document in Fig. 4.

The child axis contains the children of the context node. Since an attribute is not a
child of its parent element, this axis will contain no attribute nodes. The attributes of
an element context node are in the attribute axis:

e attribute
The attribute axis contains the attributes of the context node; the axis will be empty
unless the context node is an element.

e ancestor and descendant
The ancestor axis will always include the root node, unless the context node is the
root node.

The descendant axis never contains attribute or namespace nodes.
e ancestor-or-self and descendant-or-self

e preceding and following
The preceding axis contains all nodes in the same document as the context node that
are before the context node in document order, excluding any ancestors and excluding
attribute nodes and namespace nodes.

The following axis contains all nodes in the same document as the context node that
are after the context node in document order, excluding any descendants and excluding
attribute nodes and namespace nodes.

e preceding-sibling and following-sibling
Two nodes are siblings if they have the same parent node. The preceding-sibling
axis contains all the preceding siblings of the context node; if the context node is an
attribute node or namespace node, the preceding-sibling axis is empty.

e namespace
The namespace axis contains the namespace nodes of the context node; the axis will
be empty unless the context node is an element.

The ancestor, descendant, following, preceding and self axes partition a document
(ignoring attribute and namespace nodes): they do not overlap and together they contain
all the nodes in the document.

Hint 2 Although attribute order is not significant in XML, this does not mean that the
mutual order of an attribute node and an element node with the same parent is not significant.
For example, consider the XML document:

<?7xml version="1.0"7>

Assume that the c attribute node is the context node. Then the following axis contains the
b element, and the preceding axis is empty. However, I found that certain XSLT processors
behave differently, leaving both axes empty.

2.3 Node Tests
2.3.1 Tests for Any Node

A node test node () is true for any node of any type whatsoever. For example,
e child::node() selects all the children of the context node, whatever their node type.
It will not select attribute nodes, as an attribute is not a child of its parent element.
2.3.2 Tests for Element, Attribute, and Namespace Nodes

A node test mylabel is true for mylabel element nodes and for mylabel attribute nodes.
For example,

e child: :bike will select all bike element children of the context node.

e attribute::unit selects the unit attribute of the context node (there can be at most
one).

A node test * is true for any node of the principal node type. For the attribute axis, the prin-
cipal node type is attribute. For the namespace axis, the principal node type is namespace.
For other axes, the principal node type is element. For example,

e child::* will select all element children of the context node, and
e attribute: :* will select all attributes of the context node.

Namespace nodes are rarely handled explicitly.

2.3.3 Tests for Text, Comment, and Processing-Instruction Nodes

The node test text () is true for any text node. Similarly, the node test comment () is true for
any comment node, and the node test processing-instruction() is true for any processing
instruction. For example,

e child: :text () will select the text node children of the context node.
e child: :comment () will select the comment node children of the context node.

Note the different treatment of attribute and namespace nodes on the one hand (they have
their own axes, but no separate node tests), and text, processing instruction and comment
nodes on the other hand (separate node tests, but no axes).

2.4 Location Path

A relative location path consists of a sequence of one or more location steps separated by /,
and selects a set of nodes relative to the context node. An absolute location path consists of
/ optionally followed by a relative location path, and selects a set of nodes relative to the
root node of the document. For example,

<A>

<C/>
<A>

<A/><C/><A/>

<C/>

<C/>

/descendant: :A/parent: :B/child::C

Figure 6: Selected element nodes are grey coloured.

child: :*/child: :color

/descendant: :A/parent: :B

selects all color grandchildren of the context node. A more involved example is shown in

Figure 6.

A location path can be used as an expression. The expression returns the set of nodes
selected by the path. The | operator computes the union of its operands, which must be

node-sets.

