
The Chase

Jef Wijsen

June 4, 2019

1 Full Dependencies

A term is either a constant or a variable. A full dependency can take two forms:

B → H, (1)

B → s = t, (2)

where B is a set of (not necessarily ground) atoms, H is an atom, s and t are terms, and every variable
occurring at the right-hand of→, also occurs in B. All predicates are edb predicates.

Full dependencies of the forms (1) and (2) are called tuple-generating (ftgd) and equality-generating (fegd),
respectively. Functional dependencies are full equality-generating dependencies. Multivalued and join de-
pendencies are full tuple-generating dependencies.1

Example 1 Persons are uniquely identified by their social security number. No person can have two distinct
names, years of birth, or citizenships (column Nat). Every citizenship should occur in the list N .

P SS# Name Birth Nat
123 Smith 1964 USA
456 Jones 1970 GB

N Nat
USA
GB
NL

P (x, y1, z1, w1), P (x, y2, z2, w2) → y1 = y2

P (x, y1, z1, w1), P (x, y2, z2, w2) → z1 = z2

P (x, y1, z1, w1), P (x, y2, z2, w2) → w1 = w2

P (x, y, z, w) → N(w)

Notice that the three egds are equivalent to the functional dependency P : {SS#} → {Name,Birth,Nat}.
/

A database I satisfies (1) if for every valuation ν, if ν(B) ⊆ I , then ν(H) ∈ I . A database I satisfies (2) if
for every valuation ν, if ν(B) ⊆ I , then ν(s) = ν(t). We write I |= σ to denote that the database I satisfies
the full dependency σ.

Let σ be a full dependency, and Σ a set of full dependencies. We write I |= Σ to denote that I satisfies each
full dependency of Σ. We say that Σ logically implies σ, denoted Σ |= σ, if for every database I , I |= Σ
implies I |= σ. We say that σ is trivial if it is satisfied by every database.

Example 2 Let

σ1 : R(x, y1, z1), R(x, y2, z2)→ y1 = y2

σ2 : R(x, y, z′), R(x, y′, z)→ R(x, y, z)

Then, {σ1} |= σ2, a result that is known as Heath’s Theorem. /

1See the course Bases de Données I for a definition of functional, multivalued, and join dependencies.

1

In the technical treatment, we will often need to identify two variables or to instantiate a variable by a
constant. When identifying two variables v and w, one can choose between replacing all occurrences of v
with w, or replacing all occurrences of w with v. To make this choice deterministic, we will assume a linear
order ≺ on the set of all variables, and if we have to identify two variables v, w with v ≺ w, we will replace
all occurrences of w with v.

So we assume a linear order ≺ on the set of variables; we extend ≺ such that c ≺ v for every variable v and
constant c. Therefore, a variable v can be replaced with a constant c, but not the other way around.

Let s, t be terms. If s, t are both constants, then ids=t is the identity substitution if s = t, and ids=t is
undefined if s 6= t (because we cannot identify distinct constants). If s, t are not both constants, then ids=t is
the substitution such that for every variable v,

ids=t(v) =


v if v 6∈ {s, t},
s if v ∈ {s, t} and s � t,
t if v ∈ {s, t} and t � s.

With this definition, ids=t and idt=s are the same substitution for all terms s, t that are not distinct constants.
For example, if t ≺ y, we have idt=y(t) = idt=y(y) = t.

2 The Chase

In this section, we develop an algorithm for the following problem:

PROBLEM: Logical implication for full dependencies
INPUT: a set Σ of full dependencies, a full dependency L→ r
QUESTION: Does Σ |= L→ r hold?

Note that in L → r, the symbols L and r are used for the Left-hand and right-hand of the full dependency,
respectively. The right-hand r is either an atom or an equality. If L → r is a trivial full dependency, then
Σ |= L → r is obviously true.2 In the following discussion, we can therefore assume that L → r is not
trivial.

The Chase is an algorithm for the above logical implication problem that uses a simple strategy:

Find a counterexample for Σ |= L→ r (that is, a database I such that I |= Σ and I 6|= L→ r),
or decide that no such counterexample exists.

