A Note on Hierarchical Clustering

Jef Wijsen

March 17, 2009

1 Preliminaries

We assume a universe \mathbb{O} of *objects*, equipped with a distance metric **dist**. That is, **dist** : $\mathbb{O} \times \mathbb{O} \to \mathbb{R}$ such that for all $o, p, q \in \mathbb{O}$:

- 1. dist $(o, p) \ge 0$
- 2. dist(o, p) = 0 iff o = p
- 3. dist(o, p) = dist(p, o)
- 4. Triangle inequality: $dist(o, p) \leq dist(o, q) + dist(q, p)$

Let $o \in \mathbb{O}$ and $r \in \mathbb{R}$, $r \ge 0$. The radius r ball around o, denoted $B_r(o)$, is defined by:

$$B_r(o) = \{ p \in \mathbb{O} \mid \mathsf{dist}(o, p) \le r \}$$

Let $O \subseteq \mathbb{O}$. We define:

diameter(O) = max{dist(o, p) | o, p \in O}
radius(O) = min{
$$r \in \mathbb{R}^+$$
 | $\exists c \in \mathbb{O} : O \subseteq B_r(c)$ }

Theorem 1 Let $O \subseteq \mathbb{O}$, $|O| \ge 2$. Then,

$$1 \leq \frac{\mathsf{diameter}(O)}{\mathsf{radius}(O)} \leq 2$$

Proof. Let d = diameter(O) and r = radius(O). We can assume $o, p \in O$ such that d = dist(o, p). Furthermore, we can assume $c \in \mathbb{O}$ such that $O \subseteq B_r(c)$. Since $O \subseteq B_d(o)$, it follows $r \leq d$. From $\text{dist}(c, p) \leq r$, $\text{dist}(c, q) \leq r$, and $d \leq \text{dist}(c, p) + \text{dist}(c, q)$, it follows $d \leq 2r$.

2 Partitional Clustering

All definitions that follow are relative to some $O \subseteq \mathbb{O}$ with N = |O| and distance metric dist.

Definition 1 Let k be a positive integer such that $1 \le k \le N$. A k-clustering of O (or simply clustering if k and O are understood) is a partition $\{C_1, \ldots, C_k\}$ of O, where

- 1. for each $i \in \{1, ..., k\}, \{\} \neq C_i \subseteq O;$
- 2. for each $i, j \in \{1, \ldots, k\}$ such that $i \neq j, C_i \cap C_j = \{\}$; and
- 3. $\bigcup_{i=1}^{k} C_i = O$.

We use \mathbb{C}_k to denote a k-clustering of O. Every element C_i of a k-clustering \mathbb{C}_k is called a *cluster*. Obviously, $\mathbb{C}_1 = \{O\}$ and $\mathbb{C}_N = \{\{o\} \mid o \in O\}$. For a k-clustering \mathbb{C}_k , we define:

$$cost(\mathbb{C}_k) = max\{diameter(C) \mid C \in \mathbb{C}_k\}, \text{ the cost of } \mathbb{C}_k.$$

Alternatively, the cost of a clustering could be taken to be the maximal radius of its clusters.

Definition 2 Let

$$optcost(k) = min\{cost(\mathbb{C}_k) \mid \mathbb{C}_k \text{ is a } k\text{-clustering of } O\}$$

A k-clustering \mathbb{C}_k is called *optimal* if $\mathsf{cost}(\mathbb{C}_k) = \mathsf{optcost}(k)$.

Example 1 Let $O = \{1, 2, 3, 4, 5, 6\} \subseteq \mathbb{N}$. Let dist(i, j) = |i - j|. Then,

- optcost(2) = 2, which is the cost of the 2-clustering $\{\{1, 2, 3\}, \{4, 5, 6\}\}$; and
- optcost(3) = 1, which is the cost of the 3-clustering $\{\{1, 2\}, \{3, 4\}, \{5, 6\}\}$.

3 Hierarchical Clustering

Definition 3 Let \mathbb{C}_k and \mathbb{C}_l be two clusterings of the same set with k > l. We write $\mathbb{C}_k \prec \mathbb{C}_l$ if for every $C \in \mathbb{C}_k$, there exists $D \in \mathbb{C}_l$ such that $C \subseteq D$. \Box

Example 2 Let $O = \{1, 2, 3, 4, 5, 6\}$. Let $\mathbb{C}_3 = \{\{1, 2\}, \{3, 4\}, \{5, 6\}\}$. Let $\mathbb{C}_2 = \{\{1, 2, 3\}, \{4, 5, 6\}\}$. Let $\mathbb{C}'_2 = \{\{1, 2, 3, 4\}, \{5, 6\}\}$. Then, $\mathbb{C}_3 \not\prec \mathbb{C}_2$ and $\mathbb{C}_3 \prec \mathbb{C}'_2$. \Box

Lemma 1 Let $\mathbb{C}_k \prec \mathbb{C}_l$ with k > l be two clusterings of the same set. For all $C \in \mathbb{C}_k$, $D \in \mathbb{C}_l$,

$$C \cap D \neq \{\} \iff C \subseteq D$$
.

Proof. The implication \Leftarrow is trivial. For the opposite implication, assume $C \cap D \neq \{\}$. We can assume $a \in C \cap D$. Since $\mathbb{C}_k \prec \mathbb{C}_l$, we can assume $D' \in \mathbb{C}_l$ such that $C \subseteq D'$. Since $a \in D \cap D'$, we have D = D'. Consequently, $C \subseteq D$.

