
Postacademic Interuniversity Course in Information Technology – Module D2 p1

Fundamentals of Database Systems

Transaction Management

Jef Wijsen

University of Mons-Hainaut (UMH)

Postacademic Interuniversity Course in Information Technology – Module D2 p2

Transaction Management

PART II:

Concurrency Control

Postacademic Interuniversity Course in Information Technology – Module D2 p3

TOC Concurrency Control

• Serializable schedules
– Correct and incorrect interleavings
– Serial and serializable schedules
– Testing serializability

• Two-Phase Locking (2PL)
• Concurrency control by timestamps
• Isolation levels in SQL2
• Exercises

Postacademic Interuniversity Course in Information Technology – Module D2 p4

Serializable schedules

Correct and incorrect interleavings

Postacademic Interuniversity Course in Information Technology – Module D2 p5

Recall ACID

• A transaction transforms a consistent database
state into a new consistent database state (C of
ACID).

• In general, a transaction will execute multiple
writes; the database will generally be inconsistent
in between two such writes.

• However, such inconsistent intermediate states
should be hidden to other concurrent transactions
(I of ACID).

• The overall effect should be as if each trx had
executed in its entirety at a single time instant.

Postacademic Interuniversity Course in Information Technology – Module D2 p6

Two Trx (1)

T

READ(A,v)

READ(B,w)

v:=v+w

WRITE(A,v)

WRITE(B,0)

U

READ(B,u)

u:=2*u

WRITE(B,u)

Postacademic Interuniversity Course in Information Technology – Module D2 p7

Two Trx (2)

• Think of A and B as number of Euros owned by
An and Bob respectively.
Assume initially A=a and B=b (a,b  0).

• Trx T gives Bob’s money to An.
Trx U doubles Bob’s wealth.

• Executing both trx once should yield either

o A=a+b, B=0 (T followed by U, denoted [T,U]), or

o A=a+2b, B=0 (U followed by T, denoted [U,T]).

Either state is consistent!

Postacademic Interuniversity Course in Information Technology – Module D2 p8

Interleaving I: Incorrect
T U u v w A B

READ(B,u) b a b

u:=2*u 2b a b

READ(A,v) 2b a a b

READ(B,w) 2b a b a b

v:=v+w 2b a+b b a b

WRITE(A,v) 2b a+b b a+b b

WRITE(B,0) 2b a+b b a+b 0

WRITE(B,u) 2b a+b b a+b 2b

Result generally inconsistent (consistent if b=0)

The problem is that T and U

concurrently update the

same old value B=b.

Postacademic Interuniversity Course in Information Technology – Module D2 p9

Interleaving II: Same Effect as [U,T]

(and hence correct)

T U u v w A B

READ(B,u) b a b

READ(A,v) b a a b

u:=2*u 2b a a b

WRITE(B,u) 2b a a 2b

READ(B,w) 2b a 2b a 2b

v:=v+w 2b a+2b 2b a 2b

WRITE(A,v) 2b a+2b 2b a+2b 2b

WRITE(B,0) 2b a+2b 2b a+2b 0

Result consistent: same effect as [U,T]

T reads the new

value B=2b

written by U.

Postacademic Interuniversity Course in Information Technology – Module D2 p10

Interleaving III: Correct by Coincidence

T U u v w A B

READ(B,u) b a b

u:=2*u 2b a b

READ(A,v) 2b a a b

READ(B,w) 2b a b a b

v:=v+w 2b a+b b a b

WRITE(A,v) 2b a+b b a+b b

WRITE(B,u) 2b a+b b a+b 2b

WRITE(B,0) 2b a+b b a+b 0

Result consistent by coincidence

Note that T and U

concurrently update the

same old value B=b.

…

Postacademic Interuniversity Course in Information Technology – Module D2 p11

Arithmetic Coincidence

• The arithmetic coincidence in ‘Interleaving III’ is that

0=2*0. That is, we can always interprete B=0 as having

Bob’s wealth doubled after executing T.

• The coincidence would not occur if we had, for example,

‘u:=2+u’ instead of ‘u:=2*u’ in U.

 Interleaving III would still yield A=a+b, B=0, but the only

consistent outcomes would be:

o A=a+b, B=2 (T followed by U, denoted [T,U]), or

o A=a+b+2, B=0 (U followed by T, denoted [U,T]).

• Note that ‘Interleaving II,’ being equivalent to [U,T],

would necessarily yield A=a+b+2, B=0.

Postacademic Interuniversity Course in Information Technology – Module D2 p12

Aim of Concurrency Control

• Characterize correct interleavings.

• Since recognizing arithmetic coincidences is

generally impossible, we focus on interleavings

whose correctness relies solely on the ordering of

READ and WRITE operations.

• Next, we investigate how correctness of

interleavings can be ensured in an operational

system.

Postacademic Interuniversity Course in Information Technology – Module D2 p13

Serializable schedules

Serial and serializable schedules

Postacademic Interuniversity Course in Information Technology – Module D2 p14

Shedules (1)

• We usually name our trx T1, T2, T3,…
In particular, let the example trx T and U be
denoted by T1 and T2 in what follows.

• If we accept that only READ and WRITE
operations matter, T1 (formerly T) can be
expressed as ‘R1(A)R1(B)W1(A)W1(B)’ and T2

(formerly U) as ‘R2(B)W2(B)’, where R and W
indicate reads and writes resp.

• Interleaving II is expressed as:
‘R2(B)R1(A)W2(B)R1(B)W1(A)W1(B)’.

• Such interleaving is called a schedule.

Postacademic Interuniversity Course in Information Technology – Module D2 p15

Schedules (2)

• So a schedule of trx T1,T2,…,Tn is a sequence S of
the actions occurring in T1,T2,…,Tn such that the
actions of each Ti appear in S in the same order
that they appear in Ti (1i  n).

• Actions of trx Ti are either Ri(.) or Wi(.).