At first sight, this strategy may look ineffective since there are infinitely many distinct databases. However, it
turns out that if there exists a counterexample, then such a counterexample can be easily computed from the
canonical database of L.3 Here, the canonical database is the database obtained from L by treating distinct
variables as new distinct constants not occurring elsewhere.

It is correct to write L 6|= L → r, where the symbol L preceding 6|= is the canonical database. Indeed, the
symbol r denotes either an atom not in L (because ftgds L → H are trivial if H ∈ L, and we assumed
that L → r is not trivial) or an equality between two syntactically distinct terms (because fegds of the form
L→ t = t are trivial).

If L |= Σ, then the canonical database L is a counterexample for Σ |= L → r, and the implication problem
is solved. But what if L 6|= Σ? That is, what if Σ contains an ftgd B → H or an fegd B → s = t that is
not satisfied by the canonical database L? In this situation, the Chase will arbitrarily pick a full dependency
σ ∈ Σ that is not satisfied by L, and minimally change L in order to make it satisfy σ. Such minimal change
will be denoted by `Σ .

2It is an easy exercise to develop an algorithm that decides whether a full dependency L→ r is trivial.
3Recall that canonical databases were also used for deciding containment of conjunctive queries.

2

Formally, we write
L→ r `Σ L′ → r′

if L′ → r′ can be derived from L→ r by a single application of one of the following chase rules:

Chase rule for ftgd: for some ftgd B → H of Σ, for some substitution θ such that θ(B) ⊆ L, we have
L′ = L ∪ {θ(H)} and r′ = r.

Intuition: Think of L as a database that must be changed to satisfy B → H . Then, if
L contains all facts of θ(B), it must also contain θ(H). Therefore, we replace L with
L ∪ {θ(H)} to make it satisfy B → H .

Chase rule for fegd: for some fegd B → s = t of Σ, for some substitution θ such that θ(B) ⊆ L and
θ(s), θ(t) are not distinct constants, we have L′ = idθ(s)=θ(t)(L) and r′ = idθ(s)=θ(t)(r).4

Intuition: Think of L as a database that must be changed to satisfy B → s = t. Then, if
L contains all facts of θ(B), we must equalize θ(s) and θ(t). A problem obviously occurs
if θ(s) and θ(t) are distinct constants, in which case idθ(s)=θ(t) is undefined and the chase
rule cannot be applied.

Example 3 We illustrate the fegd chase rule. Let σ1 be the ftgd R(x, y), R(y, z), S(x, y, z) → R(x, z).
Assume that Σ contains an fegd R(u, v), R(v, w) → w = a (call it σ2), where a is a constant. Then, it is
correct to write

R(x, y), R(y, z), S(x, y, z)→ R(x, z) `Σ R(x, y), R(y, a), S(x, y, a)→ R(x, a).

Indeed, the valuation θ = {u 7→ x, v 7→ y, w 7→ z}maps the body of σ2 into the body of σ1, while θ(w) = z
and θ(a) = a are not two distinct constants. Therefore, we apply idz=a to σ1, i.e., we replace all occurrences
of z in σ1 with a.

In the preceding paragraph, the fegd σ2 was applied to the ftgd σ1. Applying σ2 to an fegd is not really
different, for example,

R(x, y), R(y, z), S(x, y, z)→ z = x `Σ R(x, y), R(y, a), S(x, y, a)→ a = x,

where again it was assumed that σ2 ∈ Σ. /

Example 4 We now illustrate the ftgd chase rule. Let σ1 be the ftgd R(x, y), R(y, z), S(x, y, z)→ R(x, z).
Assume that Σ contains an ftgd R(u, v), R(v, w)→ R(w, u) (call it σ3). Then, it is correct to write

R(x, y), R(y, z), S(x, y, z)→ R(x, z) `Σ R(x, y), R(y, z), R(z, x), S(x, y, z)→ R(x, z).

