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Serializable schedules

Correct and incorrect interleavings
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Recall ACID

• A transaction transforms a consistent database 
state into a new consistent database state (C of 
ACID).

• In general, a transaction will execute multiple 
writes; the database will generally be inconsistent 
in between two such writes.

• However, such inconsistent intermediate states 
should be hidden to other concurrent transactions 
(I of ACID).

• The overall effect should be as if each trx had 
executed in its entirety at a single time instant.  
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Two Trx (1)

T

READ(A,v)

READ(B,w)

v:=v+w

WRITE(A,v)

WRITE(B,0)

U

READ(B,u)

u:=2*u

WRITE(B,u)
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Two Trx (2)

• Think of A and B as number of Euros owned by 
An and Bob respectively. 
Assume initially A=a and B=b (a,b  0).

• Trx T gives Bob’s money to An. 
Trx U doubles Bob’s wealth.

• Executing both trx once should yield either

o A=a+b, B=0 (T followed by U, denoted [T,U]), or

o A=a+2b, B=0 (U followed by T, denoted [U,T]).

Either state is consistent!



Postacademic Interuniversity Course in Information Technology – Module D2 p8

Interleaving I: Incorrect
T U u v w A B

READ(B,u) b a b

u:=2*u 2b a b

READ(A,v) 2b a a b

READ(B,w) 2b a b a b

v:=v+w 2b a+b b a b

WRITE(A,v) 2b a+b b a+b b

WRITE(B,0) 2b a+b b a+b 0

WRITE(B,u) 2b a+b b a+b 2b

Result generally inconsistent (consistent if b=0)

The problem is that T and U

concurrently update the 

same old value B=b. 
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Interleaving II: Same Effect as [U,T]

(and hence correct)

T U u v w A B

READ(B,u) b a b

READ(A,v) b a a b

u:=2*u 2b a a b

WRITE(B,u) 2b a a 2b

READ(B,w) 2b a 2b a 2b

v:=v+w 2b a+2b 2b a 2b

WRITE(A,v) 2b a+2b 2b a+2b 2b

WRITE(B,0) 2b a+2b 2b a+2b 0

Result consistent: same effect as [U,T]

T reads the new 

value B=2b 

written  by U. 
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Interleaving III: Correct by Coincidence

T U u v w A B

READ(B,u) b a b

u:=2*u 2b a b

READ(A,v) 2b a a b

READ(B,w) 2b a b a b

v:=v+w 2b a+b b a b

WRITE(A,v) 2b a+b b a+b b

WRITE(B,u) 2b a+b b a+b 2b

WRITE(B,0) 2b a+b b a+b 0

Result consistent by coincidence

Note that T and U

concurrently update the 

same old value B=b. 

…
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Arithmetic Coincidence

• The arithmetic coincidence in ‘Interleaving III’ is that 

0=2*0. That is, we can always interprete B=0 as having 

Bob’s wealth doubled after executing T.

• The coincidence would not occur if we had, for example,  

‘u:=2+u’ instead of ‘u:=2*u’ in U. 

 Interleaving III would still yield A=a+b, B=0, but the only 

consistent outcomes would be:

o A=a+b, B=2 (T followed by U, denoted [T,U]), or

o A=a+b+2, B=0 (U followed by T, denoted [U,T]).

• Note that ‘Interleaving II,’ being equivalent to [U,T], 

would necessarily yield A=a+b+2, B=0.
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Aim of Concurrency Control

• Characterize correct interleavings.

• Since recognizing arithmetic coincidences is 

generally impossible, we focus on interleavings 

whose correctness relies solely on the ordering of 

READ and WRITE operations.

• Next, we investigate how correctness of 

interleavings can be ensured in an operational 

system.
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Serializable schedules

Serial and serializable schedules 
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Shedules (1)

• We usually name our trx T1, T2, T3,…
In particular, let the example trx T and U be 
denoted by T1 and T2 in what follows. 

• If we accept that only READ and WRITE 
operations matter,  T1 (formerly T) can be 
expressed as ‘R1(A)R1(B)W1(A)W1(B)’ and T2 

(formerly U) as ‘R2(B)W2(B)’, where R and W 
indicate reads and writes resp.

• Interleaving II is expressed as: 
‘R2(B)R1(A)W2(B)R1(B)W1(A)W1(B)’.

• Such interleaving is called a schedule.
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Schedules (2)

• So a schedule of trx T1,T2,…,Tn is a sequence S of 
the actions occurring in T1,T2,…,Tn such that the 
actions of each Ti appear in S in the same order 
that they appear in Ti (1i  n). 

• Actions of trx Ti are either Ri(.) or Wi(.).