• A schedule is serial if no two actions of the same
trx are separated by an action of a different trx.

• Examples of serial schedules are:

– ‘R1(A)R1(B)W1(A)W1(B)R2(B)W2(B)’ abbreviated as
[T1,T2].

– ‘R2(B)W2(B)R1(A)R1(B)W1(A)W1(B)’ abbreviated as
[T2,T1].

Postacademic Interuniversity Course in Information Technology – Module D2 p16

Why Must Interleaving II Be Correct?

• Since we accept consistency of trx (C of ACID),

we must also accept that serial schedules are

correct.

• Now recall Interleaving II:

‘R2(B) R1(A)W2(B) R1(B)W1(A)W1(B)’

 This is almost the serial schedule:

‘R2(B) W2(B)R1(A) R1(B)W1(A)W1(B)’

• Interleaving II is equal to the serial schedule up to

a swapping of R1(A) and W2(B).

• Would such swap change the effect on the database?
Evidently the answer is ‘no.’

Postacademic Interuniversity Course in Information Technology – Module D2 p17

Conflicting Actions
• We say that two actions A and B of different trx conflict if the

effect of AB can possibly be different from BA.

• Clearly, if A and B read or write different database elements,
then they do not conflict. That is,
 if A is Ri(X) or Wi(X),
 B is Rk(Y) or Wk(Y),
 XY, and ik,
 then A and B do not conflict.

• Two reads, even of the same element, never conflict.

• On the other hand (assuming ik),

o Ri(X) and Wk(X) conflict, for the value read by trx Ti is
likely to differ in Ri(X)Wk(X) and Wk(X)Ri(X).

o Wi(X) and Wk(X) conflict, for the final value written is
likely to differ in Wi(X)Wk(X) and Wk(X)Wi(X).

Postacademic Interuniversity Course in Information Technology – Module D2 p18

Serializable Schedule

• A schedule is serializable if it can be turned into a
serial schedule by repeatedly swapping neighboring
non-conflicting actions of different trx.

• Never swap actions of the same trx!

• Since we accept that serial schedules are correct, we
must also accept that serializable schedules are
correct.

• Our approach to concurrency will be to require that
schedules be serializable.

• Obviously, serial schedules are serializable.

• Note: the above notion is also called conflict-
serializable in the literature.

Postacademic Interuniversity Course in Information Technology – Module D2 p19

Serializable schedules

Testing serializability

Postacademic Interuniversity Course in Information Technology – Module D2 p20

The ‘Game’ of Serializing

R1(A) W1(A) R2(A) W2(A) R1(B) W1(B) R2(B) W2(B)

R1(A) W1(A) R2(A) R1(B) W2(A) W1(B) R2(B) W2(B)

R1(A) W1(A) R1(B) R2(A) W2(A) W1(B) R2(B) W2(B)

R1(A) W1(A) R1(B) R2(A) W1(B) W2(A) R2(B) W2(B)

R1(A) W1(A) R1(B) W1(B) R2(A) W2(A) R2(B) W2(B)

Serial schedule with the same effect

Initial schedule

Postacademic Interuniversity Course in Information Technology – Module D2 p21

Testing Serializability: Intuition

• Can we efficiently decide whether the ‘game’ can
possibly reach a serial schedule?

• We can easily see that the schedule
…R1(A)…W2(A)…W1(A) …
is not serializable.

• Since W2(A) and W1(A) conflict, we cannot attain a
serial schedule where T1 precedes T2. We write T2T1

to denote that T2 must precede T1.

• Likewise, since R1(A) and W2(A) conflict, we have
T1T2 .

• Since T2T1 and T1T2 are contradictory, we conclude
that the schedule is not serializable.

Postacademic Interuniversity Course in Information Technology – Module D2 p22

Testing Serializability: Algorithm

• Let a schedule S be given.

• Construct a precedence graph as follows:

• Introduce a node labeled Ti for every trx Ti in S.

• Introduce an edge from node Ti to node Tk with
ik if some action A of Ti is followed in S by some
conflicting action B of Tk.

• Note that A and B must not be adjacent in S.
An edge from Ti to node Tk agrees with Ti  Tk.

• S is serializable iff its precedence graph is acyclic.

Postacademic Interuniversity Course in Information Technology – Module D2 p23

Testing Serializability: Example 1

R4(C)W3(A)R1(A)W1(C)R2(B)W3(B)

T1

T4

T3 T2
Acyclic, hence serializable.

Moreover, the graph tells us

that we can serialize into any

one of: T2T3T4T1

T2T4T3T1

T4T2T3T1

Postacademic Interuniversity Course in Information Technology – Module D2 p24

Testing Serializability: Example 2

R4(C)W3(A)R1(A)W1(C)W1(D)R2(D)R2(B)W3(B)

T1

T4

T3 T2

Cyclic, hence not serializable.

Postacademic Interuniversity Course in Information Technology – Module D2 p25

The Price to Pay for ‘Simplicity’…

• By requiring serializability, we refuse some

correct schedules…

• The schedule W1(A)W2(A)W1(A) is non-

serializable because it is non-serial and all

neighboring actions conflict. So it will be out of

our scope.

• Nevertheless, as T1 overwrites the value written by

T2 without ever reading it, the effect is that of

W2(A)W1(A)W1(A).

Postacademic Interuniversity Course in Information Technology – Module D2 p26

TOC Concurrency Control
• Serializable schedules
• Two-Phase Locking (2PL)

– The three rules of the protocol
– Correctness proof
– The locking scheduler
– Multiple-granularity locking
– Deadlock
– Strict 2PL

• Concurrency control by timestamps
• Isolation levels in SQL2
• Exercises

Postacademic Interuniversity Course in Information Technology – Module D2 p27

Two-Phase Locking (2PL)

The three rules of the protocol

Postacademic Interuniversity Course in Information Technology – Module D2 p28

Ensuring Serializability

• The following approach is impractical/unfeasible:

Execute trx in an unconstrained manner,
periodically test for serializability, and break
cycles by undoing trx…

• Unfeasible, because committed trx cannot be
undone (remember D of ACID).