Indeed, the valuation θ = {u 7→ x, v 7→ y, w 7→ z} maps the body of σ3 into the body of σ1. Therefore, we
add R(θ(w), θ(u)) = R(z, x) to the body of σ1. Applying σ3 to an fegd is not really different, for example,

R(x, y), R(y, z), S(x, y, z)→ z = x `Σ R(x, y), R(y, z), R(z, x), S(x, y, z)→ z = x,

where again it was assumed that σ3 ∈ Σ. /

The Chase algorithm repeatedly applies the above chase rules until no more changes can be made.

A chase of L→ r by Σ is a maximal (in the sense that it cannot be extended) sequence σ0, σ1, . . . , σn such
that σ0 = L→ r and for each i ∈ {1, 2, . . . , n}, σi−1 `Σ σi and σi−1 6= σi.

It is an easy exercise to show that no chase can go on forever.5

One can show the following.
4Note that if r is an equality, say r is t1 = t2, then idθ(s)=θ(t)(r) is the equality idθ(s)=θ(t)(t1) = idθ(s)=θ(t)(t2).
5Hint: each term that occurs in some σi must already occur in σ0.

3

Theorem 1 Let Σ be a set of full dependencies, and let L → r be a full dependency. Let Ln → rn be the
last full dependency in a chase of L → r by Σ. If the canonical database Ln is not a counterexample for
Σ |= L→ r, then Σ |= L→ r.

Proof. Let σ0, σ1, . . . , σn be a chase of L → r by Σ. For every i ∈ {0, 1, . . . , n}, let σi = Li → ri, where
ri is either Hi (ftgd) or si = ti (fegd). In particular, L0 = L and r0 = r.

The proof is by contraposition. Assume Σ 6|= L → r. If suffices to show that the canonical database Ln
satisfies Σ and falsifies L→ r.

Let I be a database that is a counterexample for Σ |= L0 → r0, that is, I |= Σ and I 6|= L0 → r0 (there is at
least one such I). Then, we can assume a valuation ν such that

ν(L0) ⊆ I
Case L0 → r0 is an ftgd: Case L0 → r0 is an fegd:
ν(H0) 6∈ I . ν(s0) 6= ν(t0).

(3)

We show that for every index i ∈ {0, 1, . . . , n},

ν(Li) ⊆ I
Case L0 → r0 is an ftgd: Case L0 → r0 is an fegd:
ν(Hi) = ν(H0). ν(si) = ν(s0) and ν(ti) = ν(t0).

(4)

Remark 1 (4) has a practical implication. If Li → Hi is a trivial ftgd (i.e., Hi ∈ Li), then it follows
ν(H0) = ν(Hi) ∈ ν(Li) ⊆ I , contradicting ν(H0) 6∈ I . Likewise, if Li → si = ti is a trivial fegd (i.e.,
si and ti are the same term), then it follows ν(s0) = ν(si) = ν(ti) = ν(t0), contradicting ν(s0) 6= ν(t0).
Therefore, if Σ 6|= L → r (the assumption we made), the chase will never derive a trivial full dependency.
Consequently, if a chase of L→ r by Σ derives a trivial full dependency, then Σ |= L→ r. /

The proof is by induction on increasing i. The basis of the induction, i = 0, is trivial. For the induction
step, i → i + 1, we distinguish two cases, depending on which chase rule was applied to derive σi+1 from
σi.

Case σi+1 was derived by the ftgd chase rule. We can assume a ftgd B → H in Σ and a substitution θ
such that θ(B) ⊆ Li and Li+1 = Li ∪ {θ(H)} and ri+1 = ri. Therefore,

ν(θ(B)) ⊆ ν(Li). (5)

Since ν(Li) ⊆ I by the induction hypothesis, (5) implies ν ◦ θ(B) ⊆ I . From I |= B → H (because
I satisfies all full dependencies in Σ), it follows ν ◦ θ(H) ∈ I . It follows that the desired result holds
for index i+ 1:

ν(Li+1) ⊆ I
Case L0 → r0 is an ftgd: Case L0 → r0 is an fegd:
Hi+1 = Hi with ν(Hi+1) = ν(H0). si+1 = si with ν(si+1) = ν(s0) and

ti+1 = ti with ν(ti+1) = ν(t0).