2.5 Abbreviations

The most important abbreviation is that child::

can be omitted from a location step. In

effect, child is the default axis. Abbreviations are listed in the following table:

| Shorthand | Unabbreviated syntax |
can be omitted | child::
// /descendant-or-self::node()/
Q attribute::

self::node()

parent: :node ()

For example,

.//price

will select all price descendant elements of the context node. It is an abbreviation for:

self::node()/descendant-or-self::node()/child: :price

2.6 Predicates

Predicates are actually XPath ezpressions. XPath expressions can be of four types: node-set,
boolean, number, or string. A node-set expression is really the same thing as a location path.
If a node-set expression is used as a predicate, then the (implicit) conversion to true/false
is natural: an empty node-set is converted into false, a nonempty node-set into true. For
example,

e child::car[descendant: :color] selects car element children of the context node
that have a color element descendant.

In general, a node-set expression returns a sequence of nodes: all nodes matching the ex-
pression, ordered according to document order. Node-sets can be evaluated as sequences of
strings or numbers that can be manipulated by the XPath operators:

and or = != < <= > >= + - *x div mod
and functions including:

count sum position() last() starts-with
For example,

e car[color="blue’] selects the car element children of the context node that contain
a color element child whose value is blue.

e car[count(color)>1] selects the car element children of the context node that contain
more than one color element child.

e car[not(starts-with(model,’R’))] selects the car element children of the context
node that contain a model whose value does not begin with the letter R.

e descendant: :car[position()=2] selects the second (in document order) car element
descendant of the context node. This can be abbreviated as descendant: :car[2].

e descendant: :car [position()=1last()-1] selects the last but one (in document order)
car element descendant of the context node.

e descendant: :car[(price*40.3399>500000 and price/@unit=’EUR’) or
(price>500000 and price/@unit=’BEF’)]
selects all car element descendants of the context node whose price expressed in BEF

is greater than 500000.

e Predicates can be nested, i.e. square brackets can appear within square brackets. The
preceding location step can also be written:

descendant: :car [(price[Qunit=’BEF’]>500000) or
(40.3399*price[Qunit="EUR’]>500000)]

e catalog[sum(*/price)>999999] selects all catalog element children of the context
node with the total price of all vehicles exceeding 999999.

2.7 Comparison of Node-sets

If an operand of =, !'=, <=, <, >= or > is a node-set, then “existential” semantics apply. For
example, the following XPath expression returns the entire catalog if there exists a blue
product; otherwise the result is empty.

<A>

<C/>
<A>

<A/><C/><A/>

<C/>

<C/>

//CI[1] (//¢) 1]

Figure 7: Selected element nodes are grey coloured.

/catalogldescendant: :color="blue’]

Consequently, the following XPath expressions are not equivalent (why not?):

/catalog[descendant: :color!="blue’] ~> Jc(e # blue)

/catalog[not (descendant::color="blue’)] ~» —dc(c = blue) = Ve(c # blue)

2.8 Pitfalls

Thanks to Jan Paredaens. Figure 7 shows that //C[1] can return more than one C element
node. Can you explain why? By using parentheses, you can select the first C element node
in the document: (//C) [1].

Figure 8 shows that equality seems not transitive. Can you explain why no element node
is selected in the third tree?

3 XSLT
3.1 XSL Stylesheet

A template rule has the form:

<xsl:template match="the match pattern">
the template
</xsl:template>

An XSL stylesheet is a family of such template rules.

3.2 XSLT Processing Model

The XSLT processor takes as its input an XML document and a stylesheet, and produces an
output XML document:

XML document + XSL stylesheet >l esult tree

The xslt program can be understood as follows:

<A>

<T>1</T>
<T>2</T>

<C>
<T>2</T>
<T>3</T>
</C>
<D>
<T>3</T>
<T>4</T>
</D>

/A[B/T=C/T] /A[C/T=D/T]

/A[B/T=D/T]

Figure 8: Selected nodes are grey coloured. Equality seems not transitive.

