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1 Syntax

A datalog rule looks like a rule-based conjunctive query; it is an expression of the form:

R0(~u0)← R1(~u1), . . . , Rn(~un)

where each variable that occurs in the head of the rule, must occur in the body. A datalog

program P is a finite set of datalog rules.
A relation name is intensional if it occurs in the head of some rule of P ; otherwise it

is extensional . The set of extensional relation names in P is denoted edb(P ); the set of
intensional relation names is denoted idb(P ). Finally, schema(P ) = edb(P ) ∪ idb(P ). A
datalog program defines a mapping from databases over edb(P ) to databases over idb(P ).1

Note incidentally that a rule-based conjunctive query is a datalog program consisting of a
single rule.

2 Fixpoint Semantics

Let P be a datalog program. The immediate consequence operator , denoted TP , maps a
database over schema(P ) to a database over schema(P ). For a database I over schema(P ),
TP (I) is the smallest (under set containment) database over schema(P ) such that:

1. TP (I) ⊇ {R(~a) ∈ I | R ∈ edb(P )}; and

2. for every rule H ← B of P , TP (I) ⊇ {ν(H) | ν is a valuation such that ν(B) ⊆ I}.

Intuitively, execute every rule once as if it were a conjunctive query. We say that database
I is a fixpoint of TP if TP (I) = I.

For positive integer k, we write T k

P
(I) as a shorthand for

k times
︷ ︸︸ ︷

TP (TP (. . . TP ( I) . . .))).

Example 1

S(x, y) ← G(x, y)

S(x, y) ← G(x, z), S(z, y)

1Note that every database over edb(P ) is a database over schema(P ).
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Let

I0 = {G(a, b), G(b, c), G(c, d)} ,

I1 = {G(a, b), G(b, c), G(c, d), S(a, b), S(b, c), S(c, d)} ,

I2 = {G(a, b), G(b, c), G(c, d), S(a, b), S(b, c), S(c, d), S(a, c), S(b, d)} ,

I3 = {G(a, b), G(b, c), G(c, d), S(a, b), S(b, c), S(c, d), S(a, c), S(b, d), S(a, d)} ,

J1 = I3 ∪ {G(a, 1), G(1, f), S(a, 1), S(1, f), S(a, f)} ,

J2 = I3 ∪ {G(a, 2), G(2, f), S(a, 2), S(2, f), S(a, f)}.

Then, TP (I0) = I1, TP (I1) = I2, TP (I2) = I3, TP (I3) = I3, so I3 is a fixpoint.
J1 and J2 are also fixpoints, because TP (J1) = J1 and TP (J2) = J2. Notice also that

J1 ∩ J2 = I3 ∪ {S(a, f)} is not a fixpoint since TP (J1 ∩ J2) = I3 6= J1 ∩ J2.

Lemma 1 (Monotonicity) Let I and J be databases over schema(P ). If I ⊆ J , then

TP (I) ⊆ TP (J).

Proof. Easy. 2

Note incidentally that it is not generally true that J ⊆ TP (J). For example, for J3 =
{S(a, b)}, we have J3 * TP (J3) = {}.

Lemma 2 For each datalog program P and database I over edb(P ), TP has a minimum

fixpoint containing I.

Proof. Consider the sequence:

I, TP (I), T 2
P (I), T 3

P (I), . . .

Since all relation names in I are extensional, I ⊆ TP (I). By Lemma 1, TP (I) ⊆ TP (TP (I)).
By Lemma 1, TP (TP (I)) ⊆ TP (TP (TP (I))). And so on. It follows

I ⊆ TP (I) ⊆ T 2
P (I) ⊆ T 3

P (I) ⊆ . . .

All constants that occur in any database of this sequence occur in I or P . Only finitely
many atoms can be constructed using these constants. Thus, the sequence must reach a
fixpoint after a finite number N of steps (N depends on the size of I).

Let J be an arbitrary fixpoint such that I ⊆ J . By Lemma 1, TP (I) ⊆ TP (J). Since J

is a fixpoint, TP (J) = J , hence TP (I) ⊆ J . By Lemma 1, TP (TP (I)) ⊆ TP (J) = J . And so
on. It follows T N

P
(I) ⊆ J .

Consequently, every fixpoint that contains I, must necessarily contain the fixpoint
TN

P
(I). Thus, TN

P
(I) is the minimum fixpoint. 2

Let I be a database over edb(P ). The semantics of P on input I, denoted P (I), is the
minimum fixpoint of TP that contains I.

3 Program Dependency Graph

The vertexes of the dependency graph of datalog program P are the elements of idb(P ).
There is an edge from relation name R to relation name S if there is a rule in which R
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occurs in the head and S in the body. If the dependency graph is acyclic, then the program
is nonrecursive. But even a program with a cyclic dependency graph can be essentially
nonrecursive [1].

Buys(x, y) ← Trendy(x), Buys(z, y)

Buys(x, y) ← Likes(x, y)

(person x buys product y if x likes y or if x is trendy and someone buys y). The program
is equivalent (why?) to the following:

Buys(x, y) ← Trendy(x), Likes(z, y)

Buys(x, y) ← Likes(x, y)

The following program is inherently recursive:

Buys(x, y) ← Knows(x, z), Buys(z, y)

Buys(x, y) ← Likes(x, y)

(x buys y if x likes y or if x knows someone who bought y).

4 Exercises

1. From [1]. We are given two directed graphs Gblack and Gwhite over the same set V of
vertexes, represented as binary relations. Write a datalog program P that computes
the set of pairs (a, b) of vertexes such that there exists a path from a to b where black
and white edges alternate, starting with a white edge.

2. Given a directed graph G represented as a binary relation, write a datalog program
that detects whether there is a cycle of odd length. A cycle of length n (n ≥ 1) is
a sequence of (not necessarily distinct) vertexes a0, a1, . . . , an where an = a0 and for
each i ∈ {0, 1, . . . , n− 1}, there is an edge from ai to ai+1.

3. Assume a single extensional relation name R. Show that the property that the number
of elements in a database over {R} is even is not definable in datalog.
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