Case σi+1 was derived by the fegd chase rule. We can assume a fegd B → s = t in Σ and a substitution
θ such that θ(B) ⊆ Li with θ(s), θ(t) not distinct constants, Li+1 = idθ(s)=θ(t)(Li), and ri+1 =
idθ(s)=θ(t)(ri). Therefore,

ν(θ(B)) ⊆ ν(Li). (6)

4

Since ν(Li) ⊆ I by the induction hypothesis, (6) implies ν ◦ θ(B) ⊆ I . From I |= B → s = t
(because I satisfies all full dependencies in Σ), it follows ν ◦ θ(s) = ν ◦ θ(t). It can now be easily
seen that ν(Li+1) = ν(Li): intuitively, since ν maps the terms θ(s) and θ(t) to the same constant,
it does not matter whether these terms have been identified (as in Li+1) or not (as in Li). Since
ν(ri+1) = ν(ri) holds by the same reasoning, it is correct to conclude that the desired result holds for
index i+ 1:

ν(Li+1) ⊆ I
Case L0 → r0 is an ftgd: Case L0 → r0 is an fegd:
ν(Hi+1) = ν(Hi) = ν(H0). ν(si+1) = ν(si) = ν(s0) and

ν(ti+1) = ν(ti) = ν(t0).

So we have shown that (4) holds for all i ∈ {1, . . . , n}. In particular, for i = n, we obtain:

ν(Ln) ⊆ I
Case L0 → r0 is an ftgd: Case L0 → r0 is an fegd:
ν(Hn) = ν(H0). ν(sn) = ν(s0) and ν(tn) = ν(t0).

(7)

Remark 2 Notice that I is an arbitrary counterexample for Σ |= L → r. Therefore, (7) means that Ln is
homomorphic to every database I that is a counterexample for Σ |= L→ r.6 /

We now show that the canonical database Ln falsifies L0 → r0. Let µ be the composition of all substi-
tutions idθ(s)=θ(t) applied in all applications of the fegd rule. That is, µ applies the substitutions applied in
any application of an fegd, in the same order as these substitutions were applied in the chase. It is an easy
exercise to show the following.

µ(L0) ⊆ Ln
Case L0 → r0 is an ftgd: Case L0 → r0 is an fegd:
Hn = µ(H0). sn = µ(s0) and tn = µ(t0).

(8)

Assume towards a contradiction that Ln |= L0 → r0. Since µ(L0) ⊆ Ln, it must be that

Case L0 → r0 is an ftgd: Case L0 → r0 is an fegd:
µ(H0) = Hn ∈ Ln, hence ν(Hn) ∈
ν(Ln). From (7), it follows ν(H0) ∈ I ,
contradicting (3).

sn = µ(s0) = µ(t0) = tn, hence ν(sn) =
ν(tn). From (7), it follows ν(s0) = ν(t0),
contradicting (3).

So it is correct to conclude, by contradiction, that Ln 6|= L0 → r0.

We finally show that the canonical database Ln satisfies Σ. For every ftgd B → H in Σ, if θ(B) ⊆ Ln
for some θ, then θ(H) ∈ Ln, or else the chase would have continued. It follows that Ln satisfies every ftgd
in Σ.

6A set B1 of atoms is said to be homomorphic to a set B2 of atoms if there exists a substitution h, called homomorphism, such
that h(B1) ⊆ B2.

5

Assume next that Σ contains some fegd B → s = t such that θ(B) ⊆ Ln for some θ. Two cases can
occur.

Case θ(s), θ(t) are not distinct constants. Then θ(s) = θ(t), or else the chase would have continued. It
follows that Ln |= B → s = t.