• A schedule is serial if no two actions of the same 
trx are separated by an action of a different trx.

• Examples of serial schedules are: 

– ‘R1(A)R1(B)W1(A)W1(B)R2(B)W2(B)’ abbreviated as 
[T1,T2].

– ‘R2(B)W2(B)R1(A)R1(B)W1(A)W1(B)’ abbreviated as 
[T2,T1]. 
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Why Must Interleaving II Be Correct?

• Since we accept consistency of trx (C of ACID), 

we must also accept that serial schedules are 

correct.

• Now recall Interleaving II:

‘R2(B) R1(A)W2(B) R1(B)W1(A)W1(B)’

 This is almost the serial schedule:

‘R2(B) W2(B)R1(A) R1(B)W1(A)W1(B)’ 

• Interleaving II is equal to the serial schedule up to 

a swapping of R1(A) and W2(B).

• Would such swap change the effect on the database?
Evidently the answer is ‘no.’
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Conflicting Actions 
• We say that two actions A and B of different trx conflict if the 

effect of AB can possibly be different from BA. 

• Clearly, if A and B read or write different database elements, 
then they do not conflict. That is, 
 if A is Ri(X) or Wi(X),  
  B is Rk(Y) or Wk(Y), 
  XY, and ik, 
 then A and B do not conflict.

• Two reads, even of the same element, never conflict.

• On the other hand (assuming ik),

o Ri(X) and Wk(X) conflict, for the value read by trx Ti is 
likely to differ in Ri(X)Wk(X) and Wk(X)Ri(X).

o Wi(X) and Wk(X) conflict, for the final value written is 
likely to differ in Wi(X)Wk(X) and Wk(X)Wi(X).
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Serializable Schedule

• A schedule is serializable if it can be turned into a 
serial schedule by repeatedly swapping neighboring 
non-conflicting actions of different trx.

• Never swap actions of the same trx!

• Since we accept that serial schedules are correct, we 
must also accept that serializable schedules are 
correct.

• Our approach to concurrency will be to require that 
schedules be serializable.

• Obviously, serial schedules are serializable.

• Note: the above notion is also called conflict-
serializable in the literature.
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Serializable schedules

Testing serializability



Postacademic Interuniversity Course in Information Technology – Module D2 p20

The ‘Game’ of Serializing

R1(A) W1(A) R2(A) W2(A) R1(B) W1(B) R2(B) W2(B)

R1(A) W1(A) R2(A) R1(B) W2(A) W1(B) R2(B) W2(B)

R1(A) W1(A) R1(B) R2(A) W2(A) W1(B) R2(B) W2(B)

R1(A) W1(A) R1(B) R2(A) W1(B) W2(A) R2(B) W2(B)

R1(A) W1(A) R1(B) W1(B) R2(A) W2(A) R2(B) W2(B)

Serial schedule with the same effect

Initial schedule
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Testing Serializability: Intuition

• Can we efficiently decide whether the ‘game’ can 
possibly reach a serial schedule?

• We can easily see that the schedule
…R1(A)…W2(A)…W1(A) … 
is not serializable.

• Since W2(A) and W1(A) conflict, we cannot attain a 
serial schedule where T1 precedes T2. We write T2T1 

to denote that T2 must precede T1.

• Likewise, since R1(A) and W2(A) conflict, we have 
T1T2 .

• Since T2T1 and T1T2 are contradictory, we conclude 
that the schedule is not serializable.
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Testing Serializability: Algorithm

• Let a schedule S be given.

• Construct a precedence graph as follows:

• Introduce a node labeled Ti for every trx Ti in S.

• Introduce an edge from node Ti to node Tk with 
ik if some action A of Ti is followed in S by some 
conflicting action B of Tk. 

• Note that A and B must not be adjacent in S.
An edge from Ti to node Tk agrees with Ti  Tk.

• S is serializable iff its precedence graph is acyclic.
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Testing Serializability: Example 1

R4(C)W3(A)R1(A)W1(C)R2(B)W3(B)

T1

T4

T3 T2
Acyclic, hence serializable.

Moreover, the graph tells us 

that we can serialize into any 

one of: T2T3T4T1

T2T4T3T1

T4T2T3T1
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Testing Serializability: Example 2

R4(C)W3(A)R1(A)W1(C)W1(D)R2(D)R2(B)W3(B)

T1

T4

T3 T2

Cyclic, hence not serializable.
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The Price to Pay for ‘Simplicity’…

• By requiring serializability, we refuse some 

correct schedules…

• The schedule W1(A)W2(A)W1(A) is non-

serializable because it is non-serial and all 

neighboring actions conflict. So it will be out of 

our scope.

