
Postacademic Interuniversity Course in Information Technology – Module D2 p1

Fundamentals of Database Systems

Transaction Management

Jef Wijsen

University of Mons-Hainaut (UMH)

Postacademic Interuniversity Course in Information Technology – Module D2 p2

Reference

Chapters 8, 9, and 10 of:

H. Garcia-Molina, J.D. Ullman, J. Widom:

Database System Implementation. Prentice

Hall, 2000.

Postacademic Interuniversity Course in Information Technology – Module D2 p3

Transaction Management

PART I:

Recovery From System Failures

Postacademic Interuniversity Course in Information Technology – Module D2 p4

TOC
Recovery From System Failures
• Transactions

– General properties
– Database buffering
– Effect of system failure

• Logging to recover from system failure
• Undo/Redo logging
• Undo logging
• Redo logging
• Finale

Postacademic Interuniversity Course in Information Technology – Module D2 p5

Transactions

General properties

Postacademic Interuniversity Course in Information Technology – Module D2 p6

Transaction (Trx)
• A transaction is an execution of a program, and

corresponds to a logical unit of work.

• We focus on short-running trx, for example:

banking: transfer-money(from,to,amount)

airline reservations: reserve-seat(passenger,flight)

• Running example:

BEGIN; A := A+B; B := 0; END;

• A and B are database elements.

Think of A and B as the number of Euros owned by An

and Bob resp. The trx gives Bob’s money to An.

• DB elements are persistent (no initialization needed).

Postacademic Interuniversity Course in Information Technology – Module D2 p7

SQL

BEGIN

UPDATE WEALTH

SET SUM=SUM+(SELECT SUM

FROM WEALTH

WHERE NAME=‘Bob’)

WHERE NAME=‘An’;

UPDATE WEALTH

SET SUM=0

WHERE NAME=‘Bob’;

END

WEALTH

NAME SUM

An 2

Bob 1

A

B

Postacademic Interuniversity Course in Information Technology – Module D2 p8

ACID Properties

• Atomicity: Transactions are all-or-nothing.

• Consistency: We will assume that
transactions preserve database consistency.

• Isolation: Inconsistent intermediate data
must be concealed from all the rest.

• Durability: Once a trx has completed, its
updates survive, even if there is a
subsequent system crash.

Postacademic Interuniversity Course in Information Technology – Module D2 p9

ACID By Example (1)

A B

BEGIN 2 1 Initial state

A:=A+B 3 1  Intermediate

B:=0 3 0  Final state

END

Postacademic Interuniversity Course in Information Technology – Module D2 p10

ACID By Example (2)

• Atomicity: The transaction should not prematurely
end, leaving the inconsistent state A=3, B=1.

• Consistency: The final state A=3, B=0 is
consistent with the initial state A=2, B=1.

• Isolation: The intermediate state A=3, B=1 is
inconsistent and should not be visible to other
transactions.

• Durability: The final state A=3, B=0 must not be
lost in a subsequent system crash.

Postacademic Interuniversity Course in Information Technology – Module D2 p11

Transaction Management

• Ensuring Isolation:

 Conflicts arise because multiple concurrent
transactions ‘compete’ for accessing the same
data.

• Ensuring Atomicity and Durability:

 Failures (program error, electricity failure, disk
crash, explosion,…) may erase data or cause a
trx to end prematurely.

 Imagine your bank telling you that your account
was definitely lost in a disk crash…

• Transaction management deals with concurrency
control and recovery from failure.

Postacademic Interuniversity Course in Information Technology – Module D2 p12

Failures

• System failures (e.g., power outage), which
affect all trx currently in progress but do not
physically damage the database. The
contents of main memory are lost.

• Media failures (e.g., head crash on the disk),
which do cause damage to the database.

• Our focus will be on recovery from system
failures.

Postacademic Interuniversity Course in Information Technology – Module D2 p13

Transactions

Database buffering

Postacademic Interuniversity Course in Information Technology – Module D2 p14

Address Spaces

DB elements

READ(X,v), WRITE(X,v)

INPUT(X), OUTPUT(X)

Buffer

Local address space of trx

Postacademic Interuniversity Course in Information Technology – Module D2 p15

Primitive Operations

• INPUT(X): Copy the disk block containing
database element X to a buffer block.