10

program xslt
procedure process(aNode)
begin
find the template rule with pattern that best matches aNode (see Section 3.3)
execute the template with aNode as the current node (see Section 3.4)
end
begin
process(theRootNode)
end

3.3 Matching

The match pattern is a restricted location path (see Section 2.4). The restrictions include:

e In any location step, the axis must be either child or attribute. Recall that a location
step is of the form azis: : node-test|predicate]*.

e In a location path, location steps can be separated not only by / but also by //. When
// is used in this way, it is not regarded as a shorthand.

A pattern p is defined to match a node n if and only if there is a possible context node ¢ such
that when the pattern p is evaluated relative to ¢, the node n is a member of the resulting
node-set.

For example, the pattern bike matches every bike element node. Recall that bike is a
shorthand for child::bike. Let n be a bike element node, and let ¢ be the parent of n (c
is either another element node or the root node). Evaluating bike relative to ¢ results in a
node-set containing n. It is correct to conclude that n matches bike.

Hint 3 You may find it easier to understand the meaning of a pattern by evaluating it from
right to left. For example, catalog//bike may be read as “any bike element that has a
catalog element ancestor.”

Similarly, the pattern node () matches any node other than an attribute node, a namespace
node, and the root node. Recall that node() is a shorthand for child: :node(). Since an
attribute node is not a child of its parent element, attribute nodes will not be matched. Since
the root node is not a child of any other node, the root node will not be matched. Always
using the same reasoning, we can obtain the following table:

match=
"node() n Nyt nEx" n/n "text() n "comment() n "processing
-instruction()"

— — + — — —
+ — — — — —

— — — — + —

root

element

text

comment
processing
-instruction
attribute — — + — — — —
namespace — — — — — — —

++[+|
I
|
I
|
I

+
I
|
I
|
I
+

There is no pattern that can match a namespace node.

3.4 Executing the Template

Typically the template contains one or more of the following elements:

11

e <xsl:apply-templates select="node-set"/>
The node-set is given by a path that selects nodes relative to the current node (i.e. the
context node comes from the current node). The execution of this statement can be
understood as follows:

for each node n in node-set, process(n) |,

where process() as described in Section 3.2. Typically, xs1:apply-templates is used to
process only nodes that are descendants of the current node; this ensures termination
of the recursion. The common use of xsl:apply-templates is

<xsl:apply-templates select="child: :node()"/> ,
i.e. continue processing the children of the current node; it can be shortened into:
<xsl:apply-templates/> .

Multiple xsl:apply-templates elements can be used within a single template to do
simple reordering.

e <xsl:copy-of select="node-set"/>
Copy the node-set over to the result tree. Copying an element node copies the attribute
nodes, namespace nodes and children of the element node as well as the element node
itself.

e <xsl:value-of select="node-set"/>
Create a text node in the result tree. The text node is obtained by converting node-set
into a string. The string-value of an element node is the concatenation, in document
order, of all text node descendants.

3.5 Built-In Template Rules

Take the XML document of Fig. 4 and process it with an empty stylesheet, i.e. a stylesheet
containing the empty element tag:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform" />

The result contains all text nodes in document order:
Renault CLIObluel15000565003000Peugeot Partnerred12000

The explanation for this output is that XSLT contains some built-in template rules. The
most important built-in rule applies to both element nodes and the root node, and can be
expressed like this:

<xsl:template match="/|x*">
<xsl:apply-templates/>
</xsl:template>

/ matches the root node, and * matches any element node (see Section 3.3). So / | * is
XPath shorthand for “any element node or the root node.” So this rule is simply there to make
sure that every element, from the root on down, is processed with <xsl:apply-templates/>
if you don’t supply some other rule. If you do supply another rule, it overrides the corre-
sponding built-in rule. There is also a built-in template rule for text and attribute nodes
that copies text through:

12

<xsl:template match="text () |Ox">
<xsl:value-of select="."/>
</xsl:template>

Note incidentally the absence of EUR or BEF in the output obtained with the empty
stylesheet.? The built-in template rule for processing instructions and comments is to do
nothing:

<xsl:template match="processing-instruction() | comment()"/>

The built-in template rule for namespace nodes is also to do nothing. There is no pattern
that can match a namespace node; so, the built-in template rule is the only template rule
that is applied for namespace nodes.

