
α-Acyclic Joins

Jef Wijsen

September 13, 2024

1 Motivation

Joins in a Distributed Environment

Assume the following relations.1

• M [NN ,Field of Study ,Year ] stores data about students of UMONS. For example, (19950423158,
Informatics, BAC3) states that the person with national number 19950423158 is enrolled in BAC3
Informatics. The relation M is stored in Mons.

• B[NN ,Street ,Number ,City ] stores the addresses of all Belgian citizens. The relation B is stored in
Brussels.

UMONS wants to get the join M 1 B. Several computations are possible.

1. Transmit relation B from Brussels to Mons, and compute the join at Mons. If we assume ten million
Belgians and five thousand students, 99.95% of the transmitted tuples are dangling, meaning that they
do not join with a tuple from M .

2. Transmit πNN (M) (five thousand tuples) from Mons to Brussels. Compute the join B 1 πNN (M) in
Brussels, and transmit the result (five thousand tuples) to Mons. Finally, compute M 1

(
B 1 πNN (M)

)
in Mons. In this way, only ten thousand tuples are transmitted.

Order of Joins

Assume relations R[AB], S[BC], T [CD], which now reside on a single site. Assume that there are no
dangling tuples. We want to join the three relations. Several computations are possible.

1. First compute R 1 T , which contains |R| × |T | tuples. Then compute S 1 (R 1 T ), which may
contain much less than |R| × |T | tuples.

2. First compute R 1 S, then T 1 (R 1 S). Since there are no dangling tuples, it can be easily seen that
the intermediate result will not be larger than the output relation.

Questions

The following questions arise.

1. In a distributed join, can we minimize the amount of tuples transmitted?

2. If we have a join of more than two relations, can we join the relations in a way so as to minimize the
size of the intermediate results?

1See the course Bases de Données I for definitions of relation and the operator 1.

1



2 Preliminaries

We assume relation names R,S,R1, S1, R2, S2, . . . . Each relation name R is associated with a finite set of
attributes, denoted sort(R). Letters A,B,C, . . . denote attributes. We will write R[X] to denote that R is a
relation name with sort(R) = X .

A schema S is a finite set of relation names such that for all R1, R2 ∈ S, if R1 ̸= R2, then sort(R1) ̸=
sort(R2). Thus, we require that no two distinct relation names are associated with the same set of attributes.
This restriction is not fundamental, but simplifies the technical treatment: an element R[X] of a schema is
uniquely identified by X .

A database over a schema S associates to each relation name R ∈ S a relation over sort(R).

Whenever a database is fixed, we do not distinguish between the relation name R and the relation associated
with R. For example, when we talk about the “join of R and S,” we mean the join of the relations associated
with R and S.

Also, we will use R as a shorthand for sort(R). For example, we will write πR(R 1 S) instead of πsort(R)(R 1 S).

3 Semijoin

Recall that sort(R 1 S) := sort(R) ∪ sort(S) and R 1 S := {t | t[R] ∈ R and t[S] ∈ S}. The operator 1
is commutative and associative.

The semijoin of R and S, denoted R ⋉ S, is the subset of R containing each tuple of R that joins with
some tuple of S. Formally, R ⋉ S := πR(R 1 S). A tuple of R that does not belong to R ⋉ S is called
dangling.

Exercise 1 Show that R⋉ S = R 1 πR∩S(S).

Assume that R and S reside on different sites, and that we want to compute R⋉S. The amount of transmitted
data must be minimized. We can ship S to the site of R. However, the expression of Exercise 1 tells us that
it is sufficient to ship πR∩S(S) to the site of R.

4 Joining Two Relations Residing at Different Sites

Show the following.

R 1 S = (R⋉ S) 1 S (1)

= (S ⋉R) 1 R (2)

Assume that R and S reside on different sites, and that we want to compute R 1 S. Equation (1) tells us
that we can compute R ⋉ S as in Section 3, and ship the result to the site of S. In this way, we avoid the
transmission of dangling tuples of R. In summary [?, p. 701],

1. Compute πR∩S(S) at the site of S.

2. Ship πR∩S(S) to the site of R.

3. Compute R⋉ S at the site of R, using the fact that R⋉ S = R 1 πR∩S(S).

4. Ship R⋉ S to the site of S.

5. Compute R 1 S at the site of S, using the fact that R 1 S = (R⋉ S) 1 S.

There is a symmetric strategy, with R and S interchanged.