• Rather we will impose a protocol, called Two-
Phase Locking (2PL), that guarantees that a
schedule will be serializable.

Postacademic Interuniversity Course in Information Technology – Module D2 p29

Shared and Exclusive Locks

• A shared lock (S-lock) on a db element Y is

a permission to read Y.

• An exclusive lock (X-lock) on Y is a

permission to read or write Y.

• Operations:

Si(Y) Ti asks an S-lock on Y.

Xi(Y) Ti asks an X-lock on Y.

Ui(Y) Ti releases any lock it currently

holds on Y (Unlock).

Postacademic Interuniversity Course in Information Technology – Module D2 p30

The Protocol 2PL (1)

• Rule L1: A trx must not read Y without
holding an S-lock or an X-lock on Y. A trx
must not write Y without holding an X-lock
on Y. More precisely,

o A read action Ri(Y) must be preceded by Si(Y) or
Xi(Y), with no intervening Ui(Y).

o A write action Wi(Y) must be preceded by Xi(Y), with
no intervening Ui(Y).

o All lock requests must be followed by an unlock of the
same element.

• Rule L2: In every trx, all lock requests must

precede all unlock requests.

Postacademic Interuniversity Course in Information Technology – Module D2 p31

Example of Rules L1 and L2

• R1(A)W1(B) could be extended as:
 S1(A)X1(B)R1(A)W1(B)U1(A)U1(B),

 or as:
 S1(A)R1(A)X1(B)U1(A)W1(B)U1(B).

• On the other hand,
 S1(A)R1(A)U1(A)X1(B)W1(B)U1(B)
violates rule L2 as the unlock request U1(A)
precedes the lock request X1(B).

Postacademic Interuniversity Course in Information Technology – Module D2 p32

What’s in a Name?

4

3

2

1

0
time

number of locks

first unlock

Postacademic Interuniversity Course in Information Technology – Module D2 p33

The Protocol 2PL (2)

• Rule L3: Two trx cannot simultaneously

hold a lock for conflicting actions. That is,

• Schedules obeying all three rules are called

2PL-schedules.

o Si(Y) and a following Xk(Y) with ik must be

separated by an intervening Ui(Y).

o Xi(Y) and a following Sk(Y) or Xk(Y) with ik

must be separated by an intervening Ui(Y).

Postacademic Interuniversity Course in Information Technology – Module D2 p34

2PL Summary

• Rule L1:

– A shared or exclusive lock is needed for reading.

– An exclusive lock is needed for writing.

– All requested locks need to be released later on.

• Rule L2: Once you have released a lock, you are
not allowed to ask any further lock later on.

• Rule L3: If some trx holds an exclusive lock on a
db element, then no other trx can hold a shared or
exclusive lock on that same element.

Postacademic Interuniversity Course in Information Technology – Module D2 p35

Example 2PL-Schedule

Turn R1(A)W2(A)R1(B) into a 2PL-schedule by
adding lock and unlock requests, while
preserving the order of reads and writes.

S1(A)R1(A)S1(B)U1(A)X2(A)W2(A)U2(A)R1(B)U1(B)

T1 holds S-lock on A T2 holds X-lock on A

T1 holds S-lock on B

first unlock of T1

Postacademic Interuniversity Course in Information Technology – Module D2 p36

Compatibility Matrix

The order of lock/unlock requests implied by

rule L3 can be summarized in a compatibility

matrix:
Locks requested by

some trx T

S X

Locks held by some

different trx U
S Yes No

X No No

Postacademic Interuniversity Course in Information Technology – Module D2 p37

Lock Upgrade

• 2PL does not prevent a trx Ti from asking
Xi(Y) while holding an S-lock on Y.
Such Xi(Y) request is called a lock upgrade.

• For example, R1(A)W1(A) can be turned into
 X1(A)R1(A)W1(A)U1(A),

 but also into
 S1(A)R1(A)X1(A)W1(A)U1(A).

Postacademic Interuniversity Course in Information Technology – Module D2 p38

Two-Phase Locking (2PL)

Correctness proof

Postacademic Interuniversity Course in Information Technology – Module D2 p39

2PL Ensures Serializability

• Lemma. If an action of Ti is followed by a

conflicting action of Tk (ik) in a 2PL-schedule,

then the first unlock of Ti precedes the first unlock

of Tk.

• Theorem. Each 2PL-schedule can be serialized

into a serial schedule where the trx appear in the

order that they issue their first unlock.

• Corollary. Each 2PL-schedule is serializable.

Postacademic Interuniversity Course in Information Technology – Module D2 p40

Proof of Lemma (Sketch)

• Proof for write-only trx; generalization is easy.

• Assume Wi(A) is followed by Wk(A) in a 2PL-
schedule.

• By rule L1, Wi(A) must be preceded by Xi(A), and
Wk(A) must be preceded by Xk(A).

• By rule L3, Xi(A) and Xk(A) must be separated by
Ui(A), i.e., the schedule contains Ui(A)… Xk(A).

• No unlock of Tk can precede Ui(A), or else Tk
would violate rule L2.

• Hence, the first first unlock of Ti precedes the first
unlock of Tk.

Postacademic Interuniversity Course in Information Technology – Module D2 p41

Proof of Theorem (Sketch)

• For a schedule S with two write-only trx T1 and
T2.

• Assume without loss of generality that the first
unlock of T1 precedes the first unlock of T2. We
need to show that S can be serialized into [T1,T2].

• S cannot contain W2(Y)…W1(Y), or else, by the
preceding lemma, the first unlock of T2 precedes
the first unlock of T1, a contradiction.

• It follows that S can be serialized into [T1,T2].

Postacademic Interuniversity Course in Information Technology – Module D2 p42

The Price to Pay For ‘Simplicity’…

W1(A)R2(A)R3(B)W1(B)

The precedence graph is acyclic,

so the schedule is serializable.