Case θ(s), θ(t) are distinct constants. Let θ(s) = a and θ(t) = b with a 6= b. Then for I and ν introduced
before, we have ν ◦ θ(B) ⊆ ν(Ln) ⊆ I . Since I |= B → s = t, we have ν ◦ θ(s) = ν ◦ θ(t), hence
a = ν(a) = ν(b) = b, a contradiction. We conclude by contradiction that this case cannot occur.

From what precedes, it is correct to conclude that Ln satisfies Σ. This concludes the proof. 2

The inverse of Theorem 1 holds obviously true: if the canonical database Ln is a counterexample for Σ |=
L→ r, then Σ 6|= L→ r.

Example 5 Is it true that {1 [AC,ABD], B → C} |= A→ C? Let

σ1 : R(x, y′, z, w′), R(x, y, z′, w)→ R(x, y, z, w)

σ2 : R(x1, y, z1, w1), R(x2, y, z2, w2)→ z1 = z2

σ3 : R(x, y1, z1, w1), R(x, y2, z2, w2)→ z1 = z2

Obviously, σ1 ≡1 [AC,ABD], σ2 ≡ B → C, and σ3 ≡ A→ C.

Here is a chase of σ3 by Σ = {σ1, σ2}:

σ3 : R(x, y1, z1, w1), R(x, y2, z2, w2)→ z1 = z2

Apply σ1 : R(x, y1, z1, w1), R(x, y2, z2, w2), R(x, y2, z1, w2)→ z1 = z2

Apply σ2 : R(x, y1, z1, w1), R(x, y2, z1, w2)→ z1 = z1

Since the canonical database {R(x, y1, z1, w1), R(x, y2, z1, w2)} satisfies σ3, it is not a counterexample for
{σ1, σ2} |= σ3. By Theorem 1, it is correct to conclude {σ1, σ2} |= σ3.

Alternatively, one can conclude {σ1, σ2} |= σ3 from Remark 1 and the observation that the fegd with head
z1 = z1 is trivial.

Notice that another chase is possible, in which σ1 is applied twice:

σ3 : R(x, y1, z1, w1), R(x, y2, z2, w2)→ z1 = z2

Apply σ1 : R(x, y1, z1, w1), R(x, y2, z2, w2), R(x, y2, z1, w2)→ z1 = z2

Apply again σ1 : R(x, y1, z1, w1), R(x, y2, z2, w2), R(x, y2, z1, w2), R(x, y1, z2, w1)→ z1 = z2

Apply σ2 : R(x, y1, z1, w1), R(x, y2, z1, w2)→ z1 = z1

Both chases end with the same trivial fegd. /

Example 6 Is it true that {1 [ABC,AD,BC,CE]} |=1 [ABC,AD,BCE]?

σ1 : R(x, y, z, u1, w1), R(x, y2, z2, u, w2), R(x3, y, z, u3, w3), R(x4, y4, z, u4, w)→ R(x, y, z, u, w)

σ2 : R(x, y, z, u1, w1), R(x, y2, z2, u, w2), R(x3, y, z, u3, w)→ R(x, y, z, u, w)

We chase σ2 by Σ = {σ1}. Let θ be the substitution θ = {w3/w, x4/x3, y4/y, u4/u3}, extended to be the
identity on all other terms. Then, θ maps the body of σ1 into the body of σ2. Consequently, we derive a new
full dependency by adding θ(R(x, y, z, u, w)) = R(x, y, z, u, w) to the body of σ2:

R(x, y, z, u1, w1), R(x, y2, z2, u, w2), R(x3, y, z, u3, w), R(x, y, z, u, w)→ R(x, y, z, u, w)

Since the latter full dependency is obviously trivial, we conclude {σ1} |= σ2. /

6

Example 7 Let Σ = {R(x)→ x = a,R(x)→ x = b}. Then,

R(v)→ S(v) `Σ R(a)→ S(a)

is a chase of R(v)→ S(v) by Σ. Note that this chase cannot be extended:

• applying R(x) → x = a on R(a) → S(a) results again in R(a) → S(a), while it is required that
σi−1 6= σi in a chase;

• R(x)→ x = b cannot be applied on R(a)→ S(a), because a and b are distinct constants.