3.6 Priority Processing

The aim of the following (deficient) stylesheet was to ignore cheap cars, to show medium-
prized cars in green, and expensive ones in red.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<HTML><xsl:apply-templates select="//car"/></HTML>
</xsl:template>

<xsl:template match="car [price>99999]">
<xsl:value-of select="model"/>
</xsl:template>

<xsl:template match="car [price>10000]">
<xsl:value-of select="model"/>
</xsl:template>

<xsl:template match="car"/>
</xsl:stylesheet>

The stylesheet contains three template rules that could match a car element node. The
third rule is less specific than the two preceding rules, which are equally specific.? The
basic assumption is that rules that are more specific take precedence over rules that are
more general. Therefore, cars with a price > 10000 and < 99999 must be handled by the
second rule (they will appear in green), not by the last one. For cars with a price > 99999,
which match equally well the first and the second rule, the following passage in the W3C
Recommendation (http://www.w3.org/TR/xslt) applies:

“It is an error if this leaves more than one matching template rule. An XSLT
processor may signal the error; if it does not signal the error, it must recover by
choosing, from amongst the matching template rules that are left, the one that
occurs last in the stylesheet.”

Actually, Microsoft Internet Explorer does not signal “the error” and chooses among the
equally specific rules the one that occurs last, which is conform to the recommendation.
Under this choice, the first rule could be made executable by placing it after the second one
in the stylesheet. However, it is more reliable to give the first rule a higher priority by using
the XSLT priority attribute.

2The default built-in processing starts with the root node and then recursively traverses the child axis;
so it will never reach an attribute node.
3XSLT is not aware, for obvious reasons, that prices greater than 99999 are necessarily greater than 10000.

13

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0org/1999/XSL/Transform">
<xsl:template match="/">
<HTML><xsl:apply-templates select="//car"/></HTML>
</xsl:template>

<xsl:template match="car[price>99999]" priority="2">
<xsl:value-of select="model"/>
</xsl:template>

<xsl:template match="car[price>10000]" priority="1">
<xsl:value-of select="model"/>
</xsl:template>

<xsl:template match="car"/>
</xsl:stylesheet>

Now cars with a price over 99999 will be handled by the first rule (they appear in red).

3.7 Multiple Processing
You can process the same node multiple times by using the XSLT mode attribute.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.o0org/1999/XSL/Transform">

<xsl:template match="/">
<HTML>
<xsl:apply-templates select="//car" mode="theblues"/>
<xsl:apply-templates select="//car" mode="blackout"/>
</HTML>

</xsl:template>

<xsl:template match="car" mode="theblues">
<xsl:value-of select="."/>
</xsl:template>

<xsl:template match="car" mode="blackout">
<xsl:value-of select="."/>
</xsl:template>
</xsl:stylesheet>

3.8 Context and Current Node

XSLT distinguishes between the context node and the current node. The location path
self::node() selects the context node. The current() function returns a node-set that
has the current node as its only member. During the execution of a template rule, the
current node is the node that “fired” the template rule, i.e., the node for which the template
rule was the best match. The current node is almost always the same thing as the context
node. However, within square brackets the current node is usually different from the context
node. In the following example, the second occurrence of current() can be replaced by
self::node(). However, replacing the first occurrence of current() by self::node() (or
by self::node()/price/@unit) changes the meaning of the stylesheet.

<xsl:stylesheet xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform"

14

version="1.0">
<xsl:template match="/">
<xsl:apply-templates select="//price/@unit"/>
</xsl:template>

<xsl:template match="Qunit">

<xsl:value-of select="count(/catalog/*[price/Qunit=current()])"/>
vehicle prices are expressed in
<xsl:value-of select="current()"/>
</xsl:template>
</xsl:stylesheet>

It is an error to use the current () function in a pattern.