Can it be turned into a 2PL-schedule?

T1

T2

T3

• By rules L1 and L3, T1 must issue U1(A) prior to R2(A).

• Because of R3(B)W1(B), the first (and only) unlock U3(B)

of T3 must precede the first unlock of T1 (cf. lemma).

• It follows that U3(B) must precede R2(A).

• But then T2 cannot satisfy rules L1 and L2…

• To conclude, in 2PL, the reads and writes cannot occur in

exactly the order shown.

Postacademic Interuniversity Course in Information Technology – Module D2 p43

Two-Phase Locking (2PL)

The locking scheduler

Postacademic Interuniversity Course in Information Technology – Module D2 p44

Locking Scheduler

• Rules L1 and L2 are the responsibility of the trx in

general (cf. discussion later).

• Enforcing rule L3 is the responsibility of a

DBMS module, called the locking scheduler.

• If a lock request by trx T is incompatible with a

lock currently held by some other trx U, then T

will be suspended and cannot be resumed before U

has released its lock.

Postacademic Interuniversity Course in Information Technology – Module D2 p45

Lock Table

• The lock manager stores housekeeping

information in a lock table.

• For example,

db element locks held wait queue

A {S1,S2} X4,X5

B {X3} S1

T1 and T2 hold

a shared lock an A

T4 and T5 are waiting for

an exclusive lock on A

Postacademic Interuniversity Course in Information Technology – Module D2 p46

Handling S1(A) Request

A {} 

A {S2,S3,…} 

A {S1} 

A {S1,S2,S3,…} 

A {S2,S3,…} X4

A {S2,S3,…} X4,S1

A {S1,S2,S3,…} X4

First-Come-First-Served

prevents starvation

A {X2} S3,X4

???

A {X2} S3,X4,S1

Postacademic Interuniversity Course in Information Technology – Module D2 p47

Handling X1(A) Request

A {} 

A {S2,S3,…} 

A {X1} 

A {S2,S3,…} X1

A {S2,S3,…} X4 A {S2,S3,…} X4,X1

A {X2} S3,X4 A {X2} S3,X4,X1

A {X2}  A {X2} X1

Postacademic Interuniversity Course in Information Technology – Module D2 p48

Handling Lock Upgrade X1(A)

A {S1} 

A {S1,S2,…} 

A {X1} 

A {S1,S2,…} X1

A {S1,S2,…} X4

A {S1,S2,…} X1,X4

A {S1,S2,…} X4 ,X1

Priority to Lock Upgrades

prevents a deadlock

???

T4 cannot continue before

T1 issues U1(A). However,

T1 is itself suspended.

Postacademic Interuniversity Course in Information Technology – Module D2 p49

Handling U1(A)

• Remove any lock held by T1 on A.

• Grant outstanding lock requests if possible.

A {X1}  S2,S3,X4,S5 A {S2,S3} X4,S5

Postacademic Interuniversity Course in Information Technology – Module D2 p50

Effect of Lock Scheduling

• Consider again W1(A)R2(A)R3(B)W1(B).

• With locks/unlocks added as required by 2PL,
the execution order up-front R3(B) may be
 X1(A)W1(A)X1(B)U1(A)S2(A)R2(A)U2(A).

• This results in the lock table entry:

• When T3 now asks S3(B), which is required

in front of R3(B), T3 is suspended:

• T1 continues with W1(B)U1(B):

B {X1} 

B {X1} S3

B {S3} 

• T3 ends with R3(B)U3(B).

• Note that has W1(B) has been executed prior to R3(B).

Postacademic Interuniversity Course in Information Technology – Module D2 p51

Two-Phase Locking (2PL)

Multiple-granularity locking

Postacademic Interuniversity Course in Information Technology – Module D2 p52

Multiple-Granularity Locking
WEALTH

NAME SUM

An 2

Bob 1

… …

T1: SELECT *

 FROM WEALTH

T2: SELECT *

 FROM WEALTH

 WHERE NAME=‘Bob’

T3: UPDATE WEALTH

 SET SUM=SUM+1

 WHERE NAME=‘An’

• T1 needs an S-lock on Wealth, T2 an S-lock on Bob’s

tuple, and T3 an X-lock on An’s tuple.

• If tuples are the only unit of locking, then T1 needs to

lock each individual tuple, causing much overhead.

• On the other hand, if relations are the only unit of

locking, then T3 requires an X-lock on Wealth,

prohibiting concurrent access.

• Solution: allow locks at both the relation and tuple level.

Postacademic Interuniversity Course in Information Technology – Module D2 p53

Warning Locks

• S1(Wealth) can be accepted only if no tuple of
Wealth is X-locked by any other trx.

• How can we efficiently decide whether no tuple of
a relation is X-locked?

• The idea is to require that no trx can hold an X-
lock on a tuple unless it holds an IX-lock
(intension exclusive) on the relation that contains
the tuple.

• Intuitively, the IX-lock on the relation ‘warns’
about the existence of an X-lock on a tuple.

• S1(Wealth) is incompatble with an IX-lock on
Wealth.

Postacademic Interuniversity Course in Information Technology – Module D2 p54

Warning Protocol (1)

• You may not X-lock a tuple without holding an
IX-lock on the relation containing that tuple.

• You may not S-lock a tuple without holding an
IS-lock or an IX-lock on the relation containing
that tuple.

• Operations: IXi(Relation) and ISi(Relation).

• Used with 2PL in order to ensure serializability.

• E.g., W=Wealth, A=An’s tuple, B=Bob’s tuple:

– T1=S1(W) read tuples of W U1(W)

– T2=IS2(W)S2(B) R2(B) U2(B)U2(W)

– T3=IX3(W)X3(A) W3(A) U3(A)U3(W)

Postacademic Interuniversity Course in Information Technology – Module D2 p55

Warning Protocol (2)

• Compatibility matrix at relation level:

IS IX S X

IS

IX

S

X

held
asked

• The foregoing can be easily extended to
hierarchies with more than two levels.

