
Adding Recursion to SPJRUD

Jef Wijsen

May 10, 2019

Complexity

I An algorithm runs in O(f (n)) time if there exists a constant k
such that on inputs of sufficiently large size n, the algorithm
terminates after at most k · f (n) steps.

I An algorithm runs in O(f (n)) space if there exists a constant
k such that on inputs of sufficiently large size n, the algorithm
uses at most k · f (n) bits of auxiliary memory.

I A polytime algorithm runs in O(nk) time for some constant k .

I A logspace algorithm runs in O(log n) space.

I Explain L ⊆ P: with k · log n bits, you can use at most
2k·log n = nk distinct auxiliary states.

Query Evaluation

For every fixed SPJRUD expression E , we define EVAL(E) as the
following problem:

INPUT: A database I and a tuple t.

QUESTION: Does t belong to JEKI?

Proposition

For every expression E in SPJRUD, there exists a logspace
algorithm for the following problem:

Given a database I, return JEKI .
=⇒ EVAL(E) is in L for every expression E in SPJRUD.

Fixed Points

Let U be a finite set. A mapping f : P(U)→ P(U) is

I inflationary (French: inflationniste) if for all X ⊆ U,
X ⊆ f (X);

I monotone if for all X ,Y ⊆ U, X ⊆ Y implies f (X) ⊆ f (Y).

A set X ⊆ U is a fixed point of f if f (X) = X .

Example

Let U = {a, b} and f1, f2, f3 as follows.

X f1(X) f2(X) f3(X)

∅ {a, b} ∅ {a, b}
{a} {a} {b} {b}
{b} {b} {a} {a}
{a, b} {a, b} {a, b} ∅

Fixed Point Computation

Property

Define X 0 := ∅, and for i = 0, 1, . . ., X i+1 := f (X i).

I If f is inflationary or f is monotone, then for some n ≤ |U|,
X n is a fixed point.

I Moreover, if f is monotone, then this fixed point X n is
included in every other fixed point of f . That is, X n is the
unique least fixed point of f .

A Fixed Point Operator for SPJRUD

Let R and ∆ be relation names s.t. sort(R) = sort(∆) = {A,B}.
Let

E := R ∪ πAB (ρB 7→C (R) on ρA 7→C (∆)) .

Define f as the mapping s.t. for every relation X over {A,B},

f (X) := JEKI∆→X

Define ∆0 := ∅ and ∆i+1 := f (∆i) for i ≥ 0.

Questions

I Argue that f is both inflationary and monotone.

I Describe the fixed point reached by (∆i)∞i=0.

=⇒ New operator:

Syntax: fp∆:AB (E)

Semantics: Jfp∆:AB (E)KI is the fixed point reached by (∆i)∞i=0.

Nesting is Allowed

Example

Let sort(R) = {A,B,C}.

E1 := fp∆:ABC (R ∪ πABC (ρB 7→D (R) on ρA 7→D (∆)))

E2 := πAB (E1)

E3 := fp∆′:AB

(
E2 ∪ πAB

(
ρB 7→C (E2) on ρA 7→C

(
∆′

)))
Example

Let sort(R) = {A}.

fp∆:A

(
∆ ∪

(
R − fp∆′:A

(
∆′ ∪ (R −∆)

)))

Problem: (∆i)∞i=0 May Reach No Fixed Point

Let sort(R) = sort(∆).
Let

f (X) := JR −∆KI∆→X .

Questions

I Does f have a fixed point for every database I?

I Does f have a fixed point for some database I?

I What if we replace R with an arbitrary SPJRUD expression of
the same sort as ∆?

⇓
Proposition

The following problem is undecidable: Given an expression E that
uses ∆, does ∆0, ∆1, ∆2, . . . (as previously defined) reach a fixed
point for every database I?

Solution
Alike in Bases de Données I:

domain independence is an undecidable semantic property → safety is a decidable syntactic property

Proposition

Let fp∆:S (E) be syntactically well-defined.
Let I be any database, and f (X) := JEKI∆→X .
Then,

if all fp-subexpressions1are
of the form fp∆′:S ′ (∆′ ∪ E ′)

=⇒ f is inflationary

and

if for every fp-subexpression
fp∆′:S ′ (E ′), we have that E ′ is
positive in ∆′

=⇒ f is monotone

1Since an expression is a subexpression of itself, these conditions apply also
to fp∆:S (E) itself.