2



R A B
1 2
2 4
3 6
4 8

S B C
1 2
2 4
3 6
4 8

T C D
1 2
2 4
3 6
4 8

Figure 1: Three relations to be joined.

R A B
a b
d e

S B C
b c
e f

U C A
c d
f a

Figure 2: Three relations to be joined.

5 Joining Three or More Relations

Let db be a database over schema S = {R1, . . . , Rn}. We say that a tuple t of Ri is dangling with respect
to S if t ̸∈ πRi(R1 1 R2 1 · · · 1 Rn). We can try to eliminate dangling tuples by applying semijoins as in
Section 4. A semijoin program for S is a sequence of commands

Ri1 := Ri1 ⋉Rj1 ;

Ri2 := Ri2 ⋉Rj2 ;

...

Rip := Rip ⋉Rjp ;

This is called a full reducer for S if for each database db over S, applying this program yields a database
without dangling tuples.

Example 1 Consider the database of Fig. 1 and the semijoin program

R := R⋉ S

S := S ⋉ T

T := T ⋉ S

The first step eliminates tuples (3, 6) and (4, 8) from R, and the second step does the same to S. The third
step eliminates (1, 2) and (3, 6) from T . If we then take the join of the three relations, we find that the only
tuple in the join R 1 S 1 T is (1, 2, 4, 8). That is, tuple (2, 4) is still dangling in R and T , and tuple (1, 2)
is dangling in S. Thus, this semijoin program is not a full reducer.

Example 2 A full reducer for the relations of Fig. 1 is

S := S ⋉R

T := T ⋉ S

S := S ⋉ T

R := R⋉ S

We will show in Theorem 2 that this program eliminates dangling tuples from R, S, and T independent of
the initial values of these relations.

3



Figure 3: α-Cyclic hypergraph.

Figure 4: α-Acyclic hypergraph. ABC is an ear that can be removed in favor of ACE, because ABC \
ACE = B and B is unique to ABC.

Example 3 Consider the database of Fig. 2. Notice the following.

R = R⋉ S

R = R⋉ U

S = S ⋉R

S = S ⋉ U

U = U ⋉R

U = U ⋉ S

Since R 1 S 1 U = {}, it is correct to conclude that there exists no full reducer for this schema.

Example 3 raises an important question: which schemas have a full reducer?

6 α-Acyclic Schemas

A hypergraph is a pair (V,E) where V is a set of vertexes and E is a family of distinct nonempty subsets of
V , called hyperedges.

The hypergraph of schema S is the pair (V,E) where V =
⋃
{sort(R) | R ∈ S} and E = {sort(R) | R ∈

S}.

Let E and F be two hyperedges, and suppose that the attributes of E \ F are unique to E; that is, they
appear in no hyperedge but E. Then we call E an ear, and we term the removal of E from the hypergraph in
question ear removal. We sometimes say “E is removed in favor of F ” in this situation. As a special case, if
a hyperedge intersects no other hyperedge, then that hyperedge is an ear, and we can remove that hyperedge
by “ear removal.”

The GYO-reduction of a hypergraph is obtained by applying ear removal until no more removals are possible.
A hypergraph is α-acyclic if its GYO-reduction is the empty hypergraph; otherwise it is α-cyclic.

A schema is α-acyclic if its hypergraph is α-acyclic; otherwise it is α-cyclic.

Exercise 2 Show that the hypergraph of Fig. 3 is α-cyclic, and that the hypergraph of Fig. 4 is α-acyclic.

4



Theorem 1 The GYO-reduction of a hypergraph is unique, independent of the sequence of ear removals
chosen.

Proof Note that a potential removal is still possible if another removal is chosen. For example, suppose E1

could be removed in favor of E2. That is, the vertices of E1 \ E2 are unique to E1. We distinguish two
cases.

1. If we do an ear removal of a hyperedge other than E2, we can still remove E1.

2. Suppose we first remove E2 in favor of some E3. It suffices to show E1 \E3 ⊆ E1 \E2, so E1 is still
an ear and can be removed in favor of E3. Suppose towards a contradiction that there exists a vertex
N ∈ E1 \ E3 such that N ̸∈ E1 \ E2. Then N ∈ E2 \ E3 and N ∈ E1 (thus, N is not unique to
E2 \ E3), contradicting the assumption that E2 was an ear that could be removed in favor of E3.