Yes No

No No

YesYes

YesYes

NoNo

No

No

No

No

Yes

Yes

Yes No

No No

YesYes

YesYes

NoNo

No

No

No

No

Yes

Yes

Postacademic Interuniversity Course in Information Technology – Module D2 p56

Phantom Problem
S(WEALTH);

 SELECT *

 FROM WEALTH;

 SELECT *

 FROM WEALTH;

U(WEALTH);

INSERT INTO WEALTH

 VALUES(‘Ed’, 5);

• Phantom problem: the second read

of the same relation gets more tuples.

• The schedule is definitely not

equivalent to a serial one.

• Solution: you are not allowed to

insert a tuple in a relation without

holding an X-lock on the relation.

• It seems that it

needs no locks.

• The right-hand trx inserts

a so-called ‘phantom

record.’

Postacademic Interuniversity Course in Information Technology – Module D2 p57

Two-Phase Locking (2PL)

Deadlock

Postacademic Interuniversity Course in Information Technology – Module D2 p58

Deadlock
• Concurrent execution of

T1=S1(A)R1(A)X1(B)W1(B)U1(A)U1(B) and

T2=S2(B)R2(B)X2(A)W2(A)U2(B)U2(A) can start

as S1(A)R1(A)S2(B)R2(B)X2(A) resulting in:

A {S1} X2

B {S2} 

A {S1} X2

B {S2} X1

• Both T1 and T2 are suspended in a so-called deadlock.

• T2 is suspended and T1 continues with X1(B):

Postacademic Interuniversity Course in Information Technology – Module D2 p59

Wait-For Graph

• Add a node labeled Ti for every trx Ti that holds a
lock or is waiting for one.

• We say that Ti waits for Tk if Ti waits for a lock held
by Tk or Ti follows behind Tk in some wait queue.

• Add an edge from node Ti to node Tk if Ti waits for
Tk .

• There is a deadlock iff the wait-for graph is cyclic.

• For example,
A {S1} X2

B {S2} X1

T1

T2

Postacademic Interuniversity Course in Information Technology – Module D2 p60

Four Ways to Resolve Deadlocks

1. By timeout: Put a limit on how long a trx may be

active, and if a trx exceeds this time, roll it back.

2. Maintain the wait-for graph at all times, and roll

back any trx that makes a request that would

cause a cycle.

3. Compute the wait-for graph periodically, and

break cycles (if any) by rolling back trx.

4. Deadlock prevention by timestamps (cf. next).

Postacademic Interuniversity Course in Information Technology – Module D2 p61

Deadlock Prevention by Timestamps

• We associate with each trx a timestamp.

• We say that T is older than U (and U is younger
than T) if the timestamp of T is smaller than U’s
timestamp.

• Wait-Die Scheme. If a younger trx makes a
request that would cause it to wait for an older trx,
then the younger trx is rolled back.

• Wound-Wait Scheme. If an older trx makes a
request that would cause it to wait for a younger
trx, then the younger trx is rolled back.

Postacademic Interuniversity Course in Information Technology – Module D2 p62

Wait-Die Example
• Assume that T2 is younger than T1.

In general, assume that the timestamp of Ti is i.

• Concurrent execution of

T1=S1(A)R1(A)X1(B)W1(B)U1(A)U1(B) and

T2=S2(B)R2(B)X2(A)W2(A)U2(B)U2(A) can start as

S1(A)R1(A)S2(B)R2(B)X1(B) resulting in: A {S1} 

B {S2} X1

A {S1} X2

B {S2} X1

• T1 is suspended and T2 continues with X2(A).

A {S1} 

B {X1} 

roll back T2

?

Postacademic Interuniversity Course in Information Technology – Module D2 p63

Wound-Wait Example

• Assume that T1 is older than T2.

• Concurrent execution of

T1=S1(A)R1(A)X1(B)W1(B)U1(A)U1(B) and

T2=S2(B)R2(B)X2(A)W2(A)U2(B)U2(A) can start as

S1(A)R1(A)S2(B)R2(B)X2(A) resulting in: A {S1} X2

B {S2} 

A {S1} X2

B {S2} X1

• T2 is suspended and T1 continues with X1(B).

A {S1} 

B {X1} 

roll back T2

?

Postacademic Interuniversity Course in Information Technology – Module D2 p64

Why Wait-Die Works

• In Wait-Die, trx can only wait for younger trx.

• Suppose the wait-for graph contains a cycle.

• One of the trx involved in the cycle is the
youngest, say T.

• In the cycle, there must be an edge from T to some
other trx, say U.

• But then U is younger than T, a contradiction.

• We conclude by contradiction that no cycle can
exist.

Postacademic Interuniversity Course in Information Technology – Module D2 p65

Why Wound-Wait Works

• In Wound-Wait, trx can only wait for older trx.

• Suppose the wait-for graph contains a cycle.

• One of the trx involved in the cycle is the oldest,
say T.

• In the cycle, there must be an edge from T to some
other trx, say U.

• But then U is older than T, a contradiction.

• We conclude by contradiction that no cycle can
exist.

Postacademic Interuniversity Course in Information Technology – Module D2 p66

No Starvation

• In both Wait-Die and Wound-Wait, it is
always the younger trx that is rolled back.

• Trx that are rolled back, restart with their
old timestamp, so that every trx is
guaranteed to eventually complete.

• Note incidentally that Wait-Die never rolls
back a trx that has acquired all the locks it
needs.

Postacademic Interuniversity Course in Information Technology – Module D2 p67

Two-Phase Locking (2PL)

Strict 2PL

Postacademic Interuniversity Course in Information Technology – Module D2 p68

Dirty-Read Problem

• Dirty-Data: Data is called dirty if it has been written
by a trx that is not yet committed.