• Nevertheless, as T1 overwrites the value written by 

T2 without ever reading it, the effect is that of 

W2(A)W1(A)W1(A).
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TOC Concurrency Control
• Serializable schedules
• Two-Phase Locking (2PL)

– The three rules of the protocol
– Correctness proof
– The locking scheduler
– Multiple-granularity locking
– Deadlock
– Strict 2PL

• Concurrency control by timestamps
• Isolation levels in SQL2
• Exercises
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Two-Phase Locking (2PL)

The three rules of the protocol
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Ensuring Serializability

• The following approach is impractical/unfeasible:

Execute trx in an unconstrained manner, 
periodically test for serializability, and break 
cycles by undoing trx…

• Unfeasible, because committed trx cannot be 
undone (remember D of ACID).

• Rather we will impose a protocol, called Two-
Phase Locking (2PL), that guarantees that a 
schedule will be serializable. 
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Shared and Exclusive Locks

• A shared lock (S-lock) on a db element Y is 

a permission to read Y.

• An exclusive lock (X-lock) on Y is a 

permission to read or write Y.

• Operations:

Si(Y) Ti asks an S-lock on Y.

Xi(Y) Ti asks an X-lock on Y.

Ui(Y) Ti releases any lock it currently 

holds on Y (Unlock).



Postacademic Interuniversity Course in Information Technology – Module D2 p30

The Protocol 2PL (1)

• Rule L1: A trx must not read Y without 
holding an S-lock or an X-lock on Y. A trx 
must not write Y without holding an X-lock 
on Y. More precisely, 

o A read action Ri(Y) must be preceded by Si(Y) or 
Xi(Y), with no intervening Ui(Y). 

o A write action Wi(Y) must be preceded by Xi(Y), with 
no intervening Ui(Y). 

o All lock requests must be followed by an unlock of the 
same element.

• Rule L2: In every trx, all lock requests must 

precede all unlock requests.



Postacademic Interuniversity Course in Information Technology – Module D2 p31

Example of Rules L1 and L2

• R1(A)W1(B) could be extended as:
 S1(A)X1(B)R1(A)W1(B)U1(A)U1(B), 

 or as:
 S1(A)R1(A)X1(B)U1(A)W1(B)U1(B).

• On the other hand,
 S1(A)R1(A)U1(A)X1(B)W1(B)U1(B)
violates rule L2 as the unlock request U1(A) 
precedes the lock request X1(B).
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What’s in a Name?

4

3

2

1

0
time

number of locks

first unlock
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The Protocol 2PL (2)

• Rule L3: Two trx cannot simultaneously  

hold a lock for conflicting actions. That is, 

• Schedules obeying all three rules are called 

2PL-schedules.

o Si(Y) and a following Xk(Y) with ik must be 

separated by an intervening Ui(Y). 

o Xi(Y) and a following Sk(Y) or Xk(Y) with ik 

must be separated by an intervening Ui(Y). 
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2PL Summary

• Rule L1: 

– A shared or exclusive lock is needed for reading.

– An exclusive lock is needed for writing.

– All requested locks need to be released later on.

• Rule L2: Once you have released a lock, you are 
not allowed to ask any further lock later on.

• Rule L3: If some trx holds an exclusive lock on a 
db element, then no other trx can hold a shared or 
exclusive lock on that same element.
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Example 2PL-Schedule

Turn R1(A)W2(A)R1(B) into a 2PL-schedule by 
adding lock and unlock requests, while 
preserving the order of reads and writes.

S1(A)R1(A)S1(B)U1(A)X2(A)W2(A)U2(A)R1(B)U1(B) 

T1 holds S-lock on A T2 holds X-lock on A

T1 holds S-lock on B

first unlock of T1



Postacademic Interuniversity Course in Information Technology – Module D2 p36

Compatibility Matrix

The order of lock/unlock requests implied by 

rule L3 can be summarized in a compatibility 

matrix: 
Locks requested by 

some trx T

S X

Locks held by some 

different trx U
S Yes No

X No No
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Lock Upgrade

• 2PL does not prevent a trx Ti from asking 
Xi(Y) while holding an S-lock on Y.
Such Xi(Y) request is called a lock upgrade.

• For example, R1(A)W1(A) can be turned into
 X1(A)R1(A)W1(A)U1(A), 

 but also into
 S1(A)R1(A)X1(A)W1(A)U1(A).
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Two-Phase Locking (2PL)

Correctness proof
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2PL Ensures Serializability

• Lemma. If an action of Ti is followed by a 

conflicting action of Tk (ik) in a 2PL-schedule, 

then the first unlock of Ti precedes the first unlock 

of Tk. 