This concludes the proof. 2

Theorem 2 A schema is α-acyclic if and only if it has a full reducer.

Proof of the =⇒ -direction The proof runs by induction on the cardinality of S. Clearly, if |S| = 1, then
the empty semijoin program is a full reducer for S. For the induction step, let S be an α-acyclic schema with
|S| ≥ 2. Let G be the hypergraph of S. Since G is α-acyclic, we can assume an ear S1 that can be removed in
favor of some hyperedge T1. Let H be the resulting hypergraph, which must be α-acyclic. By the induction
hypothesis, we can assume a full reducer PH for S \ {S1}. Consider the following semijoin program (call it
PG).

T1 := T1 ⋉ S1;

all commands of PH
S1 := S1 ⋉ T1;

Let S1, . . . , Sn be an ordering of S corresponding to a sequence of ear removals in a GYO reduction. Since
S1 could be removed in favor of T1, it follows

sort(S1) ∩
( n⋃
i=2

sort(Si)
)
⊆ sort(T1) (3)

We need to show that PG is a full reducer for S. That is, we need to show that no tuple is dangling with
respect to S. We distinguish between tuples from S2, . . . , Sn, and tuples from S1.

For every i ∈ {2, . . . , n}, no tuple of Si is dangling with respect to S. Let i ∈ {2, . . . , n} and let si ∈ Si.
The full reducer PH ensures that si is not dangling with respect to {S2, . . . , Sn}. That is, there exists
a tuple t ∈ S2 1 · · · 1 Sn such that t[Si] = si. The command T1 := T1 ⋉ S1 of PG ensures that
t[T1] joins with some tuple s1 ∈ S1. Since T1 ∈ {S2, . . . , Sn} and by (3), the tuple s1 joins with t. It
follows that si is not dangling with respect to S. Note also that s1 is not removed by the last command
of PG .

No tuple of S1 is dangling with respect to S. Let s1 ∈ S1. The command S1 := S1 ⋉ T1 of PG ensures
that s1 joins with some tuple t1 ∈ T1. The full reducer PH ensures that t1 is not dangling with respect
to {S2, . . . , Sn} (recall that T1 ∈ {S2, . . . , Sn}). Thus, there exists t ∈ S2 1 · · · 1 Sn such that
t[T1] = t1. By (3), s1 joins with t, hence s1 is not dangling with respect to S.

2

Example 4 The following GYO-reduction shows that schema S = {R[AB], S[BC], T [CD]} is α-acyclic.

1. Remove the ear R in favor of S.

2. In {S[BC], T [CD]}, remove the ear S in favor of T .

3. Remove the ear T .

5



A full reducer for S is built “from the inside out.”

1. The empty semijoin program is a full reducer for {T}.

2. A full reducer for {S, T} is given by

T := T ⋉ S;

S := S ⋉ T ;

3. A full reducer for {R,S, T} is given by

S := S ⋉R;

T := T ⋉ S;

S := S ⋉ T ;

R := R⋉ S;

7 Order of Joins

Let S be an α-acyclic database schema. Suppose we have applied a full reducer. We must now join all
relations. Suppose we have removed S1, S2, . . . , Sn in that order. That is, S1 was the first ear removed,
S2 was the second ear removed, and so on. Assume that for all i ∈ {1, . . . , n − 1}, Si was removed in
favor of Ti ∈ {Si+1, . . . , Sn}. In particular, Tn−1 = Sn. The full reducer in the proof of Theorem 2 is the
following.

T1 := T1 ⋉ S1

T2 := T2 ⋉ S2

...

Tn−1 := Tn−1 ⋉ Sn−1

Sn−1 := Sn−1 ⋉ Tn−1

...

Si := Si ⋉ Ti

...

S2 := S2 ⋉ T2

S1 := S1 ⋉ T1

Now we join relations in reverse order, that is,

Result := Sn

Result := Sn−1 1 Result

Result := Sn−2 1 Result
...

Result := Si 1 Result
...

