
Adding Negation

Jef Wijsen

April 16, 2008

1 Nonrecursive Datalog with Negation

If L is an atom, then ¬L is a negative literal and L a positive literal . A nr-datalog¬ rule is
defined as a conjunctive rule where the rule body can contain both positive and negative
literals. The rule is range restricted if each variable occurring in the rule occurs in a positive
literal in the rule body. For example,

Answer1(x)← Emp(x, y, z),¬Loc(z, “Charleroi”)

The answer to a range-restricted nr-datalog¬ rule q : H ← B on a database I, denoted
q(I), is defined by:

q(I) = {θ(H) | θ is a substitution such that

{

for each L ∈ B, θ(L) ∈ I

for each ¬L ∈ B, θ(L) 6∈ I
} .

A nr-datalog¬ program is a sequence of nr-datalog¬ rules:

H1 ← B1

H2 ← B2

...

Hn ← Bn

such that the relation name that occurs in Hi does not occur in B1, B2, . . . , Bi. The program
is evaluated on input I by evaluating each rule in the given order and forming unions
whenever two rules have the same relation name in their heads. For example,

ChEmp(x) ← Emp(x, y, z), Loc(z, “Charleroi”)

Answer1(x) ← Emp(x, y, z),¬ChEmp(x)

What is the semantic difference between the two example queries?

2 Recursive Datalog with Negation

A datalog¬ program is a datalog program where negative literals can appear in rule bodies.
The immediate consequence operator TP can be naturally extended to a datalog¬ program
P . However, the minimal fixpoints containing I may not be unique.

GreenPath(x, y) ← Green(x, y)

GreenPath(x, y) ← GreenPath(x, z), GreenPath(z, y)

RedMonopoly(x, y) ← Red(x, y),¬GreenPath(x, y)

1

Let

I = {Green(a, b), Red(a, b), Red(b, c)}

J1 = I ∪ {GreenPath(a, b), RedMonopoly(b, c)}

J2 = I ∪ {Green(b, c), GreenPath(a, b), GreenPath(b, c), GreenPath(a, c)}

Both J1 and J2 are minimal fixpoints. Note incidentally that the following database J3 (J2

is not a fixpoint of TP :

J3 = I ∪ {GreenPath(a, b), GreenPath(b, c), GreenPath(a, c)}

TP (J3) = I ∪ {GreenPath(a, b), GreenPath(a, c)}

T 2

P (J3) = I ∪ {GreenPath(a, b), RedMonopoly(b, c)}

T 3

P (J3) = T 2

P (J3) = J1

3 Stratified Semantics for Datalog¬

The dependency graph of a datalog¬ program P is the labeled graph whose nodes are the
relation names of idb(P). Its edges are the following:

• If R(~x)← . . . S(~y) . . . is a rule of P with S ∈ idb(P), then there is an edge with label
+ from R to S.

• If R(~x) ← . . .¬S(~y) . . . is a rule of P with S ∈ idb(P), then there is an edge with
label − from R to S.

A program is stratified if its dependency graph has no cycle containing a negative edge.
Given a stratified program P , the stratum of an intensional relation name R is the largest
number of negative edges in a path from R, in the dependency graph.

For example,

GreenPath

RedMonopoly

−

+

The stratum of GreenPath is 0; the stratum of RedMonopoly is 1.
Under the stratified semantics, the strata 0, 1, . . . are evaluated in order. Notice that for

each rule
R(~x)← . . .¬S(~y) . . . ,

where R, S ∈ idb(P), the stratum of R is greater than the stratum of S. When evaluating
this rule, all rules for S have already been evaluated, so S can be treated as an extensional
relation name.

It can be shown that, given database I and stratified program P , the stratified semantics
gives us a minimal fixpoint of TP containing I. Intuitively, the stratified semantics is a
natural choice from among several possible fixpoints.

2

4 A Note on Model-theoretic Semantics

We can associate with each nr-datalog¬ program a first-order logic theory, for example:

∀x∀y(Green(x, y)⇒ GreenPath(x, y))
∀x∀y∀z((GreenPath(x, z) ∧ GreenPath(z, y))⇒ GreenPath(x, y))
∀x∀y((Red(x, y) ∧ ¬GreenPath(x, y))⇒ RedMonopoly(x, y))

Given a database I, it seems natural to define the semantics of a program in terms of the
minimal models of its first-order theory that contain I. (A model is any database that satis-
fies all the theory’s sentences.) However, for programs with negation, there may be multiple
minimal models containing a given database I, i.e. there may be no unique minimal model.
For example, J1 and J3 are two minimal models containing {Green(a, b), Red(a, b), Red(b, c)}.
Note also that J2 is a model, but not a minimal model (since J3 (J2).

On the other hand, for programs without negation, the minimal model containing a
given database is unique and coincides with the minimal fixpoint of TP .

5 Exercises

1. Consider the following datalog¬ program P :

Male(x) ← Person(x),¬Female(x)

Female(x) ← Person(x),¬Male(x)

Show that the immediate consequence operator TP is not monotonic.

2. Write a stratified datalog program¬ to answer the following query:

Find pairs of cities (a, b) such that b can be reached from a by some combi-
nation of red or green edges, but not by red or green edges alone.

3. From [1]. Consider the following stratified datalog¬ program P :

P (x, y) ← Q(x, y),¬R(x)

R(x) ← S(x, y),¬T (y)

R(x) ← S(x, y), R(y)

Let I = {S(a, b), S(b, c), S(c, a), T (a), T (b), T (c), Q(a, b), Q(b, c), Q(c, d), Q(d, e)}.

(a) Find the minimal fixpoint given by the stratified semantics.

(b) Find another minimal fixpoint.

References

[1] J. D. Ullman. Principles of Database and Knowledge-Base Systems – Volume II. Com-
puter Science Press, Rockville, MD, 1989.

3