• READ(X,v): Copy X to the trx’s local variable v
(entails INPUT(X) if X is not in buffer).

• WRITE(X,v): Copy the value of v to X in buffer
(entails INPUT(X) if X is not in buffer).

• OUTPUT(X): Copy the buffer block containing X
to disk.

• READ and WRITE are issued by trx.

 Importantly, INPUT and OUTPUT are not trx
commands, but are issued by DBMS modules (trx
manager, buffer manager, log manager).

Postacademic Interuniversity Course in Information Technology – Module D2 p16

Our Trx Revisited

• So

BEGIN

READ(A,v)

READ(B,w)

v:=v+w

WRITE(A,v)

WRITE(B,0)

END

BEGIN

A:=A+B

B:=0

END

could be

expressed

as:

• In addition, we could show OUTPUT steps, even

though these are not the responsibility of the trx per se.

Postacademic Interuniversity Course in Information Technology – Module D2 p17

What is a Database Element?

• Database elements can be tuples (e.g., tuple about

An).

• The primitive operations assume that database

elements reside within a single disk block…

• We will also assume that no block contains more

than one database element (cf. discussion later).

• That would be true for database elements that are

blocks.

Postacademic Interuniversity Course in Information Technology – Module D2 p18

Effect of Trx (1)

v w Buf A Buf B DB A DB B

2 1

2 2 2 1

2 1 2 1 2 1

3 1 2 1 2 1

3 1 3 1 2 1

3 1 3 0 2 1

3 1 3 0 3 1

3 0 3 1

3 1 3 0 3 0

Disk Block,

or DataBase

Action

BEGIN

READ(A,v)

READ(B,w)

v:=v+w

WRITE(A,v)

WRITE(B,0)

OUTPUT(A)

END

OUTPUT(B)

Postacademic Interuniversity Course in Information Technology – Module D2 p19

Effect of Trx (2)

READ(A,v)

A=2

v=2

READ(B,w)

B=1

w=1

v:=v+w

3

WRITE(A,v) 3

A=2

B=1

Buffer

WRITE(B,0)

0

OUTPUT(A)

3

OUTPUT(B)

0

Postacademic Interuniversity Course in Information Technology – Module D2 p20

Concurrent

Transactions

(1)

BEGIN Second trx

adds 1 to

Ann’s account.
READ(A,v)

READ(B,w)

v:=v+w

WRITE(A,v)

BEGIN

READ(A,u)

u:=u+1

WRITE(A,u)

END

WRITE(B,0)

OUTPUT(A)

END

OUTPUT(B)

• OUTPUT is initiated

by buffer manager on

behalf of both trx.

• Both trx issue a

WRITE of A, but there

is only a single

OUTPUT of A.

Postacademic Interuniversity Course in Information Technology – Module D2 p21

Concurrent Transactions (2)

A=2

B=1

Buffer

READ(A,v)

READ(B,w)

v:=v+w

WRITE(A,v)
A=3 B=1

v=3 w=1

READ(A,u)

u=3 4

u:=u+1

WRITE(A,u)

4

WRITE(B,0)

0

OUTPUT(A)

OUTPUT(B)
4

0

Gets

value

from

buffer!

Buffer

needs not

be flushed

at trx end!

Postacademic Interuniversity Course in Information Technology – Module D2 p22

A Note on Interleaving and Isolation

• You may think that interleaving conflicts with isolation…
T U

READ(A,v)

READ(B,w)

v:=v+w

WRITE(A,v)

READ(A,u)

WRITE(B,0)

READ(B,v)

T U

READ(A,v)

READ(B,w)

v:=v+w

WRITE(A,v)

READ(A,u)

READ(B,v)

WRITE(B,0)

U reads new A and old B,

violating isolation…

U reads new A and new B,

satisfying isolation…

• Characterizing admissible interleavings is at the

center of concurrency control.

Postacademic Interuniversity Course in Information Technology – Module D2 p23

Transactions

Effect of system failure

Postacademic Interuniversity Course in Information Technology – Module D2 p24

Effect of System Failure (1)

READ(A,v)

A=2

v=2

READ(B,w)

B=1

w=1

v:=v+w

3

WRITE(A,v) 3

A=2

B=1

Buffer

WRITE(B,0)

0

The database is consistent!