Lemma 2 Let $\mathbb{C}_k \prec \mathbb{C}_l$ with k > l be two clusterings of the same set. For every $D \in \mathbb{C}_l$, $D = \bigcup \{C \in \mathbb{C}_k \mid C \subseteq D\}$.

Proof. Assume $a \in D$. We can assume $C_a \in \mathbb{C}_k$ such that $a \in C_a$. Since $C_a \cap D \neq \{\}, C_a \subseteq D$ by Lemma 1. Consequently, $a \in \bigcup \{C \in \mathbb{C}_k \mid C \subseteq D\}$. Since a is an arbitrary element of $D, D \subseteq \bigcup \{C \in \mathbb{C}_k \mid C \subseteq D\}$. The opposite inclusion is trivial.

Corollary 1 If $\mathbb{C}_{k+1} \prec \mathbb{C}_k$ are two clusterings of the same set, then for some $C_1, C_2 \in \mathbb{C}_{k+1}$ such that $C_1 \neq C_2$,

$$\mathbb{C}_k = (\mathbb{C}_{k+1} \setminus \{C_1, C_2\}) \cup \{C_1 \cup C_2\} .$$

Proof. Assume $\mathbb{C}_{k+1} \prec \mathbb{C}_k$. Then,

- for every $C \in \mathbb{C}_{k+1}$, there exists a unique $D \in \mathbb{C}_k$ such that $C \subseteq D$; and
- for every $D \in \mathbb{C}_k$, there exists $C \in \mathbb{C}_{k+1}$ such that $C \subseteq D$.

Since $|\mathbb{C}_{k+1}| = |\mathbb{C}_k| + 1$, we can assume w.l.o.g. the following numbering of clusters:

- $\mathbb{C}_{k+1} = \{C_1, \dots, C_{k+1}\}$ and $\mathbb{C}_k = \{D_1, \dots, D_k\};$
- $C_1 \subseteq D_1, C_2 \subseteq D_2, \ldots, C_k \subseteq D_k$; and
- $C_{k+1} \subseteq D_k$.

By Lemma 2, $D_1 = C_1$, $D_2 = C_2$, ..., $D_{k-1} = C_{k-1}$, and $D_k = C_k \cup C_{k+1}$.

Definition 4 A hierarchical clustering (of O) is a sequence

$$\mathbb{H} = \mathbb{C}_N \prec \mathbb{C}_{N-1} \prec \ldots \prec \mathbb{C}_1 \ ,$$

where each \mathbb{C}_k is a k-clustering (of O).

Notice that a hierarchical clustering is *not* a clustering, but a sequence of clusterings.

Example 3 Two hierarchical clusterings of $\{1, 2, 3, 4, 5, 6\}$ are as follows:

• $\mathbb{H}_1 = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}\} \\ \prec \{\{1, 2\}, \{3\}, \{4\}, \{5\}, \{6\}\} \\ \prec \{\{1, 2\}, \{3, 4\}, \{5\}, \{6\}\} \\ \prec \{\{1, 2\}, \{3, 4\}, \{5, 6\}\} \\ \prec \{\{1, 2, 3, 4\}, \{5, 6\}\} \\ \prec \{\{1, 2, 3, 4\}, \{5, 6\}\} \\ \prec \{\{1, 2, 3, 4, 5, 6\}\}$

•
$$\mathbb{H}_2 = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}\} \\ \prec \{\{1\}, \{2\}, \{3\}, \{4, 5\}, \{6\}\} \\ \prec \{\{1\}, \{2, 3\}, \{4, 5\}, \{6\}\} \\ \prec \{\{1\}, \{2, 3\}, \{4, 5, 6\}\} \\ \prec \{\{1, 2, 3\}, \{4, 5, 6\}\} \\ \prec \{\{1, 2, 3, 4, 5, 6\}\}$$

Notice that \mathbb{H}_1 contains the unique optimal 3-clustering (call it \mathbb{C}_3^o), and \mathbb{H}_2 contains the unique optimal 2-clustering (call it \mathbb{C}_2^o). Since $\mathbb{C}_3^o \not\prec \mathbb{C}_2^o$, there exists no hierarchical clustering that contains both \mathbb{C}_3^o and \mathbb{C}_2^o .

There are two main approaches to construct a hierarchical clustering $\mathbb{C}_N \prec \mathbb{C}_{N-1} \prec \ldots \prec \mathbb{C}_1$:

Agglomerative: each \mathbb{C}_k is constructed from \mathbb{C}_{k+1} , starting from \mathbb{C}_N .

Divisive: each \mathbb{C}_k is constructed from \mathbb{C}_{k-1} , starting from \mathbb{C}_1 .

4 Problem Statement

Dasgupta and Long [DL05] give a divisive algorithm for constructing a hierachical clustering $\mathbb{C}_N \prec \mathbb{C}_{N-1} \prec \ldots \prec \mathbb{C}_1$ such that for every $k \in \{1, \ldots, N\}$, $\mathsf{cost}(\mathbb{C}_k) \leq 8 \times \mathsf{optcost}(k)$ (for every set and distance metric).

References

[DL05] Sanjoy Dasgupta and Philip M. Long. Performance guarantees for hierarchical clustering. J. Comput. Syst. Sci., 70(4):555–569, 2005.