3.9 Eliminating Duplicates
The XSLT stylesheet of Section 3.8 outputs duplicate rows:

2 vehicle prices are expressed in BEF

2 vehicle prices are expressed in EUR

2 vehicle prices are expressed in BEF

2 vehicle prices are expressed in EUR

Can you change the stylesheet so as to avoid duplicate rows?
Hint 4 An easy “trick” is to replace the instruction
<xsl:apply-templates select="//price/Qunit"/>
with the following one:
<xsl:apply-templates select="//price/@unit[not(.=preceding::*/Qunit)]"/>

Can you explain this trick?

3.10 Variables
What is the total value in BEF of all vehicles in the catalog?

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.o0org/1999/XSL/Transform">
<xsl:template match="catalog">
<xsl:variable name="eurtobef"
select="round (40.3399*sum(.//price[@unit="EUR’]))"/>
<xsl:variable name="bef"
select="sum(.//price[@unit="BEF’])"/>
<xsl:value-of select="$eurtobef+$bef"/>
</xsl:template>
</xsl:stylesheet>

Hint 5 The preceding stylesheet can be encoded without variables:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0org/1999/XSL/Transform">
<xsl:template match="catalog">
<xsl:value-of select="round(40.3399*sum(.//price[@unit="EUR’]))
+sum(.//price[Q@unit="BEF’])"/>
</xsl:template>
</xsl:stylesheet>

15

3.11 Creating Element and Attribute Nodes

Up to now, to create a mylabel element node in the output, we simply added the opening
tag <mylabel> and closing tag </mylabel> in the XSLT stylesheet. An “equivalent” way to
do this is with xs1:element, as follows:

<mylabel> <xsl:element name="mylabel">

</mylabel> </xsl:element>
Since the name attribute value of xsl:element can be set by an expression, this allows for
creating element nodes whose names are unknown at the time we write the stylesheet. For
example, assume we want to turn text values of car models into element names, as in the
following XML document:

<LIST-0F-CARS>
<Renault-CLIO prix="115000"/>
<Peugeot-Partner prix="12000"/>
</LIST-0F-CARS>

Notice that since element names cannot contain spaces, we translated Renault CLIO into
Renault-CLIO. The stylesheet looks as follows:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.o0org/1999/XSL/Transform">
<xsl:template match="/">
<xsl:element name="LIST-0F-CARS">
<xsl:apply-templates select="//car"/>
</xsl:element>
</xsl:template>

<xsl:template match="car">
<xsl:variable name="var" select="translate(./model,’ ’,’-’)"/>
<xsl:element name="{$var}">
<xsl:attribute name="prix">
<xsl:value-of select="price"/>
</xsl:attribute>
</xsl:element>
</xsl:template>
</xsl:stylesheet>

The text value of each car model is stored in a variable called var. The function
translate(stringl,string2,string3)

converts stringl by replacing the characters in string2 with the characters in string3.
The curly braces ({}) in name="{$var}" tell the XSLT processor that the value for name is
the value assigned to the variable var, rather than the string $var. Notice also how attribute
nodes are created by xsl:attribute.

Hint 6 I used the variable $var in the preceding template rule for readability reasons. Of
course, you can eliminate this variable:

<xsl:template match="car">
<xsl:element name="{translate(./model,’ ’,’-’)}">
<xsl:attribute name="prix">
<xsl:value-of select="price"/>
</xsl:attribute>
</xsl:element>
</xsl:template>

16

4

Elaborated Example

Give two tables: the first one containing models and prices of all cars, the second one con-
taining frame heights and prices of all bikes. All prices should be converted into BEF. In the
following solution, all HTML markup has been moved to the right to allow focusing on the
XSLT stuff.