• Theorem. Each 2PL-schedule can be serialized 

into a serial schedule where the trx appear in the 

order that they issue their first unlock.

• Corollary. Each 2PL-schedule is serializable.
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Proof of Lemma (Sketch)

• Proof for write-only trx; generalization is easy.

• Assume Wi(A) is followed by Wk(A) in a 2PL-
schedule. 

• By rule L1, Wi(A) must be preceded by Xi(A), and 
Wk(A) must be preceded by Xk(A).

• By rule L3, Xi(A) and Xk(A) must be separated by 
Ui(A), i.e., the schedule contains Ui(A)… Xk(A).

• No unlock of Tk can precede Ui(A), or else Tk 
would violate rule L2.

• Hence, the first first unlock of Ti precedes the first 
unlock of Tk. 
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Proof of Theorem (Sketch)

• For a schedule S with two write-only trx T1 and 
T2.

• Assume without loss of generality that the first 
unlock of T1 precedes the first unlock of T2. We 
need to show that S can be serialized into [T1,T2 ].

• S cannot contain W2(Y)…W1(Y), or else, by the 
preceding lemma, the first unlock of T2 precedes 
the first unlock of  T1, a contradiction. 

• It follows that S can be serialized into [T1,T2].
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The Price to Pay For ‘Simplicity’…

W1(A)R2(A)R3(B)W1(B)

The precedence graph is acyclic, 

so the schedule is serializable.

Can it be turned into a 2PL-schedule?

T1

T2

T3

• By rules L1 and L3, T1 must issue U1(A) prior to R2(A).

• Because of R3(B)W1(B), the first (and only) unlock U3(B) 

of T3 must precede the first unlock of T1 (cf. lemma).

• It follows that U3(B) must precede R2(A).

• But then T2 cannot satisfy rules L1 and L2…

• To conclude, in 2PL, the reads and writes cannot occur in 

exactly the order shown.  
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Two-Phase Locking (2PL)

The locking scheduler
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Locking Scheduler

• Rules L1 and L2 are the responsibility of the trx in 

general (cf. discussion later).

• Enforcing rule L3 is the responsibility of a 

DBMS module, called the locking scheduler.

• If a lock request by trx T is incompatible with a 

lock currently held by some other trx U, then T 

will be suspended and cannot be resumed before U 

has released its lock.
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Lock Table

• The lock manager stores housekeeping 

information in a lock table. 

• For example,

db element locks held wait queue

A {S1,S2} X4,X5

B {X3} S1

T1 and T2 hold

a shared lock an A

T4 and T5 are waiting for 

an exclusive lock on A
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Handling S1(A) Request

A {} 

A {S2,S3,…} 

A {S1} 

A {S1,S2,S3,…} 

A {S2,S3,…} X4

A {S2,S3,…} X4,S1

A {S1,S2,S3,…} X4

First-Come-First-Served

prevents starvation

A {X2} S3,X4

???

A {X2} S3,X4,S1
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Handling X1(A) Request

A {} 

A {S2,S3,…} 

A {X1} 

A {S2,S3,…} X1

A {S2,S3,…} X4 A {S2,S3,…} X4,X1

A {X2} S3,X4 A {X2} S3,X4,X1

A {X2}  A {X2} X1
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Handling Lock Upgrade X1(A)

A {S1} 

A {S1,S2,…} 

A {X1} 

A {S1,S2,…} X1

A {S1,S2,…} X4

A {S1,S2,…} X1,X4

A {S1,S2,…} X4 ,X1

Priority to Lock Upgrades

prevents a deadlock

???

T4 cannot continue before 

T1 issues U1(A). However, 

T1 is itself suspended. 
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Handling U1(A)

• Remove any lock held by T1 on A.

• Grant outstanding lock requests if possible.

A {X1}  S2,S3,X4,S5 A {S2,S3} X4,S5
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Effect of Lock Scheduling

• Consider again W1(A)R2(A)R3(B)W1(B).

• With locks/unlocks added as required by 2PL, 
the execution order up-front R3(B) may be
  X1(A)W1(A)X1(B)U1(A)S2(A)R2(A)U2(A). 

• This results in the lock table entry:

• When T3 now asks S3(B), which is required 

in front of  R3(B), T3 is suspended:

• T1 continues with W1(B)U1(B):

B {X1} 

B {X1} S3

B {S3} 

• T3 ends with R3(B)U3(B).