SPJRUD+FP

SPJRUD+FP extends SPJRUD with the fp-operator, but with the
following syntactic restriction:
whenever you write fp∆:S (E), it must be the case that either

I E is of the form ∆ ∪ E ′, or

I E is positive in ∆.

Moreover, avoid mixing up both forms in a same expression
(because in database theory, it is common to separate ifp from lfp,
which correspond, respectively, to the first and second syntactic
form).

Proposition

For every expression E in SPJRUD+FP, there exists a polytime
algorithm for the following problem:

Given a database I, return JEKI .
=⇒ EVAL(E) is in P for every expression E in SPJRUD+FP.

Fixed Point Operator in Relational Calculus

Syntax We add formulas of the form

[fp∆:x1,...,xk (ϕ)](t1, . . . , tk)

where

I ∆ is a k-ary relation name;

I x1, . . . , xk are the free variables of ϕ; and
=⇒ evaluating ϕ(x1, . . . , xk) on some database I∆→∆i results in a

k-ary relation ∆i+1 := {(c1, . . . , ck) | I∆→∆i |= ϕ(c1, . . . , ck)}
I every ti is a constant or a variable.

The free variables of [fp∆:x1,...,xk (ϕ)](t1, . . . , tk) are the variables
that occur in t1, . . . , tk .

Semantics return all values for [the variables in] (t1, . . . , tk) that
yield a tuple in the fixed point reached by (∆i)∞i=0 with ∆0 = ∅

Examples

I Transitive closure of a binary relation R.

{〈u, v〉 | [fp∆:x ,y (R(x , y) ∨ ∃z (R(x , z) ∧∆(z , y)))](u, v)}

=⇒ all couples (u, v) in the transitive closure

I All nodes reachable from 0.

{〈v〉 | [fp∆:x ,y (R(x , y) ∨ ∃z (R(x , z) ∧∆(z , y)))](0, v)}

I Is there a path from 0 to 4?

{〈〉 | [fp∆:x ,y (R(x , y) ∨ ∃z (R(x , z) ∧∆(z , y)))](0, 4)}

I All couples not in the transitive closure.

{〈u, v〉 | ∃w (R(u,w) ∨ R(w , u)) ∧ ∃w (R(v ,w) ∨ R(w , v))∧
¬[fp∆:x ,y (R(x , y) ∨ ∃z (R(x , z) ∧∆(z , y)))](u, v) }

Example

Let R be ternary relation name with sort(R) = {A,B,C}.
Let S be a unary relation name with sort(S) = {A}.
An R-tuple {A : p,B : q,C : r} encodes the propositional formula

p ∧ q → r .

An S-tuple {A : p} encodes that p has truth value true.

Which propositions r must be true in every model of the formulas
in R, given the truth values in S?

{r | [fp∆:x (S(x) ∨ ∃p∃q (R(p, q, x) ∧∆(p) ∧∆(q)))](r)}

Syntactic Restrictions

[fp∆:x1,...,xk (ϕ)](t1, . . . , tk)

Question:

What syntactic restrictions on ϕ guarantee that

∅ = ∆0,∆1,∆2, . . .

will reach a fixed point?

Exercise

Let R be a binary relation that encodes a directed graph.
Which vertices are in the answer of the following query?

{z | [fp∆:x (∃y (R(x , y) ∨ R(y , x)) ∧ ∀y (R(y , x)→ ∆(y)))](z)
∧
∃xR(x , z) }

Transitive Closure Logic

SPJRUD+TC adds a further restriction:

whenever you write fp∆:S (E), it must be the case that

sort(E) = ~A~B ~D with |~A| = |~B| and E computes, for every fixed
~D-value ~d , the transitive closure of the set of (~A, ~B)-values that

occur with ~d ;

=⇒ if {~A : ~a, ~B : ~b, ~D : ~d} and {~A : ~b, ~B : ~c , ~D : ~d} are in

the transitive closure, then so is {~A : ~a, ~B : ~c , ~D : ~d}.

Note: separate transitive closure is computed for every value of ~D.

Convenient notation: tc~A;~B
(E)

SPJRUD+TC has a lower complexity than SPJRUD+FP (NL
versus P).

Discussion and Exercises

See course notes.