Postacademic Interuniversity Course in Information Technology – Module D2 p25

Effect of System Failure (2)

• Recall that the buffer manager issues OUTPUT

operations, which need not be synchronized with

WRITE or END operations.

• Recall also that main-memory does not survive a

system failure.

• If a system error occurs before any OUTPUT

operation is executed, then there is no effect to the

database stored on disk. The transaction would be

all-or-nothing (actually nothing).

Postacademic Interuniversity Course in Information Technology – Module D2 p26

Effect of System Failure (3)

READ(A,v)

A=2

v=2

READ(B,w)

B=1

w=1

v:=v+w

3

WRITE(A,v) 3

A=2

B=1

Buffer

WRITE(B,0)

0

OUTPUT(A)

3The database is inconsistent!

Postacademic Interuniversity Course in Information Technology – Module D2 p27

Effect of System Failure (4)

• If there is a system error after OUTPUT(A) but
before OUTPUT(B), then the database is left in
an inconsistent state. At recovery time, we should
either ‘roll back’ to A=2, B=1, or ‘roll forward’
to A=3, B=0.

• However, from the database we cannot tell:

o which trx were active at the time the failure occurred;

o what values need to be restored to make the database
consistent.

• Solution: logging database changes.

Postacademic Interuniversity Course in Information Technology – Module D2 p28

TOC
Recovery From System Failures
• Transactions

• Logging to recover from system failure

• Undo/Redo logging

• Undo logging

• Redo logging

• Finale

Postacademic Interuniversity Course in Information Technology – Module D2 p29

Logging

• The log is a file opened for appending only.

• The log manager can issue a FLUSH LOG

command to tell the buffer manager to copy log

blocks to disk.

• Log records are flushed in the order written.

Action by trx T Log record

BEGIN [START T]

WRITE(X,v) [T, X, before_image, after_image]

END [COMMIT, T]

• A log is a sequence of log records, each telling
something about what some trx has done.

Postacademic Interuniversity Course in Information Technology – Module D2 p30

Log Entries
Action v w Buf A Buf B DB A DB B Log

BEGIN 2 1 [START T]

READ(A,v) 2 2 2 1

READ(B,w) 2 1 2 1 2 1

v:=v+w 3 1 2 1 2 1

WRITE(A,v) 3 1 3 1 2 1 [T,A,2,3]

WRITE(B,0) 3 1 3 0 2 1 [T,B,1,0]

OUTPUT(A) 3 1 3 0 3 1

END 3 0 3 1 [COMMIT T]

OUTPUT(B) 3 1 3 0 3 0

Postacademic Interuniversity Course in Information Technology – Module D2 p31

Transaction Commit

• We say that a transaction T is committed if a
[COMMIT T] record appears in the log on disk.

• Importantly, database buffers may or may not
have been copied to disk by OUTPUT actions at
commit time; that decision is the responsibility of
the buffer manager in general.

• As a matter of fact, in order to reduce the number
of disk I/O’s, database systems can and will
allow a change to exist only in volatile main-
memory storage.

Postacademic Interuniversity Course in Information Technology – Module D2 p32

Roll Back or Roll Forward?

• Committed transaction with some (or all) of its

changes not on disk. Durability implies that such

transaction has to be redone (‘rolled forward’).

• Uncommitted transaction with some (or all) of its

changes on disk. Atomicity implies that such

transaction has to be undone (‘rolled back’).

Two categories of trx need to be distinguished
during recovery from system failure:

Postacademic Interuniversity Course in Information Technology – Module D2 p33

Graphical Representation

To be undone

To be redone

Postacademic Interuniversity Course in Information Technology – Module D2 p34

TOC
Recovery From System Failures
• Transactions
• Logging to recover from system failure
• Undo/Redo logging

– The rules
– The recovery procedure
– Checkpointing
– Exercise

• Undo logging
• Redo logging
• Finale

Postacademic Interuniversity Course in Information Technology – Module D2 p35

Undo/Redo Logging

The rules

Postacademic Interuniversity Course in Information Technology – Module D2 p36

Rule for Undo/Redo Logging

• Rule UR1: Before modifying any database
element X on disk because of changes made by
some transaction T, it is necessary that the update
record
 [T, X, before_image, after_image]
appear on disk.