• Dirty-Read: A read by trx T is dirty if it reads dirty
data written by another trx.

• Dirty-Read problem:

1. U writes a new value for Y

2. T reads U’s value for Y (a dirty read)

3. T finishes and commits

4. U is aborted (e.g., for deadlock reasons)

• Since the effect of T is based on a value of Y that
never really existed, the overall effect will generally
not be equivalent to any serial schedule.

Postacademic Interuniversity Course in Information Technology – Module D2 p69

Strict Locking

• The solution of the dirty-read problem:

Conceal dirty-data from other trx.

• Rule L4: A trx must not release any X-locks

until the trx has committed or aborted.

 Strict 2PL = 2PL + rule L4

Postacademic Interuniversity Course in Information Technology – Module D2 p70

Strict 2PL

• Strict 2PL is not deadlock free.

• Locking and unlocking can be transparant

to programmers:

1. the locking scheduler can insert lock actions

into the stream of reads and writes;

2. the scheduler releases locks only after the trx

is committed or aborted.

Postacademic Interuniversity Course in Information Technology – Module D2 p71

TOC Concurrency Control

• Serializable schedules

• Two-Phase Locking (2PL)

• Concurrency control by timestamps
– Basic idea

– Thomas Write Rule

• Isolation levels in SQL2

• Exercises

Postacademic Interuniversity Course in Information Technology – Module D2 p72

Concurrency control by

timestamps

Basic idea

Postacademic Interuniversity Course in Information Technology – Module D2 p73

Concurrency Control by Timestamps

• Assign to each trx T a unique timestamp, denoted
TS(T), indicating the start time of T.

• Not the same timestamp as the one used for
deadlock prevention.

• Timestamp-based scheduling will limit schedules
to those that can be serialized into the serial
schedule in which trx appear in ascending TS
order.

• That is, if TS(T1) < TS(T2) < … < TS(Tn), then the
schedule can be serialized into the serial schedule
[T1,T2 , …,Tn].

Postacademic Interuniversity Course in Information Technology – Module D2 p74

Read and Write Time

• The idea is to abort trx issuing reads or writes that
would result in a schedule that cannot be serialized
into a serial schedule where trx appear in TS order.

o RT(Y), the read time of Y, which is the
highest timestamp of a trx that has read Y.

o WT(Y), the write time of Y, which is the
highest timestamp of a trx that has written Y.

• Associate two timestamps with

each database element Y:

Postacademic Interuniversity Course in Information Technology – Module D2 p75

Handling Read Requests

Suppose trx T issues RT(Y). Two cases can occur:

• TS(T) < WT(Y). That is, some trx (say U) with
TS(T)<TS(U) has already written Y (and set the
value of WT(Y)).

We cannot accept the read, or else the schedule
produced would be …WU(Y)…RT(Y) which
cannot be serialized into our intended serial
schedule where T precedes U.

Intuitively, the read comes too late…

• TS(T)  WT(Y) causes no problem.

Postacademic Interuniversity Course in Information Technology – Module D2 p76

Handling Write Requests

• TS(T) < RT(Y), i.e., some trx (say U) with TS(T)<TS(U)
has already read Y (and set the value of RT(Y)).

We cannot accept the write, or else the schedule produced
would be …RU(Y)…WT(Y) which cannot be serialized into
our intended serial schedule where T precedes U.

• TS(T) < WT(Y), i.e., some trx (say U) with TS(T)<TS(U)
has already written Y (and set the value of WT(Y)).

We cannot accept the write, or else the schedule produced
would be …WU(Y)…WT(Y) which cannot be serialized into
our intended serial schedule where T precedes U.

• TS(T)  RT(Y) AND TS(T)  WT(Y) causes no problem.

Suppose T issues WT(Y).

Postacademic Interuniversity Course in Information Technology – Module D2 p77

Overview

• Trx T wants to read Y:
if TS(T)  WT(Y)
then execute the read
 RT(Y) := max(RT(Y),TS(T))
else abort T;

• Trx T want to write Y:
if TS(T)  WT(Y) AND TS(T)  RT(Y)
then execute the write
 WT(Y) :=TS(T)
else abort T;

Postacademic Interuniversity Course in Information Technology – Module D2 p78

Concurrency Control by Timestamps

Example
T1 T2 T3 A B C

20 15 17 RT=0 RT=0 RT=0

WT=0 WT=0 WT=0

R1(B) RT=20

R2(A) RT=15

R3(C) RT=17

W1(B) WT=20

W1(A) WT=20

W2(C)

Abort

W3(A)

Abort

Postacademic Interuniversity Course in Information Technology – Module D2 p79

Concurrency control by

timestamps

Thomas Write Rule

Postacademic Interuniversity Course in Information Technology – Module D2 p80

Thomas Write Rule (1)

• Suppose T wants to write Y but TS(T) < WT(Y), i.e., some

trx (say U) with TS(T)TS(U) has already written Y.

Accepting the write would produce …WU(Y)…WT(Y)

which cannot be serialized into a serial schedule where T

precedes U.

• Can’t we -- instead of aborting T -- simply skip WT(Y),

pretending (i) that WT(Y) occurred ahead of WU(Y) in the

right order, and (ii) that T’s value for Y was overwritten by

U later on?

WU(Y)…WT(Y)

Postacademic Interuniversity Course in Information Technology – Module D2 p81

Thomas Write Rule (2)
• Pretense is possible unless a trx V that should have read

T’s value for Y got another value instead. In fact, suppose

TS(T)<TS(V)<TS(U) and

RV(Y)…WU(Y)…WT(Y)

• We cannot simply pretend that WT(Y) occurred before

RV(Y), because V did see another value for Y!

• Then, since V has read Y, the read time of Y must be at

least TS(V). From TS(V)RT(Y) and TS(T)<TS(V), it

follows TS(T)<RT(Y).

• If we require TS(T)RT(Y), then there can be no such V

and we can safely pretend that the write of T occurred in

order.

