Relational Algebra SPJRUD

Jef Wijsen

Université de Mons (UMONS)

October 1, 2024

イロト イ押ト イヨト イヨト

 299

目

Tabular Representation

The table

is shorthand for the following set of tuples:

$$
\left\{\n\begin{array}{c}\n\{A: 1, B: 3, C: 2\}, \\
\{A: 1, B: 4, C: 1\}, \\
\{A: 2, B: 4, C: 2\}, \\
\{A: 2, B: 3, C: 1\}\n\end{array}\n\right\}
$$

.

4 **D F**

Jef Wijsen (Université de Mons (UMONS)) [SPJRUD](#page-0-0) Coronation of Detober 1, 2024 2/25

 Ω

Þ

Notation

- Every tuple is a total function from a set of attributes to the set of constants.
- Therefore, if $t = \{A : 1, B : 3, C : 2\}$, then $t(B) = 3$ and $t[\{A, C\}] = \{A : 1, C : 2\}.$
- Note that $t(B)$ is a constant, and $t[\{A, C\}]$ a tuple.
- In database theory, we often omit curly brackets $({})$ and union symbols (\cup) in the notation of sets. For example, if A, B, C, D are attributes and $X = \{A, B\}$, then XCD denotes the set $\{A, B, C, D\}$.

Algebraic Operators

- Unary operators: Select, Project, Rename
- Binary operators: Join, Union, Difference
- Unary operators take in a single relation; binary operators take in two relations.
- Every operator returns a single relation.

Select

$$
\begin{array}{c|cccc}\n & R & A & B & C \\
\hline\n1 & 3 & 2 & \\
1 & 4 & 1 & \\
2 & 4 & 2 & \\
2 & 3 & 1 & \\
\hline\n\sigma_{A=\text{``1''}}(R) & A & B & C \\
\hline\n1 & 3 & 2 & \\
1 & 4 & 1 & \\
\end{array}
$$

This is like SELECT * FROM R WHERE A="1" in SQL.

イロト イ押ト イヨト イヨト

重

Project

$$
R \begin{array}{c|cc}\n & A & B & C \\
\hline\n1 & 3 & 1 \\
1 & 3 & 2 \\
1 & 4 & 3 \\
1 & 4 & 4 \\
2 & 3 & 5\n\end{array}
$$
\n
$$
\pi_{\{A,B\}}(R) \begin{array}{c|cc}\n & A & B \\
\hline\n1 & 3 \\
1 & 4 \\
2 & 3\n\end{array}
$$

- Since relations are sets, duplicates are removed.
- Note that SELECT A, B FROM R in SQL does not remove duplicates.

э

Join

- $R \bowtie S$ contains all tuples t such that t[ABC] is in R, and t[BCD] in S.
- This is different from the cross product SELECT * FROM R, S in SQL.

Jef Wijsen (Université de Mons (UMONS)) [SPJRUD](#page-0-0) Contract de Contract de La Contract de Turchise de Mons (VI) de

Rename

$$
R \begin{array}{c|cc}\n & A & B & C \\
\hline\n1 & 3 & 2 \\
1 & 4 & 1 \\
2 & 4 & 2 \\
2 & 3 & 1\n\end{array}
$$
\n
$$
\rho_{C \rightarrow D}(R) \begin{array}{c|cc}\nA & B & D \\
\hline\n1 & 3 & 2 \\
1 & 4 & 1 \\
2 & 4 & 2 \\
2 & 3 & 1\n\end{array}
$$

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...

画

Union

$$
\begin{array}{c|cc}\nR & A & B & C \\
\hline\n1 & 3 & 5 \\
1 & 4 & 5\n\end{array}\n\qquad\n\begin{array}{c|cc}\nS & A & B & C \\
\hline\n1 & 4 & 5 \\
2 & 3 & 6\n\end{array}
$$
\n
$$
R \cup S & A & B & C \\
\hline\n1 & 3 & 5 \\
1 & 4 & 5 \\
2 & 3 & 6\n\end{array}
$$

- $R \cup S$ is only allowed if R and S have exactly the same attributes.
- In SQL, (SELECT * FROM R) UNION (SELECT * FROM S) only requires that R and S have the same number of attributes. The result takes the attributes of R.

4 0 F

Difference

$$
\begin{array}{c|cc}\nR & A & B & C \\
\hline\n1 & 3 & 5 \\
1 & 4 & 5\n\end{array}\n\quad\n\begin{array}{c|cc}\nS & A & B & C \\
\hline\n1 & 4 & 5 \\
2 & 3 & 6\n\end{array}
$$
\n
$$
R-S & A & B & C \\
\hline\n1 & 3 & 5\n\end{array}
$$

• $R - S$ is only allowed if R and S have exactly the same attributes.

• In SQL, (SELECT * FROM R) MINUS (SELECT * FROM S) only requires that R and S have the same number of attributes. The result takes the attributes of R.