• That is, between WRITE(X,v) and a following
OUTPUT(X), there must be a FLUSH LOG.

Postacademic Interuniversity Course in Information Technology – Module D2 p37

Need For before_image

• The flushed before_image will be needed

if T has to be undone later on:

1. T issues WRITE(X,v)

2. the log is flushed

3. the buffer manager issues OUTPUT(X)

4. a system failure occurs before T can commit

• T has to be undone. The before_image of X
is available in the log (not in the database!)

Postacademic Interuniversity Course in Information Technology – Module D2 p38

Need For after_image

• The flushed after_image will be needed if

T has to be redone later on:

1. T issues WRITE(X,v)

2. T executes END

3. The log is flushed, hence T is now committed

4. a system failure occurs before the buffer

manager has issued OUTPUT(X)

• T has to be redone. The after_image of X is
available in the log (not in the database!)

Postacademic Interuniversity Course in Information Technology – Module D2 p39

Rule UR1 Example

Action Log

BEGIN [START T]

READ(A,v)

READ(B,w)

v:=v+w

WRITE(A,v) [T,A,2,3]

WRITE(B,0) [T,B,1,0]

OUTPUT(A)

END [COMMIT T]

OUTPUT(B)

The log must be flushed

in between.

The log must be flushed

in between.

If a system failure occurs

after OUTPUT(A) but before

commit, A has to be reset to

its before-image 2.

If a system failure occurs

after commit but before

OUTPUT(B), B has to be set

to its after-image 0.

Postacademic Interuniversity Course in Information Technology – Module D2 p40

Transaction Manager

signal actions

of trxTransaction

manager

Log

manager

Buffer

manager

Data

Log

copy buffer

to disk
flush log

Enforcing rule UR1
requires coordination
between log manager
and buffer manager.

Postacademic Interuniversity Course in Information Technology – Module D2 p41

Problem With Delayed Commit

• Assume a system crash after END of trx T
but before [COMMIT T] is flushed to disk.

• Trx T appears to the user to have been
completed, but is to be undone during
system recovery.

• It is therefore advisable to flush a
[COMMIT T] record to disk as soon as it
appears in the log.

Postacademic Interuniversity Course in Information Technology – Module D2 p42

Undo/Redo Logging

The recovery procedure

Postacademic Interuniversity Course in Information Technology – Module D2 p43

How to recover from

[START T][T,A,2,3]?

• All we know is that the system failure occurred

after WRITE(A,v) but before OUTPUT(B).

• Indeed, since [T,B,1,0] has not reached the log on

disk, OUTPUT(B) has not been executed (Rule

UR1).

• OUTPUT(A) may or may not have been executed.

• Anyway, the recovery procedure undoes T by

writing 2 for the database element A.

Postacademic Interuniversity Course in Information Technology – Module D2 p44

How to recover from
[START T][T,A,2,3][T,B,1,0][COMMIT T]?

• We know that the system failure occurred

after the action END.

• OUTPUT(B) may or may not have been

executed.

• Anyway, the recovery procedure redoes T

by writing 3 for the database element A, and

0 for B.

Postacademic Interuniversity Course in Information Technology – Module D2 p45

Recovery With Undo/Redo

Logging (in general)

• Identify the committed and uncommitted

trx.

• Undo all the uncommitted trx in the order

latest-first (i.e., backward).

• Redo all the committed trx in the order

earliest-first (i.e., forward).

Postacademic Interuniversity Course in Information Technology – Module D2 p46

Example

• U is to be undone,

R is to be redone.

[START U]

[U,A,10,11]

[START R]

[R,B,20,21]

[U,C,30,31]

[R,D,40,41]

[COMMIT R]

[U,E,50,51]

• Undo U.
 E := 50
 C:= 30
 A:=10

R
E

D
O

• Redo R.
 B:=21
 D:=41

Postacademic Interuniversity Course in Information Technology – Module D2 p47

Notes

• You will realize that redoing T does not

mean that the program of T is re-executed.

• Trx that are undone may have to be

restarted later on, but that decision is

outside the scope of trx management per se.