5

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.o0org/1999/XSL/Transform">
<xsl:template match="/">
<HTML><BODY> <H1>Cars</H1><TABLE BORDER="3">
<TR><TH>Car Model</TH><TH>Price</TH></TR>
<xsl:apply-templates select="//car"/>
</TABLE><H1>Bikes</H1><TABLE BORDER="3">
<TR><TH>Frame Height</TH><TH>Price</TH></TR>
<xsl:apply-templates select="//bike"/>
</TABLE></BODY></HTML>
</xsl:template>
<xsl:template match="car">

<TR><TD>
<xsl:value-of select="model"/>
</TD><TD>
<xsl:apply-templates select="price"/>
</TD></TR>

</xsl:template>
<xsl:template match="bike">

<TR><TD>
<xsl:value-of select="height"/>
</TD><TD>
<xsl:apply-templates select="price"/>
</TD></TR>

</xsl:template>

<xsl:template match="price[Qunit="BEF’]">
<xsl:value-of select="."/>

</xsl:template>

<xsl:template match="price[Qunit="EUR’]">
<xsl:value-of select="round(40.3399%.)"/>

</xsl:template>

</xsl:stylesheet>

Exercises

5.1 Questions

Fig. 9 shows the tree representation of the following XML document dic.xml:

<?xml version="1.0" standalone="no"7>
<!DOCTYPE dict SYSTEM "dic.dtd">
<dict>

<e>
<word>be</word>
<a>
<r>
<word>bear</word>
</r>

17

<e>
<word>bee</word>
<r>
<word>beer</word>
</r>
</e>
</e>

<e>
<a>
<r>
<word>ear</word>
</r>

<r>
<a>
<word>era</word>

</r>
</e>
</dict>

The tree can be regarded as an ordered prefix tree representation of a dictionary. Each word
in the dictionary is constructed by lining up the one-letter tags in a path from the document
element node to a word element node. The word is repeated in the child text node of the
word element node. Although this example uses XML in a somehow strange way, it allows
many interesting exercises.

Question 1 Write a DTD that captures the intended trees.

Question 2 Describe the result of the transformation of dic.xml using the following XSL
stylesheet select.xsl:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"/>
<xsl:template match="/">
<HTML>
<xsl:apply-templates select="//e//word"/>
</HTML>
</xsl:template>
<xsl:template match="r//word">

<xsl:value-of select="."/>
</xsl:template>
<xsl:template match="word"/>
</xsl:stylesheet>

Question 3 Same question for:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml"/>
<xsl:template match="/">

<HTML>

<xsl:apply-templates
select="//word[following-sibling: :*/descendant: :word]"/>
</HTML>

18

</xsl:template>
<xsl:template match="word">

<xsl:value-of select="."/>
</xsl:template>
</xsl:stylesheet>

Question 4 Same question for:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"/>
<xsl:template match="/">
<HTML>
<xsl:value-of
select="//word[count (preceding: :word)=count (following: :word)]"/>
</HTML>
</xsl:template>
</xsl:stylesheet>

Question 5 Adapt the DTD and the above stylesheets to the tree representation of Fig. 10
where words are “delimited” by attribute nodes.

Question 6 Write two XSL stylesheets that transform either representation into the other.
To answer this question, one needs to use the tags xsl:copy, xsl:attribute, and xsl:element.

5.2 Answers
Answer to Question 1.

<!ELEMENT dict (a?,b?,c?,d?,e?,f?,g?,h?,i?,j?,k?,1?,m?,n?,07,p?,97,r?,s?7,t?,u?,v?,w?,x?,y?,27)>
<!ELEMENT word (#PCDATA)>

<!ELEMENT a (word?,a?,b?,c?,d?,e?,f?,g?,h?,i?,j?,k?,1?,m?,n?,0?,p?,q9%,r?,s?,t?,u?,v?,w?,x?,y?,27)>
<!ELEMENT b (word?,a?,b?,c?,d?,e?,f?,g?,h?,i?,j?,k?,17?,m?,n?,0?,p?,q9%,r?,s?,t?,u?,v?,w?,x?,y?,27)>
<!ELEMENT ¢ (word?,a?,b?,c?,d?,e?,f?,g?,h?,i?,j?,k?,1?,m?,n?,07?,p?,q%,r?,s?,t?,u?,v?,w?,x?,y?,27)>