• Note that has W1(B) has been executed prior to R3(B). 
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Two-Phase Locking (2PL)

Multiple-granularity locking
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Multiple-Granularity Locking
WEALTH

NAME SUM

An 2

Bob 1

… …

T1: SELECT * 

 FROM WEALTH

T2: SELECT * 

 FROM WEALTH

 WHERE NAME=‘Bob’

T3: UPDATE WEALTH 

 SET SUM=SUM+1

 WHERE NAME=‘An’

• T1 needs an S-lock on Wealth, T2 an S-lock on Bob’s 

tuple, and T3 an X-lock on An’s tuple.

• If tuples are the only unit of locking, then T1 needs to 

lock each individual tuple, causing much overhead.

• On the other hand, if relations are the only unit of 

locking, then T3 requires an X-lock on Wealth, 

prohibiting concurrent access.

• Solution: allow locks at both the relation and tuple level.
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Warning Locks

• S1(Wealth) can be accepted only if no tuple of 
Wealth is X-locked by any other trx.

• How can we efficiently decide whether no tuple of 
a relation is X-locked?

• The idea is to require that no trx can hold an X-
lock on a tuple unless it holds an IX-lock 
(intension exclusive) on the relation that contains 
the tuple. 

• Intuitively, the IX-lock on the relation ‘warns’ 
about the existence of an X-lock on a tuple.  

• S1(Wealth) is incompatble with an IX-lock on 
Wealth.
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Warning Protocol (1)

• You may not X-lock a tuple without holding an 
IX-lock on the relation containing that tuple.

• You may not S-lock a tuple without holding an 
IS-lock or an IX-lock on the relation containing 
that tuple.

• Operations: IXi(Relation) and ISi(Relation).

• Used with 2PL in order to ensure serializability.

• E.g., W=Wealth, A=An’s tuple, B=Bob’s tuple:

– T1=S1(W) read tuples of W U1(W)

– T2=IS2(W)S2(B) R2(B) U2(B)U2(W)

– T3=IX3(W)X3(A) W3(A) U3(A)U3(W)
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Warning Protocol (2)

• Compatibility matrix at relation level:

IS IX S X

IS

IX

S

X

held
asked

• The foregoing can be easily extended to 
hierarchies with more than two levels.

Yes No

No No

YesYes

YesYes

NoNo

No

No

No

No

Yes

Yes

Yes No

No No

YesYes

YesYes

NoNo

No

No

No

No

Yes

Yes
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Phantom Problem
S(WEALTH);

 SELECT *

 FROM WEALTH;

 SELECT *

 FROM WEALTH;

U(WEALTH);

INSERT INTO WEALTH

 VALUES(‘Ed’, 5);

• Phantom problem: the second read 

of the same relation gets more tuples.

• The schedule is definitely not 

equivalent to a serial one.

• Solution: you are not allowed to 

insert a tuple in a relation without 

holding an X-lock on the relation.

• It seems that it 

needs no locks.

• The right-hand trx inserts 

a so-called ‘phantom 

record.’
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Two-Phase Locking (2PL)

Deadlock
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Deadlock
• Concurrent execution of 

T1=S1(A)R1(A)X1(B)W1(B)U1(A)U1(B) and 

T2=S2(B)R2(B)X2(A)W2(A)U2(B)U2(A) can start 

as S1(A)R1(A)S2(B)R2(B)X2(A) resulting in:

A {S1} X2

B {S2} 

A {S1} X2

B {S2} X1

• Both T1 and T2 are suspended in a so-called deadlock.

• T2 is suspended and T1 continues with X1(B):
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Wait-For Graph

• Add a node labeled Ti for every trx Ti that holds a 
lock or is waiting for one.

• We say that Ti waits for Tk if Ti waits for a lock held 
by Tk or Ti follows behind  Tk in some wait queue. 

• Add an edge from node Ti to node Tk if Ti waits for 
Tk .

• There is a deadlock iff the wait-for graph is cyclic.

• For example,
A {S1} X2

B {S2} X1

T1

T2
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Four Ways to Resolve Deadlocks 

1. By timeout: Put a limit on how long a trx may be 

active, and if a trx exceeds this time, roll it back.

2. Maintain the wait-for graph at all times, and roll 

back any trx that makes a request that would 

cause a cycle.

3. Compute the wait-for graph periodically, and 

break cycles (if any) by rolling back trx.

4. Deadlock prevention by timestamps (cf. next).
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Deadlock Prevention by Timestamps

• We associate with each trx a timestamp. 

• We say that T is older than U (and U is younger 
than T) if the timestamp of T is smaller than U’s 
timestamp.

• Wait-Die Scheme. If a younger trx makes a 
request that would cause it to wait for an older trx, 
then the younger trx is rolled back.

• Wound-Wait Scheme. If an older trx makes a 
request that would cause it to wait for a younger 
trx, then the younger trx is rolled back.
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Wait-Die Example
• Assume that T2 is younger than T1.

