Adding Recursion to SPJRUD

Jef Wijsen

May 10, 2019

Complexity

v

An algorithm runs in O(f(n)) time if there exists a constant k
such that on inputs of sufficiently large size n, the algorithm
terminates after at most k - f(n) steps.

An algorithm runs in O(f(n)) space if there exists a constant
k such that on inputs of sufficiently large size n, the algorithm
uses at most k - f(n) bits of auxiliary memory.

A polytime algorithm runs in O(n¥) time for some constant k.
A logspace algorithm runs in O(log n) space.

Explain L C P: with k - log n bits, you can use at most
2klogn — pk distinct auxiliary states.

Query Evaluation

For every fixed SPJRUD expression E, we define EVAL(E) as the
following problem:

INPUT: A database 7 and a tuple t.
QUESTION: Does t belong to [E]%?

Proposition
For every expression E in SPJRUD, there exists a logspace
algorithm for the following problem:
Given a database Z, return [E]*.
= EVAL(E) is in L for every expression E in SPJRUD.

Fixed Points

Let U be a finite set. A mapping f : P(U) — P(U) is
» inflationary (French: inflationniste) if for all X C U,

X C f(X);
» monotone if for all X, Y C U, X C Y implies f(X) C f(Y).

A set X C U is a fixed point of f if f(X) = X.

Example
Let U = {a, b} and f1, f, f3 as follows.

L X A [AX)] 6(X)]
0 {a,b} | 0 {a, b}
{a} || {at | {6} | {b}
{6} || {p} | {a} | {a}
{a,b} || {a,b} | {a, b} 0

Fixed Point Computation

Property
Define X° := 0, and for i =0,1,..., X*1 := f(X").
» If f is inflationary or f is monotone, then for some n < |U|,
X" is a fixed point.
» Moreover, if f is monotone, then this fixed point X" is

included in every other fixed point of f. That is, X" is the
unique least fixed point of f.

A Fixed Point Operator for SPJRUD

Let R and A be relation names s.t. sort(R) = sort(A) = {A, B}.
Let

E = RUmag (pB—c (R) M pasc (D).
Define f as the mapping s.t. for every relation X over {A, B},
f(X) = [E]*a~x
Define A? := () and A’ = f(A') for i > 0.

Questions
» Argue that f is both inflationary and monotone.
> Describe the fixed point reached by (A/)%,,.

— New operator:

Syntax: fpa.ag (E)
Semantics: [fpa.ag (E)]? is the fixed point reached by (A7),.

Nesting is Allowed

Example
Let sort(R) = {A, B, C}.

E = pr:ABC (R UTaBC (pBHD (R) X pA-D (A)))

E; = mag(E1)

Es = fppaiap (Ez UTaB (pBHC (E2) X pa-sc (A,)))
Example

Let sort(R) = {A}.

pr:A (A U (R - pr’:A (A/ U (R - A))))

Problem: (A)®, May Reach No Fixed Point

Let sort(R) = sort(A).
Let
f(X) = [R — A]Fa-x.

Questions
» Does f have a fixed point for every database Z7

» Does f have a fixed point for some database Z7
» What if we replace R with an arbitrary SPJRUD expression of

the same sort as A?
Proposition

The following problem is undecidable: Given an expression E that
uses A, does A°, A, A2 ... (as previously defined) reach a fixed

point for every database T?

Solution

Alike in Bases de Données I:

domain independence is an undecidable semantic property — safety is a decidable syntactic property

Proposition
Let fpa.s (E) be syntactically well-defined.
Let T be any database, and f(X) := [E]*2~x.
Then,

1

if all fp-subexpressions"are

f is inflati
of the form fppng (A UE) | o innationary

and
if for every fp-subexpression
fpar.s (E'), we have that E' s = f is monotone
positive in A’

!Since an expression is a subexpression of itself, these conditions apply also
to fpa.s (E) itself.

SPJRUD+FP

SPJRUD+FP extends SPJRUD with the fp-operator, but with the
following syntactic restriction:
whenever you write fpa.g (E), it must be the case that either

» E is of the form AU E’, or

> E is positive in A.
Moreover, avoid mixing up both forms in a same expression
(because in database theory, it is common to separate ifp from Ifp,

which correspond, respectively, to the first and second syntactic
form).

Proposition
For every expression E in SPJRUD+FP, there exists a polytime
algorithm for the following problem:
Given a database T, return [E]*.
= EVAL(E) is in P for every expression E in SPJRUD+FP.

Fixed Point Operator in Relational Calculus
We add formulas of the form

[pr:xl,.A.,xk ((p)](th SO tk)

where
> A is a k-ary relation name;

» xi,...,xx are the free variables of ¢; and
= evaluating ¢(xi, ..., xx) on some database Za_, i results in a

k-ary relation At = {(cy,...,ck) | Zasni

P> every t; is a constant or a variable.

The free variables of [fpa., ., (©)I(t1,. .., tx) are the variables
that occur in ty, ..., tx.

return all values for [the variables in] (t1,..., tx) that

yield a tuple in the fixed point reached by (A7), with A% = ()

Examples
» Transitive closure of a binary relation R.

{{u,v) [[fPax,y (R(x,y) vV Iz (R(x,2) A A(z,¥)))](u, v)}

= all couples (u, v) in the transitive closure
» All nodes reachable from 0.

{(v) [[fPax,y (R(x,y) vV 3z(R(x,2) A A(z,y)))I(0, v)}
» [s there a path from 0 to 47

{0 [fPax,y (R(x,y) v 3z(R(x, z) A A(z,¥)))](0,4)}
> All couples not in the transitive closure.

{{u,v) | Iw (R(u,w) V R(w, u)) A 3w (R(v,w) V R(w, v)) A
Py (RO, y) V 3z (R(x,2) A A(z,¥)))(u, v))

Example

Let R be ternary relation name with sort(R) = {A, B, C}.
Let S be a unary relation name with sort(S) = {A}.
An R-tuple {A: p,B: q,C : r} encodes the propositional formula

pAq—r.

An S-tuple {A: p} encodes that p has truth value true.

Which propositions r must be true in every model of the formulas
in R, given the truth values in §?

{r | fpax(5(x)V3p3qa(R(p,q,x) A Alp) A A(q)))I(r)}

Syntactic Restrictions

[pr:xl,...,xk (‘p)](tla SR tk)

Question:

What syntactic restrictions on guarantee that
B =A% AN A%

will reach a fixed point?

Exercise

Let R be a binary relation that encodes a directed graph.
Which vertices are in the answer of the following query?

{z] [fpax @y (R(x,y) vV R(y,x)) AVy (R(y,x) = A(y)))l(2)
A
IxR(x,z) }

Transitive Closure Logic

SPJRUD+TC adds a further restriction:

whenever you write prS(E), it must be the case that
sort(E) ABD with |A| = |B| and E computes, for every fixed

D-value d, the transitive closure of the set of (A, B)-values that

occur with d,

— if{A:3,B:b,D:d}and {A:b,B:&D:d}arein
the transitive closure, then so is {A: 4, B : C,

— -,

b, B
A D:d}.

Note: separate transitive closure is computed for every value of D.

Convenient notation: tc; 5 (E)

SPJRUD+TC has a lower complexity than SPJRUD+FP (NL

versus P).

Discussion and Exercises

See course notes.