Examples

Ε

 2990

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...

Qui n'a jamais bu un vin excellent ?

Soit

$$
E_1 = \rho_{Annee \mapsto Millesime}(ABUS)
$$

\n
$$
E_2 = \sigma_{Qualite = "excellent"}(VINS)
$$

\n
$$
E_3 = \pi_{\{Nom\}}(E_1 \bowtie E_2)
$$

 E_3 renvoie les personnes ayant déjà bu un vin excellent. La requête demandée est donc :

 $\pi_{\{Nom\}}(ABUS) - E_3$

イロト イ母 トイヨ トイヨ トー

Ε

 QQ

Quels crus ont varié en qualité?

Soit

$$
E_1 = \pi_{\{Cru, Qualite\}}(VINS)
$$

\n
$$
E_2 = E_1 \bowtie \rho_{Qualite \rightarrow Valeur}(E_1)
$$

 E_2 renvoie $\{Cru : c, Qualite : q, Valeur : v\}$ ssi c est un cru qui a été de qualité q et de qualité v (il est possible que $q = v$). Soit

$$
E_3 = E_2 - \sigma_{Qualite = Value}(E_2)
$$

 E_3 renvoie {Cru : c, Qualite : q, Valeur : v} ssi c est un cru qui a été de qualité q et de qualité v avec $q \neq v$. La requête demandée est donc :

$$
\pi_{\{Cru\}}(E_3)
$$

 QQQ

Qui a bu tous les crus?

Soit

$$
E_1 = \pi_{\{Nom\}}(ABUS) \bowtie \pi_{\{Cru\}}(VINS)
$$

\n
$$
E_2 = \pi_{\{Nom, Cru\}}(ABUS)
$$

\n
$$
E_3 = E_1 - E_2
$$

 E_3 renvoie {Nom : n, Cru : c} ssi c est un cru qui n'a pas été bu par la personne n. La requête demandée est donc :

$$
\pi_{\{Nom\}}(ABUS) - \pi_{\{Nom\}}(E_3)
$$

4 **D F**

э

 QQ

Alphabet

- \bullet Relation names. Each relation name R is associated with a fixed set of attributes, denoted $sort(R)$.
- **o** Constants
- \bullet Typically, R, S, T are relation names; A, B, C are attributes; a, b, c are constants.

4 **D F**

э

 QQQ

Syntax I

Relation names Every relation name is an algebra expression.

Selection If E is an algebra expression, $A \in sort(E)$, and c is a constant, then $\sigma_{A=c}(E)$ is an algebra expression with $sort(\sigma_{A=c}(E)) = sort(E).$

Selection If E is an algebra expression and $A, B \in sort(E)$, then $\sigma_{A=B}(E)$ is an algebra expression with $sort(\sigma_{A=B}(E)) = sort(E).$

Projection If E is an algebra expression and $X \subseteq sort(E)$, then $\pi_X(E)$ is an algebra expression with $sort(\pi_X(E)) = X$.

Join If E_1 and E_2 are algebra expressions, then $E_1 \bowtie E_2$ is an algebra expression with sort($E_1 \bowtie E_2$) = sort($E_1 \cup$ sort(E_2).

Rename If E is an algebra expression, $A \in sort(E)$, and B is an attribute not in sort(E), then $\rho_{A\mapsto B}(E)$ is an algebra expression with sort($\rho_{A\mapsto B}(E)$) = (sort(E) \{A}) ∪ {B}.

G.

 QQ

イロト イ押ト イヨト イヨト

Syntax II

Union If E_1 and E_2 are algebra expressions with $sort(E_1) = sort(E_2)$, then $E_1 \cup E_2$ is an algebra expression with sort($E_1 \cup E_2$) = sort(E_1).

Difference If E_1 and E_2 are algebra expressions with sort(E_1) = sort(E_2), then $E_1 - E_2$ is an algebra expression with sort $(E_1 - E_2) = \text{sort}(E_1)$.

 QQ

æ.

Semantics I

A database [instance] $\cal I$ is a total function that maps every relation name R to a relation over $sort(R)$. We denote by $R^\mathcal{I}$ the relation to which R is mapped by \mathcal{I} .