In general, assume that the timestamp of Ti is i.

• Concurrent execution of 

T1=S1(A)R1(A)X1(B)W1(B)U1(A)U1(B) and 

T2=S2(B)R2(B)X2(A)W2(A)U2(B)U2(A) can start as 

S1(A)R1(A)S2(B)R2(B)X1(B) resulting in: A {S1} 

B {S2} X1

A {S1} X2

B {S2} X1

• T1 is suspended and T2 continues with X2(A).

A {S1} 

B {X1} 

roll back T2

?
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Wound-Wait Example

• Assume that T1 is older than T2.

• Concurrent execution of 

T1=S1(A)R1(A)X1(B)W1(B)U1(A)U1(B) and 

T2=S2(B)R2(B)X2(A)W2(A)U2(B)U2(A) can start as 

S1(A)R1(A)S2(B)R2(B)X2(A) resulting in: A {S1} X2

B {S2} 

A {S1} X2

B {S2} X1

• T2 is suspended and T1 continues with X1(B).

A {S1} 

B {X1} 

roll back T2

?
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Why Wait-Die Works

• In Wait-Die, trx can only wait for younger trx.

• Suppose the wait-for graph contains a cycle.

• One of the trx involved in the cycle is the 
youngest, say T.

• In the cycle, there must be an edge from T to some 
other trx, say U.

• But then U is younger than T, a contradiction.

• We conclude by contradiction that no cycle can 
exist.
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Why Wound-Wait Works

• In Wound-Wait, trx can only wait for older trx.

• Suppose the wait-for graph contains a cycle.

• One of the trx involved in the cycle is the oldest, 
say T.

• In the cycle, there must be an edge from T to some 
other trx, say U.

• But then U is older than T, a contradiction.

• We conclude by contradiction that no cycle can 
exist.
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No Starvation

• In both Wait-Die and Wound-Wait, it is 
always the younger trx that is rolled back.

• Trx that are rolled back, restart with their 
old timestamp, so that every trx is 
guaranteed to eventually complete.

• Note incidentally that Wait-Die never rolls 
back a trx that has acquired all the locks it 
needs.
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Two-Phase Locking (2PL)

Strict 2PL
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Dirty-Read Problem

• Dirty-Data: Data is called dirty if it has been written 
by a trx that is not yet committed.

• Dirty-Read: A read by trx T is dirty if it reads dirty 
data written by another trx.

• Dirty-Read problem:

1. U writes a new value for Y

2. T reads U’s value for Y (a dirty read)

3. T finishes and commits

4. U is aborted (e.g., for deadlock reasons)

• Since the effect of T is based on a value of Y that 
never really existed, the overall effect will generally 
not be equivalent to any serial schedule.
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Strict Locking

• The solution of the dirty-read problem:

Conceal dirty-data from other trx. 

• Rule L4: A trx must not release any X-locks 

until the trx has committed or aborted.

 Strict 2PL = 2PL + rule L4
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Strict 2PL

• Strict 2PL is not deadlock free.

• Locking and unlocking can be transparant 

to programmers:

1. the locking scheduler can insert lock actions 

into the stream of reads and writes;

2. the scheduler releases locks only after the trx 

is committed or aborted.  
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TOC Concurrency Control

• Serializable schedules

• Two-Phase Locking (2PL)

• Concurrency control by timestamps
– Basic idea

– Thomas Write Rule

• Isolation levels in SQL2

• Exercises
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Concurrency control by 

timestamps

Basic idea
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Concurrency Control by Timestamps

• Assign to each trx T a unique timestamp, denoted 
TS(T), indicating the start time of T.

• Not the same timestamp as the one used for 
deadlock prevention.

• Timestamp-based scheduling will limit schedules 
to those  that can be serialized into the serial 
schedule in which trx appear in ascending TS 
order.

• That is, if TS(T1) < TS(T2) < … < TS(Tn), then the 
schedule can be serialized into the serial schedule 
[T1,T2 , …,Tn]. 
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Read and Write Time

• The idea is to abort trx issuing reads or writes that 
would result in a schedule that cannot be serialized 
into a serial schedule where trx appear in TS order.

o RT(Y), the read time of Y, which is the 
highest timestamp of a trx that has read Y.

o WT(Y), the write time of Y, which is the 
highest timestamp of a trx that has written Y.

• Associate two timestamps with 

each database element Y:



Postacademic Interuniversity Course in Information Technology – Module D2 p75

Handling Read Requests

Suppose trx T issues RT(Y). Two cases can occur:

• TS(T) < WT(Y). That is, some trx (say U) with 
TS(T)<TS(U) has already written Y (and set the 
value of WT(Y)). 