 Intuitively, TS(T)RT(Y) expresses that no read has

‘missed’ the value of the write that comes too late.

Postacademic Interuniversity Course in Information Technology – Module D2 p82

Overview With Thomas Write Rule

• Trx T want to write Y:

if TS(T)  RT(Y)

then if TS(T)  WT(Y)

 then execute the write

 WT(Y) := TS(T)

 else ignore the write (Thomas)

else abort T;

Postacademic Interuniversity Course in Information Technology – Module D2 p83

Thomas Write Rule

Example
T1 T2 T3 A B C

20 15 17 RT=0 RT=0 RT=0

WT=0 WT=0 WT=0

R1(B) RT=20

R2(A) RT=15

R3(C) RT=17

W1(B) WT=20

W1(A) WT=20

W2(C)

Abort

W3(A)

Ignored

Postacademic Interuniversity Course in Information Technology – Module D2 p84

Preventing Dirty-Reads

• The above timestamp-based scheduling decisions

need to be extended by a mechanism to solve the

dirty-read problem, i.e., to prevent a trx from

reading data written by a concurrent uncommitted

trx.

• The solution consists in suspending a trx that

wants to read a dirty database element until the trx

that has written the element has committed or

aborted.

Postacademic Interuniversity Course in Information Technology – Module D2 p85

Restart

• Aborted trx may be restarted later on.

• If they restart with the same timestamp,

then they will be aborted again.

• So aborted trx need to get a new timestamp

when they are restarted.

• This is unlike the timestamps used in Wait-

Die or Wound-Wait.

Postacademic Interuniversity Course in Information Technology – Module D2 p86

TOC Concurrency Control

• Serializable schedules

• Two-Phase Locking (2PL)

• Concurrency control by timestamps

• Isolation levels in SQL2

• Exercises

Postacademic Interuniversity Course in Information Technology – Module D2 p87

Transaction Support in SQL2

• The SQL2 standard does not assume that every trx
runs in a serializable manner.

• The user can set an isolation level for each trx.

• Isolation levels are characterized in terms of Dirty-
Read, Non-repeatable Read, and Phantom Read.

• Recall Dirty-Read:

1. T1 modifies db element Y;

2. T2 reads Y before T2 is commited or aborted;

3. If T2 is rolled back, T1 has read a value for Y that was
never committed and so never really existed.

Postacademic Interuniversity Course in Information Technology – Module D2 p88

Non-repeatable Read

• Non-repeatable Read:

1. T1 reads a db element Y.

2. T2 writes a new value for Y, or deletes Y, and
commits.

3. T1 reads Y again and discovers that it has been
modified or deleted.

 This series of events is non-serializable and
impossible in 2PL -- assuming that you cannot
delete a db element without holding an X-lock on
it.

Postacademic Interuniversity Course in Information Technology – Module D2 p89

Phantom Read

• Recall Phantom Read:

1. T1 reads a set of database elements specified by a

SELECT-query.

2. T2 inserts new db elements and commits.

3. T1 gets a different result for the same query.

• Note that Phantom generalizes Non-repeatable

Read to sets of db elements.

• Phantom Reads may occur in a system that

prevents Non-repeatable Reads.

Postacademic Interuniversity Course in Information Technology – Module D2 p90

Isolation Levels in SQL

• Four isolation levels can be set by the SET

TRANSACTION command.

Dirty Read Non-repeatable

Read

Phantom

Read

READ UNCOMMITED possible possible possible

READ COMMITTED impossible possible possible

REPEATABLE READ impossible impossible possible

SERIALIZABLE impossible impossible impossible

Level
Phenomenon

Postacademic Interuniversity Course in Information Technology – Module D2 p91

TOC Concurrency Control

• Serializable schedules

• Two-Phase Locking (2PL)

• Concurrency control by timestamps

• Isolation levels in SQL2

• Exercises

Postacademic Interuniversity Course in Information Technology – Module D2 p92

Exercise 1
• Given the schedule

S=R1(C)R1(A)W2(B)R2(A)W1(D)W2(C)W1(A),
determine whether 2PL allows the reads and writes
to occur in exactly the order shown.

 Answer:

• Since R1(C) precedes W2(C), the precedence graph
contains an edge from T1 to T2.

• Since R2(A) precedes W1(A), the precedence graph
contains an edge from T2 to T1.

• Since the precedence graph contains a cycle, the
schedule is not serializable, and hence impossible
in 2PL.

Postacademic Interuniversity Course in Information Technology – Module D2 p93

Exercise 2
• Given the schedule

S=W1(A)R2(A)W1(B)W3(A)W2(B),

determine whether 2PL allows the reads and writes

to occur in exactly the order shown.

 Answer:

• The precedence graph is: T1 T2

T3

• The schedule is serializable. But recall that not

all serializable schedules are 2PL-schedules.

Postacademic Interuniversity Course in Information Technology – Module D2 p94

Exercise 2 (Cntd.)
X1(A)W1(A)X1(B)U1(A)S2(A)R2(A)W1(B)U1(B)

X2(B) U2(A)X3(A) W3(A)U3(A)W2(B)U2(B)

• It is easy to see that T1, T2, and T3 each satisfy

rules L1 and L2:

1. T1 = X1(A)W1(A)X1(B)U1(A)W1(B)U1(B)

2. T2 = S2(A)R2(A)X2(B) U2(A)W2(B)U2(B)

3. T3 = X3(A) W3(A)U3(A)

• As for rule L3, T1 issues U1(A) prior to S2(A),

and T2 issues U2(A) prior to X3(A).

 Also, T1 issues U1(B) prior to X2(B).

Postacademic Interuniversity Course in Information Technology – Module D2 p95

Exercise 3
• Assume the following lock table:

db element locks held wait queue

A {S1,S2} X1,X3

B {X1} S2

• Which actions in a system ensuring 2PL could

have resulted in this lock table?

• Since all three trx are suspended, a deadlock has

occurred. Which trx need to be rolled back?