Result := S1 1 Result

We argue that the size of Result cannot decrease. When we join Si to Si+1 1 · · · 1 Sn, we know that every
tuple of Si joins with some tuple of Si+1 1 · · · 1 Sn, because the command Si := Si⋉Ti in the full reducer
ensures that Si has no dangling tuples with respect to {Si+1, . . . , Sn}. As a consequence, no intermediate
join can have more tuples than the output relation.

6



ABC

ACE

AEF

CDE

ABC

ACE CDE

Figure 5: A join tree (left) and the subgraph induced by the vertices containing C (right).

Example 5 We continue Example 4. The GYO-reduction of S = {R[AB], S[BC], T [CD]} shown there
removes R,S, T in that order. So the order of the join is R 1 (S 1 T ). The command S := S⋉T in the full
reducer (see Example 4) ensures that every tuple of S joins with some tuple of T . The command R := R⋉S
in the full reducer ensures that every tuple of R joins with some tuple of S 1 T .

8 Join Tree

A join tree of a hypergraph G = (V,E) is a tree (i.e., a connected acyclic undirected graph) whose vertices
are the hyperedges of G such that the following condition holds:

Connectedness Condition: For every A ∈ V , the subgraph of the tree induced by the vertices that contain
A is connected.

The connectedness condition is equivalent to saying that for all vertices E1 and E2 in the tree (i.e., E1 and
E2 are hyperedges in the hypergraph), if some A ∈ V belongs to E1 ∩ E2, then A belongs to every vertex
on the (unique) path between E1 and E2 in the tree.

Theorem 3 A hypergraph is α-acyclic if and only if it has a join tree.

Proof =⇒ Let G be an α-acyclic hypergraph. Build a tree whose nodes correspond to the hyperedges,
and E is a child of F if we eliminate E by ear removal, in favor of F . We show that this tree satisfies the
Connectedness Condition. Assume towards a contradiction that the Connectedness Condition is not satisfied.
Then for some A, the tree must contain a simple2 path ⟨E1, E2, . . . , En⟩ with n > 2 such that A ∈ E1 ∩En

and for i ∈ {2, . . . , n − 1}, A ̸∈ Ei. We can assume without loss of generality that in the GYO-reduction,
the removal of E1 preceded the removal of En. Then, E1 cannot be a child of E2, because we cannot have
removed E1 by ear removal in favor of E2 (because A ∈ E1 \E2 also belongs to En). So it must be that E2

is a child of E1. But then En must be a descendant of E1 (because the path is simple), hence the removal of
En preceded the removal of E1 in the GYO-reduction, a contradiction. We conclude by contradiction that
the tree satisfies the Connectedness Condition.

⇐= Let τ be a join tree of a hypergraph G. Pick any vertex R (i.e., any hyperedge of G) and consider the
rooted tree (τ,R) (i.e., the tree τ in which R is singled out as the root). We show that G has a GYO-reduction
that removes all hyperedges. The proof runs by induction on the number of hyperedges in G. Clearly, if G has
only one hyperedge, then this hyperedge is an ear and can be removed. For the induction step, assume that
G has two or more hyperedges. Assume that E is a leaf and a child of F in the rooted tree (τ,R). For every
A ∈ E \ F , it must be the case that A is unique to E because of the Connectedness Condition. Therefore E
can be eliminated by ear removal, in favor of F . Clearly, the tree obtained after removal of E still satisfies
the Connectedness Condition, and hence, by the induction hypothesis, has a GYO-reduction that removes all

2A path is simple if all its vertices are distinct.

7



ABC BF

BCD DEG

CDE

ABC

BF

BCD

DEG

CDE

Figure 6: The same join trees with different roots.

hyperedges. 2

If S = {R1, . . . , Rn} is an acyclic database schema, then the tree built in the proof of Theorem 3 can be
viewed as a “parse tree” for the join expression R1 1 R2 1 · · · 1 Rn. Notice that the proof of Theorem 3
implies that we may take whichever hyperedge we wish to be the root. See Fig. 6.

9 Computing a Projection of an α-Acyclic Join

We now investigate how to compute a projection of an α-acyclic join. We will first apply a full reducer.
Unfortunately, since a projection can reduce the number of tuples, we cannot ensure that no intermediate
relation contains more tuples than the final output.