- For every *relation name R*, $\llbracket R \rrbracket^\mathcal{I} = R^\mathcal{I}.$
- $[\![\sigma_{A=c}(E)]\!]^{\mathcal{I}} = \{t \in [\![E]\!]^{\mathcal{I}} \mid t(A) = c\}.$
- $[\![\sigma_{A=B}(E)]\!]^{\mathcal{I}} = \{t \in [\![E]\!]^{\mathcal{I}} \mid t(A) = t(B)\}.$

 $[\![\pi_X(E)]\!]^{\mathcal{I}} = \{t[X] \mid t \in [\![E]\!]^{\mathcal{I}}\}.$

- Assume sort(E_1) = X and sort(E_2) = Y. Then, $\llbracket E_1 \Join E_2 \rrbracket^{\mathcal{I}} = \{t \mid t[X] \in \llbracket E_1 \rrbracket^{\mathcal{I}} \text{ and } t[Y] \in \llbracket E_2 \rrbracket^{\mathcal{I}} \}.$
- $[\![\rho_{A\mapsto B}(E)]\!]^{\mathcal{I}}$ contains every tuple that can be obtained by replacing A with *B* in some tuple of $\llbracket E \rrbracket^{\mathcal{I}}$.
- $\llbracket E_1 \cup E_2 \rrbracket^{\mathcal{I}} = \llbracket E_1 \rrbracket^{\mathcal{I}} \cup \llbracket E_2 \rrbracket^{\mathcal{I}},$ where \cup is the standard union of sets. $[[E_1 - E_2]]^{\mathcal{I}} = [[E_1]]^{\mathcal{I}} \setminus [[E_2]]^{\mathcal{I}}.$

KOD KAP KED KED E VAA

Syntax Tree for "Qui a bu tous les crus?"

э

Graphical Interpretation

- \bullet The syntax defines which trees are correct.
- The leaf nodes of the tree are always labeled with relation names.
- \bullet The semantics essentially tells us that a tree can be evaluated bottom-up once relations (i.e., finite sets of tuples) have been associated with the leaf nodes.

Equivalence

Two algebra expressions E_1 and E_2 are said to be equivalent, denoted $E_1 \equiv E_2$, if for every database \mathcal{I} , we have $[\![E_1]\!]^{\mathcal{I}} = [\![E_2]\!]^{\mathcal{I}}$.

Example 1

$$
\pi_{\{Cru\}}(\sigma_{Qualite} = "excellent" (VINS))
$$

$$
\equiv
$$

$$
\pi_{\{Cru\}}(\sigma_{Qualite} = "excellent" (\pi_{\{Cru, Qualite\}}(VINS)))
$$

Example 2

Let R and S be two relation names such that $A \in sort(R) = sort(S)$. $\pi_{\{A\}}(\sigma_{\mathcal{A} = \text{``}7\text{''}}(R \cup \mathcal{S})) \equiv (\sigma_{\mathcal{A} = \text{``}7\text{''}}(\pi_{\{A\}}(R))) \cup (\sigma_{\mathcal{A} = \text{``}7\text{''}}(\pi_{\{A\}}(\mathcal{S})))$

Theorem (Trakhtenbrot 1950)

There exists no algorithm for the following problem:

 $INPUT: Two expressions E₁, E₂ in SPJRUD.$

QUESTION: Are E_1 and E_2 equivalent?

Jef Wijsen (Universit´e de Mons (UMONS)) [SPJRUD](#page-0-0) October 1, 2024 21 / 25

Boris Trakhtenbrot (1921–2016)

É

 299

An Algorithm for Testing $E_1 \equiv E_2$?

Assume that $C = \{c_1, \ldots, c_n\}$ are all constants occurring in E_1 or E_2 , in selections of the form $\sigma_{A=\text{``}c_{i}\text{''}}(\cdot)$. Assume w.l.o.g. that no c_i is a natural number.

for $j = 0, 1, 2, 3, \ldots$ do

for each database $\mathcal I$ that uses only constants in $\{1, 2, \ldots, j\} \cup \mathcal C$ (and uses only relation names occurring in E_1 or E_2) do if $\llbracket E_1 \rrbracket^{\mathcal{I}} \neq \llbracket E_2 \rrbracket^{\mathcal{I}},$
then return \mathcal{I} and then return I and halt

Claim:

- If $E_1 \not\equiv E_2$, then this piece of code will halt in finitely many steps and return a database on which E_1 and E_2 disagree.
- If $E_1 \equiv E_2$, then the code will run forever without halting.

It is crucial here that, by definition, databases are finite.

KED KARD KED KED E VOOR

Two Important Sub-languages of SPJRUD

SPJR Conjunctive queries SPJRU Unions of conjunctive queries

Theorem There exists an algorithm for the following problem: $INPUT: Two expressions E₁, E₂ in SPJRU.$ QUESTION: Are E_1 and E_2 equivalent?

Take-home message: "Less can be more beautiful."

Discussion

- Can we express all "interesting" queries in SPJRUD, or should we add more operators?
- Why don't we have intersection? Why don't we have $\sigma_{A\neq B}R$?
- Show the following: if we leave out one of the 6 operators, then we can express strictly less queries.

Hint: For union, consider two relations $\begin{array}{c|c} R & A & S & A \ \hline 1 & \end{array}$ and $\begin{array}{c|c} S & A \ \hline 0 \end{array}$. Show that if E is an A

algebraic expression that does not contain ∪, then E will not return

input R and S (and therefore, E does not express $R \cup S$).

0 1 on