• Explain how this deadlock would have been

prevented (i) by Wait-Die, (ii) by Wound-Wait.

Postacademic Interuniversity Course in Information Technology – Module D2 p96

Exercise 3 (Cntd.)

db element locks held wait queue

A { }  

B { }  

S1(A)

S1

S2(A)

, S2

X1(B)

X1

S2(B)

S2

X1(A)

X1

X3(A)

, X3

Wait-for graph: T3 T1

T2

Either T1 or T2 must be rolled back.

Note that T3 is suspended but is not part of a cycle.

Postacademic Interuniversity Course in Information Technology – Module D2 p97

Exercise 3 (Cntd.)

db element locks held wait queue

A { }  

B { }  

S1(A)

S1

S2(A)

, S2

X1(B)

X1

• Same sequence with Wait-Die.

S2(B)

S2

T2 is rolled back…

Postacademic Interuniversity Course in Information Technology – Module D2 p98

Exercise 3 (Cntd.)

db element locks held wait queue

A { }  

B { }  

S1(A)

S1

S2(A)

, S2

X1(B)

X1

S2(B)

S2

• Same sequence with Wound-Wait.

X1(A)

X1

T2 is rolled back…

X1

X1(A)

Postacademic Interuniversity Course in Information Technology – Module D2 p99

Transaction Management

END

…

	Slide 1: Fundamentals of Database Systems Transaction Management
	Slide 2: Transaction Management
	Slide 3: TOC Concurrency Control
	Slide 4: Serializable schedules
	Slide 5: Recall ACID
	Slide 6: Two Trx (1)
	Slide 7: Two Trx (2)
	Slide 8: Interleaving I: Incorrect
	Slide 9: Interleaving II: Same Effect as [U,T] (and hence correct)
	Slide 10: Interleaving III: Correct by Coincidence
	Slide 11: Arithmetic Coincidence
	Slide 12: Aim of Concurrency Control
	Slide 13: Serializable schedules
	Slide 14: Shedules (1)
	Slide 15: Schedules (2)
	Slide 16: Why Must Interleaving II Be Correct?
	Slide 17: Conflicting Actions
	Slide 18: Serializable Schedule
	Slide 19: Serializable schedules
	Slide 20: The ‘Game’ of Serializing
	Slide 21: Testing Serializability: Intuition
	Slide 22: Testing Serializability: Algorithm
	Slide 23: Testing Serializability: Example 1
	Slide 24: Testing Serializability: Example 2
	Slide 25: The Price to Pay for ‘Simplicity’…
	Slide 26: TOC Concurrency Control
	Slide 27: Two-Phase Locking (2PL)
	Slide 28: Ensuring Serializability
	Slide 29: Shared and Exclusive Locks
	Slide 30: The Protocol 2PL (1)
	Slide 31: Example of Rules L1 and L2
	Slide 32: What’s in a Name?
	Slide 33: The Protocol 2PL (2)
	Slide 34: 2PL Summary
	Slide 35: Example 2PL-Schedule
	Slide 36: Compatibility Matrix
	Slide 37: Lock Upgrade
	Slide 38: Two-Phase Locking (2PL)
	Slide 39: 2PL Ensures Serializability
	Slide 40: Proof of Lemma (Sketch)
	Slide 41: Proof of Theorem (Sketch)
	Slide 42: The Price to Pay For ‘Simplicity’…
	Slide 43: Two-Phase Locking (2PL)
	Slide 44: Locking Scheduler
	Slide 45: Lock Table
	Slide 46: Handling S1(A) Request
	Slide 47: Handling X1(A) Request
	Slide 48: Handling Lock Upgrade X1(A)
	Slide 49: Handling U1(A)
	Slide 50: Effect of Lock Scheduling
	Slide 51: Two-Phase Locking (2PL)
	Slide 52: Multiple-Granularity Locking
	Slide 53: Warning Locks
	Slide 54: Warning Protocol (1)
	Slide 55: Warning Protocol (2)
	Slide 56: Phantom Problem
	Slide 57: Two-Phase Locking (2PL)
	Slide 58: Deadlock
	Slide 59: Wait-For Graph
	Slide 60: Four Ways to Resolve Deadlocks
	Slide 61: Deadlock Prevention by Timestamps
	Slide 62: Wait-Die Example
	Slide 63: Wound-Wait Example
	Slide 64: Why Wait-Die Works
	Slide 65: Why Wound-Wait Works
	Slide 66: No Starvation
	Slide 67: Two-Phase Locking (2PL)
	Slide 68: Dirty-Read Problem
	Slide 69: Strict Locking
	Slide 70: Strict 2PL
	Slide 71: TOC Concurrency Control
	Slide 72: Concurrency control by timestamps
	Slide 73: Concurrency Control by Timestamps
	Slide 74: Read and Write Time
	Slide 75: Handling Read Requests
	Slide 76: Handling Write Requests
	Slide 77: Overview
	Slide 78: Concurrency Control by Timestamps Example
	Slide 79: Concurrency control by timestamps
	Slide 80: Thomas Write Rule (1)
	Slide 81: Thomas Write Rule (2)
	Slide 82: Overview With Thomas Write Rule
	Slide 83: Thomas Write Rule Example
	Slide 84: Preventing Dirty-Reads
	Slide 85: Restart
	Slide 86: TOC Concurrency Control
	Slide 87: Transaction Support in SQL2
	Slide 88: Non-repeatable Read
	Slide 89: Phantom Read
	Slide 90: Isolation Levels in SQL
	Slide 91: TOC Concurrency Control
	Slide 92: Exercise 1
	Slide 93: Exercise 2
	Slide 94: Exercise 2 (Cntd.)
	Slide 95: Exercise 3
	Slide 96: Exercise 3 (Cntd.)
	Slide 97: Exercise 3 (Cntd.)
	Slide 98: Exercise 3 (Cntd.)
	Slide 99: Transaction Management END