Example 6 The join R 1 S contains 8 tuples, but the projection πAC(R 1 S) contains only 7 tuples.

R A B
1 d
2 d
2 e
3 e

S B C
d 4
d 5
e 5
e 6

R 1 S A B C
1 d 4
1 d 5
2 d 4
2 d 5
2 e 5
2 e 6
3 e 5
3 e 6

πAC(R 1 S) A C
1 4
1 5
2 4
2 5
2 6
3 5
3 6

We now present Yannakakis’ algorithm to compute πX(R1 1 · · · 1 Rn) where the schema S = {R1, . . . , Rn}
is acyclic. We will first give the algorithm and then prove that no intermediate relation in its execution will
contain more tuples than IU , where I is the total number of tuples in the input relations and U is the number
of tuples in the output. That is, the cardinality of all intermediate relations is quadratically bounded by the
cardinality of input and output (since IU ≤ (I + U)2).

The algorithm consists of the following steps.

(i) Apply a full reducer.

(ii) Construct a rooted join tree for S.

8



A B C
1 3 4
2 3 4

B F
3 8
3 9

B C D
3 4 5
3 4 6

D E G
5 7 10
5 7 11
6 7 10

C D E
4 5 7
4 6 7

B F
3 8
3 9

A B C D
1 3 4 5
1 3 4 6
2 3 4 5
2 3 4 6

D E G
5 7 10
5 7 11
6 7 10

C D E
4 5 7
4 6 7

(a) (b)

A B C D
1 3 4 5
1 3 4 6
2 3 4 5
2 3 4 6

D E G
5 7 10
5 7 11
6 7 10

C D E
4 5 7
4 6 7

D E G
5 7 10
5 7 11
6 7 10

A C D E
1 4 5 7
1 4 6 7
2 4 5 7
2 4 6 7

(c) (d)

A C D E G
1 4 5 7 10
1 4 5 7 11
1 4 6 7 10
2 4 5 7 10
2 4 5 7 11
2 4 6 7 10

A G
1 10
1 11
2 10
2 11

(e)

Figure 7: Efficient computation of πAG(ABC 1 BCD 1 BF 1 CDE 1 DEG) using the rooted join tree
of Fig. 6 (left).

9



(iii) Visit each node of the rooted join tree, other than the root, in some bottom-up order; that is, visit each
node after having visited all its children. When we visit E whose parent is F (where E,F ∈ S), we
execute

F := πF∪(X∩E)(E 1 F ).

That is, we replace the current relation of F by πF∪(X∩E)(E 1 F ).3

The projection projects out the attributes that are not in F and are not in X . The attributes that are
projected out are not in the final projection and are not needed in any future join. Indeed, if an attribute
A is in E but not in F , then, by the Connectedness Conditions, A cannot occur in any relation that is
still to be visited.

(iv) Project the relation at the root onto X . This step should be performed at the time we join the last child
of the root with the root, during step (iii).

Yannakakis’ algorithm is illustrated in Fig. 7. Theorem 4 states a bound on the number of tuples in the
intermediate relations during the execution of step (iii). It uses the following helping lemma.

Lemma 1 Let R be a relation name and let X,Y be (not necessarily disjoint) subsets of sort(R). Then,

1. πXY (R) ⊑ πX(R) 1 πY (R);

2. if Y ⊆ X , then (the evaluation of) πY (R) cannot contain more tuples than πX(R).

Proof Left as an exercise. Note that the inclusion in the first item can be strict. 2

Theorem 4 At every execution of step (iii) in Yannakakis’ algorithm, the intermediate result does not contain
more than IU tuples, where I and U are the number of tuples in the input and output, respectively.

Proof Let F be a relation name in {R1, . . . , Rn}, and let f be the relation that is the original value of F .
Note that the value (and the schema) of F changes during the execution of step (iii). It can be easily seen
that at all times, the value of F is given by πFY (F 1 F1 1 · · · 1 Fm) where

1. F1, . . . , Fm constitute the “self-or-descendant” axis of all children C of F such that C has already
been visited; and

2. Y contains all (and only) the attributes of X that are in some Fi but not in F . That is, Y ⊆ X .

To ease the notation, let T := F 1 F1 1 · · · 1 Fm. By Lemma 1, we have πFY (T ) ⊆ πF (T ) 1 πY (T ).
Since |πF (T ) 1 πY (T )| ≤ |πF (T )| × |πY (T )| is obvious, we have

|πFY (T )| ≤ |πF (T )| × |πY (T )|.