Since {R(a)} is not a counterexample for Σ |= R(v) → S(v) (because {R(a)} 6|= R(x) → x = b), it is
correct to conclude Σ |= R(v) → S(v) by Theorem 1. Of course, Σ |= R(v) → S(v) can be easily shown
without using Theorem 1: a database that satisfies Σ can contain no R-fact, and hence must necessarily
satisfy R(v)→ S(v) (because an implication is true if its premise is false).

Notice incidentally that there exists another chase of R(v)→ S(v) by Σ:

R(v)→ S(v) `Σ R(b)→ S(b).

/

Example 8 Let a, b be constants.

σ1 : R(x), S(y)→ x = y

σ2 : R(a), S(b)→ T (a, b)

Do we have {σ1} |= σ2? A chase of σ2 by Σ = {σ1} immediately ends with σ2. Since {R(a), S(b)} is not
a counterexample for {σ1} |= σ2, we conclude that {σ1} |= σ2 by Theorem 1. Of course, {σ1} |= σ2 can be
easily shown without using Theorem 1: a database that satisfies σ1 cannot contain both R(a) and R(b), and
hence must necessarily satisfy σ2 (because an implication is true if its premise is false). /

Example 9 Let

σ1 : R(x, y)→ R(y, x),

σ2 : R(x, y), S(y, z), R(z, u), S(u, x)→ y = u,

σ3 : R(x, y), S(y, z), R(z, u), S(u, x)→ S(x, u).

Let Σ = {σ1, σ2}. Do we have Σ |= σ3? Here is a chase of σ3 by {σ1, σ2}:

R(x, y), S(y, z), R(z, u), S(u, x)→ S(x, u)
`Σ R(x, u), S(u, z), R(z, u), S(u, x)→ S(x, u) (Application of σ2)
`Σ R(x, u), R(u, x), S(u, z), R(z, u), S(u, x)→ S(x, u) (Application of σ1)
`Σ R(x, u), R(u, x), S(u, z), R(z, u), R(u, z), S(u, x)→ S(x, u) (Application of σ1)

The canonical database {R(x, u), R(u, x), S(u, z), R(z, u), R(u, z), S(u, x)} satisfies Σ and falsifies σ3,
hence Σ 6|= σ3. /

3 Application: Optimization of Conjunctive Queries

Let H ← B be a conjunctive query. If we treat the relation name in H as an edb predicate, then B → H is
an ftgd that can be chased.

The chase of a conjunctive query H ← L by a set Σ of full dependencies is completely analogous to the
chase of the ftgd L → H by Σ. The only difference is the syntax: H ← L for a query, L → H for an ftgd.
Further, we often write q : H ← L to make clear that q denotes the conjunctive query H ← L.

7

Theorem 2 Let q : H ← L be a conjunctive query. Let Σ be a set of full dependencies. Let qn : Hn ← Ln
be the last element in a chase of q by Σ. Then, for every database I such that I |= Σ, we have q(I) = qn(I).

Proof. Obviously, Σ 6|= L → H , because the predicate in H is an idb predicate and thus does not occur in
Σ. Let I be a database such that I |= Σ.

q(I) ⊆ qn(I) Let A be an arbitrary fact in q(I). We can assume the existence of a valuation ν such that
ν(L) ⊆ I and ν(H) = A. We are in the same situation as in the proof of Theorem 1. Then, (7) implies that
A ∈ qn(I).

qn v q By (8), the substitution µ is a homomorphism from q to qn. By the Homomorphism Theorem, we
have qn v q. So qn(J) ⊆ q(J) holds for all databases J . 2

The following example illustrates that the chase in combination with minimization of conjunctive queries
provides a useful optimization technique.

