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1 Preliminaries

We assume a universe O of objects , equipped with a distance metric dist. That is,
dist : O × O → R such that for all o, p, q ∈ O:

1. dist(o, p) ≥ 0

2. dist(o, p) = 0 iff o = p

3. dist(o, p) = dist(p, o)

4. Triangle inequality: dist(o, p) ≤ dist(o, q) + dist(q, p)

Let o ∈ O and r ∈ R, r ≥ 0. The radius r ball around o, denoted Br(o), is defined
by:

Br(o) = {p ∈ O | dist(o, p) ≤ r}

Let O ⊆ O. We define:

diameter(O) = max{dist(o, p) | o, p ∈ O}

radius(O) = min{r ∈ R
+ | ∃c ∈ O : O ⊆ Br(c)}

Theorem 1 Let O ⊆ O, |O| ≥ 2. Then,

1 ≤
diameter(O)

radius(O)
≤ 2

Proof. Let d = diameter(O) and r = radius(O). We can assume o, p ∈ O such
that d = dist(o, p). Furthermore, we can assume c ∈ O such that O ⊆ Br(c).
Since O ⊆ Bd(o), it follows r ≤ d. From dist(c, p) ≤ r, dist(c, q) ≤ r, and
d ≤ dist(c, p) + dist(c, q), it follows d ≤ 2r. 2
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2 Partitional Clustering

All definitions that follow are relative to some O ⊆ O with N = |O| and distance
metric dist.

Definition 1 Let k be a positive integer such that 1 ≤ k ≤ N . A k-clustering of

O (or simply clustering if k and O are understood) is a partition {C1, . . . , Ck} of
O, where

1. for each i ∈ {1, . . . , k}, {} 6= Ci ⊆ O;

2. for each i, j ∈ {1, . . . , k} such that i 6= j, Ci ∩ Cj = {}; and

3.
⋃k

i=1
Ci = O.

We use Ck to denote a k-clustering of O. Every element Ci of a k-clustering Ck is
called a cluster . Obviously, C1 = {O} and CN = {{o} | o ∈ O}. For a k-clustering
Ck, we define:

cost(Ck) = max{diameter(C) | C ∈ Ck}, the cost of Ck.

2

Alternatively, the cost of a clustering could be taken to be the maximal radius of
its clusters.

Definition 2 Let

optcost(k) = min{cost(Ck) | Ck is a k-clustering of O}

A k-clustering Ck is called optimal if cost(Ck) = optcost(k). 2

Example 1 Let O = {1, 2, 3, 4, 5, 6} ⊆ N. Let dist(i, j) = |i − j|. Then,

• optcost(2) = 2, which is the cost of the 2-clustering {{1, 2, 3}, {4, 5, 6}}; and

• optcost(3) = 1, which is the cost of the 3-clustering {{1, 2}, {3, 4}, {5, 6}}.

2
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3 Hierarchical Clustering

Definition 3 Let Ck and Cl be two clusterings of the same set with k > l. We
write Ck ≺ Cl if for every C ∈ Ck, there exists D ∈ Cl such that C ⊆ D. 2

Example 2 Let O = {1, 2, 3, 4, 5, 6}. Let C3 = {{1, 2}, {3, 4}, {5, 6}}. Let C2 =
{{1, 2, 3}, {4, 5, 6}}. Let C

′

2 = {{1, 2, 3, 4}, {5, 6}}. Then, C3 6≺ C2 and C3 ≺ C
′

2. 2

Lemma 1 Let Ck ≺ Cl with k > l be two clusterings of the same set. For all

C ∈ Ck, D ∈ Cl,

C ∩ D 6= {} ⇐⇒ C ⊆ D .

Proof. The implication ⇐ is trivial. For the opposite implication, assume C∩D 6=
{}. We can assume a ∈ C ∩ D. Since Ck ≺ Cl, we can assume D′ ∈ Cl such that
C ⊆ D′. Since a ∈ D ∩ D′, we have D = D′. Consequently, C ⊆ D. 2

Lemma 2 Let Ck ≺ Cl with k > l be two clusterings of the same set. For every

D ∈ Cl, D =
⋃
{C ∈ Ck | C ⊆ D}.

Proof. Assume a ∈ D. We can assume Ca ∈ Ck such that a ∈ Ca. Since
Ca ∩D 6= {}, Ca ⊆ D by Lemma 1. Consequently, a ∈

⋃
{C ∈ Ck | C ⊆ D}. Since

a is an arbitrary element of D, D ⊆
⋃
{C ∈ Ck | C ⊆ D}. The opposite inclusion

is trivial. 2

Corollary 1 If Ck+1 ≺ Ck are two clusterings of the same set, then for some

C1, C2 ∈ Ck+1 such that C1 6= C2,

Ck = (Ck+1 \ {C1, C2}) ∪ {C1 ∪ C2} .

Proof. Assume Ck+1 ≺ Ck. Then,

• for every C ∈ Ck+1, there exists a unique D ∈ Ck such that C ⊆ D; and

• for every D ∈ Ck, there exists C ∈ Ck+1 such that C ⊆ D.

Since |Ck+1| = |Ck|+1, we can assume w.l.o.g. the following numbering of clusters:

• Ck+1 = {C1, . . . , Ck+1} and Ck = {D1, . . . , Dk};

• C1 ⊆ D1, C2 ⊆ D2, . . . , Ck ⊆ Dk; and

• Ck+1 ⊆ Dk.

By Lemma 2, D1 = C1, D2 = C2, . . . , Dk−1 = Ck−1, and Dk = Ck ∪ Ck+1. 2
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Definition 4 A hierarchical clustering (of O) is a sequence

H = CN ≺ CN−1 ≺ . . . ≺ C1 ,

where each Ck is a k-clustering (of O). 2

Notice that a hierarchical clustering is not a clustering, but a sequence of cluster-
ings.

Example 3 Two hierarchical clusterings of {1, 2, 3, 4, 5, 6} are as follows:

• H1 = {{1}, {2}, {3}, {4}, {5}, {6}}
≺ {{1, 2}, {3}, {4}, {5}, {6}}
≺ {{1, 2}, {3, 4}, {5}, {6}}
≺ {{1, 2}, {3, 4}, {5, 6}}
≺ {{1, 2, 3, 4}, {5, 6}}
≺ {{1, 2, 3, 4, 5, 6}}

• H2 = {{1}, {2}, {3}, {4}, {5}, {6}}
≺ {{1}, {2}, {3}, {4, 5}, {6}}
≺ {{1}, {2, 3}, {4, 5}, {6}}
≺ {{1}, {2, 3}, {4, 5, 6}}
≺ {{1, 2, 3}, {4, 5, 6}}
≺ {{1, 2, 3, 4, 5, 6}}

Notice that H1 contains the unique optimal 3-clustering (call it C
o
3), and H2 con-

tains the unique optimal 2-clustering (call it C
o
2). Since C

o
3 6≺ C

o
2, there exists no

hierarchical clustering that contains both C
o
3 and C

o
2. 2

There are two main approaches to construct a hierarchical clustering CN ≺ CN−1 ≺
. . . ≺ C1:

Agglomerative: each Ck is constructed from Ck+1, starting from CN .

Divisive: each Ck is constructed from Ck−1, starting from C1.

4 Problem Statement

Dasgupta and Long [DL05] give a divisive algorithm for constructing a hierachical
clustering CN ≺ CN−1 ≺ . . . ≺ C1 such that for every k ∈ {1, . . . , N}, cost(Ck) ≤
8 × optcost(k) (for every set and distance metric).
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