We cannot accept the read, or else the schedule 
produced would be …WU(Y)…RT(Y) which 
cannot be serialized into our intended serial 
schedule where T precedes U.

Intuitively, the read comes too late…

• TS(T)  WT(Y) causes no problem.
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Handling Write Requests

• TS(T) < RT(Y), i.e., some trx (say U) with TS(T)<TS(U) 
has already read Y (and set the value of RT(Y)). 

We cannot accept the write, or else the schedule produced 
would be …RU(Y)…WT(Y) which cannot be serialized into 
our intended serial schedule where T precedes U.

• TS(T) < WT(Y), i.e., some trx (say U) with TS(T)<TS(U) 
has already written Y (and set the value of WT(Y)). 

We cannot accept the write, or else the schedule produced 
would be …WU(Y)…WT(Y) which cannot be serialized into 
our intended serial schedule where T precedes U.

• TS(T)  RT(Y) AND TS(T)  WT(Y) causes no problem.

Suppose T issues WT(Y).
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Overview

• Trx T wants to read Y:
if  TS(T)  WT(Y) 
then execute the read 
 RT(Y) := max(RT(Y),TS(T))
else abort T;

• Trx T want to write Y:
if TS(T)  WT(Y) AND TS(T)  RT(Y) 
then execute the write
 WT(Y) :=TS(T)
else abort T;
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Concurrency Control by Timestamps

Example
T1 T2 T3 A B C

20 15 17 RT=0 RT=0 RT=0

WT=0 WT=0 WT=0

R1(B) RT=20

R2(A) RT=15

R3(C) RT=17

W1(B) WT=20

W1(A) WT=20

W2(C)

Abort

W3(A)

Abort
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Concurrency control by 

timestamps

Thomas Write Rule
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Thomas Write Rule (1)

• Suppose T wants to write Y but TS(T) < WT(Y), i.e., some 

trx (say U) with TS(T)TS(U) has already written Y. 

Accepting the write would produce …WU(Y)…WT(Y) 

which cannot be serialized into a serial schedule where T 

precedes U.

• Can’t we -- instead of aborting T -- simply skip WT(Y), 

pretending (i) that WT(Y) occurred ahead of WU(Y) in the 

right order, and (ii) that T’s value for Y was overwritten by 

U later on?

WU(Y)…WT(Y)
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Thomas Write Rule (2)
• Pretense is possible unless a trx V that should have read 

T’s value for Y got another value instead. In fact, suppose 

TS(T)<TS(V)<TS(U) and

RV(Y)…WU(Y)…WT(Y)

• We cannot simply pretend that WT(Y) occurred before 

RV(Y), because V did see another value for Y!

• Then, since V has read Y, the read time of Y must be at 

least TS(V). From TS(V)RT(Y) and TS(T)<TS(V), it 

follows TS(T)<RT(Y).

• If we require TS(T)RT(Y), then there can be no such V 

and we can safely pretend that the write of T occurred in 

order. 

 Intuitively, TS(T)RT(Y) expresses that no read has 

‘missed’ the value of the write that comes too late.
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Overview With Thomas Write Rule

• Trx T want to write Y:

if TS(T)  RT(Y)

then if TS(T)  WT(Y) 

 then execute the write

   WT(Y) := TS(T)

 else ignore the write (Thomas)

else abort T;
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Thomas Write Rule

Example
T1 T2 T3 A B C

20 15 17 RT=0 RT=0 RT=0

WT=0 WT=0 WT=0

R1(B) RT=20

R2(A) RT=15

R3(C) RT=17

W1(B) WT=20

W1(A) WT=20

W2(C)

Abort

W3(A)

Ignored
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Preventing Dirty-Reads

• The above timestamp-based scheduling decisions 

need to be extended by a mechanism to solve the 

dirty-read problem, i.e., to prevent a trx from 

reading data written by a concurrent uncommitted 

trx.

• The solution consists in suspending a trx that 

wants to read a dirty database element until the trx 

that has written the element has committed or 

aborted. 



Postacademic Interuniversity Course in Information Technology – Module D2 p85

Restart

• Aborted trx may be restarted later on.

• If they restart with the same timestamp, 

then they will be aborted again.

• So aborted trx need to get a new timestamp 

when they are restarted.

• This is unlike the timestamps used in Wait-

Die or Wound-Wait.
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TOC Concurrency Control

• Serializable schedules

• Two-Phase Locking (2PL)

• Concurrency control by timestamps

• Isolation levels in SQL2

• Exercises
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Transaction Support in SQL2

• The SQL2 standard does not assume that every trx 
runs in a serializable manner.