Example 10 [1, Example 8.4.11]

Σ = {B → D,D → C,1 [AB,ACD]}
q : Answer(w, x, z)← R(w1, x, y1, z1), R(w, x2, y1, z1), R(w, x3, y3, z)

It can be easily seen that q is minimal. Here is a chase of q by Σ:

q0 : Answer(w, x, z) ← R(w1, x, y1, z1), R(w, x2, y1, z1), R(w, x3, y3, z)

`Σ q1 : Answer(w, x, z) ← R(w1, x, y1, z1), R(w, x2, y1, z1), R(w, x3, y3, z),
R(w, x2, y3, z) (Application of 1 [AB,ACD])

`Σ q2 : Answer(w, x, z) ← R(w1, x, y1, z1), R(w, x2, y1, z1), R(w, x3, y3, z),
R(w, x2, y3, z), R(w, x3, y1, z1) (Application of 1 [AB,ACD])

`Σ q3 : Answer(w, x, z) ← R(w1, x, y1, z), R(w, x2, y1, z), R(w, x3, y3, z),
R(w, x2, y3, z), R(w, x3, y1, z) (Application of B → D)

`Σ q4 : Answer(w, x, z) ← R(w1, x, y1, z), R(w, x2, y1, z), R(w, x3, y1, z) (Application of D → C)

Minimizing the conjunctive query q4 results in (use the substitution that maps x3 to x2):

q′ : Answer(w, x, z)← R(w1, x, y1, z), R(w, x2, y1, z)

From Theorem 2, it follows that q(I) = q′(I) for all databases I that satisfy Σ (even though q 6≡ q′). /

4 Exercises

1. Let

Σ =

{
R(x, y), R(y, z)→ R(x, z),
R(x, y), R(x, z)→ y = z

}
σ1 = R(u, v), R(v, w), R(w, z)→ R(u, u)

σ2 = R(u, v), R(v, w), R(w, z)→ R(z, z)

Use Theorem 1 to show that Σ 6|= σ1 and Σ |= σ2.

8

Answer. Here is a chase of σ1 by Σ.

R(u, v), R(v, w), R(w, z)→ R(u, u)
`Σ R(u, v), R(v, w), R(w, z), R(u,w)→ R(u, u)
`Σ R(u, v), R(v, v), R(v, z)→ R(u, u)
`Σ R(u, v), R(v, v)→ R(u, u)

The canonical database {R(u, v), R(v, v)} satisfies Σ but falsifies σ1, hence Σ 6|= σ1. To see that
{R(u, v), R(v, v)} falsifies σ1, notice that {u 7→ u, v 7→ v, w 7→ v, z 7→ v} maps the body of σ1 into
{R(u, v), R(v, v)}, but maps the head of σ1 to R(u, u) 6∈ {R(u, v), R(v, v)}.

Here is a chase of σ2 by Σ.

R(u, v), R(v, w), R(w, z)→ R(z, z)
`Σ R(u, v), R(v, w), R(w, z), R(u,w)→ R(z, z)
`Σ R(u, v), R(v, v), R(v, z)→ R(z, z)
`Σ R(u, v), R(v, v)→ R(v, v)

The canonical database {R(u, v), R(v, v)} satisfies Σ ∪ {σ2}, and hence is not a counterexample for
Σ |= σ2. From Theorem 1, it follows Σ |= σ2. Alternatively, Σ |= σ2 follows from Remark 1 and the
observation that R(u, v), R(v, v)→ R(v, v) is trivial.

2. Show that if σ0, σ1, . . . , σn is a chase of σ by Σ, then for all i, j ∈ {1, 2, . . . , n}, i 6= j implies
σi 6= σj . Without this property, the chase could be trapped in an infinite loop.

3. Let Σ be a set of full dependencies. Let L→ r be a full dependency such that Σ 6|= L→ r.

Assume that L′ → r′ is the last element in a chase of L → r by Σ. Assume that L′′ → r′′ is the last
element in another chase of L → r by Σ. Note that L′ and L′′ could be different, because two chases
can apply chase rules in a different order. Use Remark 2 to show that L′ and L′′ are homomorphic to
one another.

4. Show that if Σ 6|= L → r, then the counterexample found by a chase is not necessarily the smallest
(with respect to cardinality) counterexample possible.