<!ELEMENT z (word?,a?,b?,c?,d?,e?,f?,g?,h?,i?,3j?,k?,1?,m7?,n7,0?,p?,q?,r?,s7,t?,u?,v?,w?,x7,y7?,27)>
Answer to Question 5. The XML document dic2.xml looks like this:

<?xml version="1.0" standalone="no"7>
<!DOCTYPE dict SYSTEM "dic2.dtd">
<7xml-stylesheet type="text/xsl" href="select.xsl"?>

<dict>

<e word="be">
<a>
<r word="bear"/>

<e word="bee">
<r word="beer"/>
</e>
</e>

<e>
<a>
<r word="ear"/>

<r>

</r>
</e>
</dict>

19

Figure 9: Tree representation of dic.xml.

Figure 10: Tree representation of dic2.xml.

20

The DTD now looks as follows:

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ATTLIST

<!ATTLIST
<!ATTLIST

<!ATTLIST

dict (a?,b?,c?,d?,e?,£?,g7,h?,i?,j?,k?,1?,m?,n?,07,p?,q?,r?,s?,t?,u?,v?,w?,x?,y?,27)>
a (a?,b?,c?,d?7,e?,f?,g?,h?,i?,j?,k?,1?,m?,n?,07,p?,q?,r?,s7,t?,u?,v?,w?,x?,y7?,27)>
b (a?,b?,c?,d?,e?,£?,g7,h?,i?,j?,k?,1?,m?,n?,07,p?,q?,r?,s?,t?,u?,v?,w?,x?,y?,27)>
c (a?,b?,c?,d?,e?,f?,g?,h?,i?,j?,k?,1?,m?,n?,0?,p?,q9%,r?,s?,t?,u?,v?,w?,x7,y?,27)>

z (a?,b?,c?,d?7,e?,f?,g?,h?,i?,j?,k?,1?,m?,n?,07,p?,q?,r?,s7,t?,u?,v?,w?,x?,y?,27)>
a word CDATA #IMPLIED>
b word CDATA #IMPLIED>
¢ word CDATA #IMPLIED>

z word CDATA #IMPLIED>

The equivalent stylesheet for Question 2 is:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml"/>
<xsl:template match="/">
<HTML>
<xsl:apply-templates select="//e//@word"/>
</HTML>
</xsl:template>
<xsl:template match="r//Qword">

<xsl:value-of select="."/>
</xsl:template>
<xsl:template match="@word"/>
</xsl:stylesheet>

The equivalent stylesheet for Question 3 is:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml"/>
<xsl:template match="/">
<HTML>
<xsl:apply-templates select="//Qword[../descendant: :*/Qword]"/>
</HTML>
</xsl:template>
<xsl:template match="Qword">

<xsl:value-of select="."/>
</xsl:template>
</xsl:stylesheet>

The equivalent stylesheet for Question 4 is:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml"/>
<xsl:template match="/">
<HTML>
<xsl:value-of select=
"//*[@word] [count (ancestor: : * [@word] | preceding: : * [@word])=

count (descendant: : *[@word] | following: : * [@word])] /@word" />

</HTML>

21

</xsl:template>
</xsl:stylesheet>

Answer to Question 6.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:template match="/|x*">
<xsl:copy>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>
<xsl:template match="word">
<xsl:attribute name="word">
<xsl:value-of select="."/>
</xsl:attribute>
</xsl:template>
</xsl:stylesheet>

and

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:template match="/|*">
<xsl:copy>
<xsl:apply-templates select="x|@*"/>
</xsl:copy>
</xsl:template>
<xsl:template match="Q@word">
<xsl:element name="word">
<xsl:value-of select="."/>
</xsl:element>
</xsl:template>
</xsl:stylesheet>

22