• The user can set an isolation level for each trx.

• Isolation levels are characterized in terms of Dirty-
Read, Non-repeatable Read, and Phantom Read.

• Recall Dirty-Read:

1. T1 modifies db element Y;

2. T2 reads Y before T2 is commited or aborted;

3. If T2 is rolled back, T1 has read a value for Y that was 
never committed and so never really existed.
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Non-repeatable Read

• Non-repeatable Read: 

1. T1 reads a db element Y.

2. T2 writes a new value for Y, or deletes Y, and 
commits.

3. T1 reads Y again and discovers that it has been 
modified or deleted.

 This series of events is non-serializable and 
impossible in 2PL -- assuming that you cannot 
delete a db element without holding an X-lock on 
it.
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Phantom Read

• Recall Phantom Read: 

1. T1 reads a set of database elements specified by a 

SELECT-query.

2. T2 inserts new db elements and commits.

3. T1 gets a different result for the same query.

• Note that Phantom generalizes Non-repeatable 

Read to sets of db elements.

• Phantom Reads may occur in a system that 

prevents Non-repeatable Reads.
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Isolation Levels in SQL

• Four isolation levels can be set by the SET 

TRANSACTION command.

Dirty Read Non-repeatable 

Read

Phantom 

Read

READ UNCOMMITED possible possible possible

READ COMMITTED impossible possible possible

REPEATABLE READ impossible impossible possible

SERIALIZABLE impossible impossible impossible

Level
Phenomenon
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TOC Concurrency Control

• Serializable schedules

• Two-Phase Locking (2PL)

• Concurrency control by timestamps

• Isolation levels in SQL2

• Exercises
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Exercise 1
• Given the schedule 

S=R1(C)R1(A)W2(B)R2(A)W1(D)W2(C)W1(A), 
determine whether 2PL allows the reads and writes 
to occur in exactly the order shown.

 Answer:

• Since R1(C) precedes W2(C), the precedence graph 
contains an edge from T1 to T2.

• Since R2(A) precedes W1(A), the precedence graph 
contains an edge from T2 to T1.

• Since the precedence graph contains a cycle, the 
schedule is not serializable, and hence impossible 
in 2PL. 
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Exercise 2
• Given the schedule 

S=W1(A)R2(A)W1(B)W3(A)W2(B), 

determine whether 2PL allows the reads and writes 

to occur in exactly the order shown.

 Answer:

• The precedence graph is: T1 T2

T3

• The schedule is serializable. But recall that not 

all serializable schedules are 2PL-schedules.
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Exercise 2 (Cntd.)
X1(A)W1(A)X1(B)U1(A)S2(A)R2(A)W1(B)U1(B)

X2(B) U2(A)X3(A) W3(A)U3(A)W2(B)U2(B)

• It is easy to see that T1, T2, and T3 each satisfy 

rules L1 and L2:

1. T1 = X1(A)W1(A)X1(B)U1(A)W1(B)U1(B)

2. T2 = S2(A)R2(A)X2(B) U2(A)W2(B)U2(B)

3. T3 = X3(A) W3(A)U3(A)

• As for rule L3, T1 issues U1(A) prior to S2(A), 

and T2 issues U2(A) prior to X3(A). 

 Also, T1 issues U1(B) prior to X2(B). 
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Exercise 3
• Assume the following lock table:

db element locks held wait queue

A {S1,S2} X1,X3

B {X1} S2

• Which actions in a system ensuring 2PL could 

have resulted in this lock table?

• Since all three trx are suspended, a deadlock has 

occurred. Which trx need to be rolled back?

• Explain how this deadlock would have been 

prevented (i) by Wait-Die, (ii) by Wound-Wait.
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Exercise 3 (Cntd.)

db element locks held wait queue

A {         }            

B {     }     

S1(A)

S1

S2(A)

, S2

X1(B)

X1

S2(B)

S2

X1(A)

X1

X3(A)

, X3

Wait-for graph: T3 T1

T2

Either T1 or T2 must be rolled back. 

Note that T3 is suspended but is not part of a cycle.
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Exercise 3 (Cntd.)

db element locks held wait queue

A {         }            

B {     }     

S1(A)

S1

S2(A)

, S2

X1(B)

X1

• Same sequence with Wait-Die.

S2(B)

S2

T2 is rolled back…
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Exercise 3 (Cntd.)

db element locks held wait queue

A {         }     

B {     }     

S1(A)

S1

S2(A)

, S2

X1(B)

X1

S2(B)

S2

• Same sequence with Wound-Wait.

X1(A)

X1

T2 is rolled back…

X1

X1(A)
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Transaction Management

END

…
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