Answer. Take Σ = {R(u,w)→ R(w, u)}. Then,

R(x, y)→ x = a `Σ R(x, y), R(y, x)→ x = a

is a chase of R(x, y)→ x = a by Σ. The canonical database {R(x, y), R(y, x)} is a counterexample
for Σ |= R(x, y)→ x = a.

Note that {R(b, b)} is a smaller counterexample for Σ |= R(x, y) → x = a. Note also that the
counterexample {R(x, y), R(y, x)} found by the chase is homomorphic to {R(b, b)}, confirming Re-
mark 2.

5. Show that {A→ C,B → C,C → D,DE → C,CE → A} |=1 [AD,AB,BE,CDE,AE], where
the set of attributes is ABCDE.

9

Answer (Sketch). To simplify notation, we represent the ftgd 1 [AD,AB,BE,CDE,AE] as a
table.

A B C D E
x0 y1 z1 u0 w1

x0 y0 z2 u2 w2

x3 y0 z3 u3 w0

x4 y4 z0 u0 w0

x0 y5 z5 u5 w0

x0 y0 z0 u0 w0

`Σ

A B C D E
x0 y1 z1 u0 w1

x0 y0 z1 u2 w2

x3 y0 z3 u3 w0

x4 y4 z0 u0 w0

x0 y5 z1 u5 w0

x0 y0 z0 u0 w0

`Σ

A B C D E
x0 y1 z1 u0 w1

x0 y0 z1 u2 w2

x3 y0 z1 u3 w0

x4 y4 z0 u0 w0

x0 y5 z1 u5 w0

x0 y0 z0 u0 w0

`Σ

A B C D E
x0 y1 z1 u0 w1

x0 y0 z1 u0 w2

x3 y0 z1 u0 w0

x4 y4 z0 u0 w0

x0 y5 z1 u0 w0

x0 y0 z0 u0 w0

`Σ

A B C D E
x0 y1 z1 u0 w1

x0 y0 z1 u0 w2

x3 y0 z0 u0 w0

x4 y4 z0 u0 w0

x0 y5 z0 u0 w0

x0 y0 z0 u0 w0

`Σ

A B C D E
x0 y1 z1 u0 w1

x0 y0 z1 u0 w2

x0 y0 z0 u0 w0

x0 y4 z0 u0 w0

x0 y5 z0 u0 w0

x0 y0 z0 u0 w0

`Σ

A B C D E
x0 y1 z0 u0 w1

x0 y0 z0 u0 w2

x0 y0 z0 u0 w0

x0 y4 z0 u0 w0

x0 y5 z0 u0 w0

x0 y0 z0 u0 w0

We applied, respectively, A → C, B → C, C → D, DE → C, CE → A, A → C. Notice that
the sixth ftgd is already trivial (the body contains the head 〈x0, y0, z0, u0, w0〉); at that point, we could
already have stopped the chase, because Remark 1 tells us that no counterexample will be found.

6. Let

Σ = {A→ B,1 [BC,ABD]},
q : Answer(u, x, y, z)← R(u, x, y0, z), R(u, x0, y, z0).

Simplify q knowing that it is applied only on databases satisfying Σ.

Answer. Here is a chase of q by Σ.

q0 : Answer(u, x, y, z)← R(u, x, y0, z), R(u, x0, y, z0)
`Σ q1 : Answer(u, x, y, z)← R(u, x, y0, z), R(u, x, y, z0)
`Σ q2 : Answer(u, x, y, z)← R(u, x, y0, z), R(u, x, y, z0), R(u, x, y0, z0)
`Σ q3 : Answer(u, x, y, z)← R(u, x, y0, z), R(u, x, y, z0), R(u, x, y0, z0), R(u, x, y, z)

If we minimize the final query of the chase, we obtain:

q′3 : Answer(u, x, y, z)← R(u, x, y, z).

On databases satisfying Σ, the queries q and q′3 return the same answer. Note that q′3 simply returns all
tuples of R.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

10