Now it suffices to show that |πF (T )| ≤ I and |πY (T )| ≤ U .

Proof that |πF (T )| ≤ I . We have that πF (T ) ⊆ f , since F is one of the relation names in the join T .
Clearly, |f | ≤ I .

Proof that |πY (T )| ≤ U . This follows from the following two observations:

1. πY (T ) = πY (R1 1 · · · 1 Rn), because we have applied a full reducer in step (i); and

2. |πY (R1 1 · · · 1 Rn)| ≤ |πX(R1 1 · · · 1 Rn)| follows from Lemma 1 and Y ⊆ X . Notice that
|πX(R1 1 · · · 1 Rn)| = U .

2

3Notice that if X ∩ E ⊈ F , this also changes the schema of F .

10



10 Exercises

Exercises taken from [?].

1. Let S = {A1A2, A2A3, . . . , An−1An}, where for i ∈ {1, 2, . . . , n − 1}, AiAi+1 is the following
relation.4

Ai Ai+1

1 2
1 4
2 1
2 3
3 2
3 4
4 1
4 3

Note that this relation contains all pairs ⟨i, j⟩ where i, j ∈ {1, 2, 3, 4} such that i and j are not both
odd and are not both even. Show that:

(a) S is α-acyclic;

(b) no tuple of any AiAi+1 is dangling with respect to S; and

(c) the join A1A2 1 A2A3 1 · · · 1 An−1An contains 2n+1 tuples.

2. Let S = {A1A2, A2A3, . . . , An−1An, AnA1}, where AiAi+1 and AnA1 are the “odd-even” relations
of the previous question. Show that:

(a) S is α-cyclic;

(b) no semijoin program can affect the input relations;

(c) any join AjAj+1 1 Aj+1Aj+2 1 · · · 1 Aℓ−1Aℓ of strictly less than n relations contains 2ℓ−j+2

tuples; and

(d) if n is odd, the join A1A2 1 A2A3 1 · · · 1 An−1An 1 AnA1 of n relations is empty.

3. Show that in step (iii) of Yannakakis’s algorithm for πX(R1 1 · · · 1 Rn), we can skip the join, with
its parent, of any relation E such that no attribute of E is in X . For example, in Fig. 7, we can skip
the join of BF with ABCD.

4. Consider the query

πAEJK(AB 1 BCD 1 DE 1 BFG 1 FHI 1 IK 1 HJ).

(a) Construct the hypergraph for the join and show that it is acyclic.

(b) Find a parse tree for the hypergraph in which BFG is the root.

(c) Construct a full reducer for this join, using the ear-reduction sequence that corresponds to your
parse tree from (4b).

(d) Give the sequence of steps performed by Yannakakis’ algorithm after the full reducer sequence
of steps from (4c).

5. Consider the conjunctive query

Answer(a, e, j, k)← R(a, b), S(b, c, d), T (d, e), U(b, f, g), V (f, h, i),W (i, k), Q(h, j).

Give an efficient algorithm to answer this query.
4Note that by abuse of notation, we confuse R and sort(R).

11



Partial Solution for Exercise 4

The numbers between parentheses indicate the order in which ears are removed, starting with 1.

BFG (7)

FHI (3)

HJ (1) IK (2)

AB (4)
BCD (6)

DE (5)

FHI := FHI ⋉HJ
FHI := FHI ⋉ IK
BFG := BFG⋉ FHI
BFG := BFG⋉AB
BCD := BCD ⋉DE
BFG := BFG⋉BCD
BCD := BCD ⋉BFG
DE := DE ⋉BCD
AB := AB ⋉BFG
FHI := FHI ⋉BFG
IK := IK ⋉ FHI
HJ := HJ ⋉ FHI

FHI := πFHIJ(FHI 1 HJ)
FHI := πFHIJK(FHI 1 IK)
BFG := πBFGJK(BFG 1 FHI)
BFG := πABFGJK(BFG 1 AB)
BCD := πBCDE(BCD 1 DE)
BFG := πAEJK(BFG 1 BCD)

12