Postacademic Interuniversity Course in Information Technology – Module D2 p48

Undo/Redo Logging

Checkpointing

Postacademic Interuniversity Course in Information Technology – Module D2 p49

Checkpointing

• After a system failure, we have to redo all trx that

ever committed, because their updates may not

have reached the database on disk.

• Hence, log parts cannot be discarded, and the log

keeps growing.

• To alleviate this problem, we periodically take a

checkpoint: write to disk all modified buffers and

record this in the log.

Postacademic Interuniversity Course in Information Technology – Module D2 p50

Checkpointing an Undo/Redo Log

• Write a [START CKPT (T1,…,Tk)] record to
the log, where T1,…,Tk are the active trx,
and flush the log.

• Write to disk all buffers that are dirty; i.e.,
they contain one or more changed data
elements.

• Write an [END CKPT] record to the log,
and flush the log.

Postacademic Interuniversity Course in Information Technology – Module D2 p51

Effect of Checkpoint

T1

T2

T3

ignore

redo (can start after START CKPT)

undo

Can discard log records of trx

that committed before START CKPT.

Postacademic Interuniversity Course in Information Technology – Module D2 p52

Undo/Redo Logging

Exercise

Postacademic Interuniversity Course in Information Technology – Module D2 p53

Exercise 1

• The following is the

content of an

undo/redo log after a

crash. Describe the

changes to disk that

have to be made by

the recovery manager.

[START T1]

[T1,A,4,5]

[START T2]

[COMMIT T1]

[T2,B,9,10]

[START CKPT(T2)]

[T2,C,14,15]

[START T3]

[T3,D,19,20]

[END CKPT]

[COMMIT T2]

Postacademic Interuniversity Course in Information Technology – Module D2 p54

Exercise 1 (Cntd.)

[START T1]

[T1,A,4,5]

[START T2]

[COMMIT T1]

[T2,B,9,10]

[START CKPT(T2)]

[T2,C,14,15]

[START T3]

[T3,D,19,20]

[END CKPT]

[COMMIT T2]

All updates

of T1 have

reached the

database.

T2 has to be redone.

The uncommitted trx T3

has to be undone.

• The recovery

manager will set D

to 19 and C to 15.

• It is not necessary

to set B to 10, as we

flush B to disk

during the

checkpoint.

Postacademic Interuniversity Course in Information Technology – Module D2 p55

TOC
Recovery From System Failures
• Transactions
• Logging to recover from system failure
• Undo/Redo logging
• Undo logging

– The rules
– The recovery procedure
– Checkpointing
– Exercise

• Redo logging
• Finale

Postacademic Interuniversity Course in Information Technology – Module D2 p56

Undo Logging

The rules

Postacademic Interuniversity Course in Information Technology – Module D2 p57

Undo/No-Redo Logging

• Redo-work is needed because updates of
committed trx may not have reached disk.

• Undo/No-Redo logging requires that no trx
commit before its updates have reached disk.
(You may find this quite natural!)

• Advantage: avoids redo-work, and hence the need
for after-images.

• WRITE(X,v) is logged as [T,X,before_image].

• Undo logging = Undo/No-Redo logging.

Postacademic Interuniversity Course in Information Technology – Module D2 p58

Rules for Undo Logging (1)

• Rule U1: If transaction T modifies database
element X, then the log record of the form
[T,X,before_image] must be written to disk
before the new value of X is written to disk (cf.
rule UR1).

• Rule U2: If a transaction commits, then its
COMMIT log record must be written to disk only
after all database elements changed by the
transaction have been written to disk, but as soon
thereafter as possible.

Postacademic Interuniversity Course in Information Technology – Module D2 p59

Rules for Undo Logging (2)

• Hence, material associated with one trx
must be written to disk in the following
order:

• The order of (1) and (2) applies to each database

element individually, not to the group of update

records for a trx as a whole.

1. The log records indicating changed
database elements.

2. The changed database elements
themselves.

3. The COMMIT log record.

Postacademic Interuniversity Course in Information Technology – Module D2 p60

Disadvantage of Undo Logging

• Undo logging requires that data be written

to disk before the trx commits, perhaps

increasing the number of disk I/O’s that

need to be performed.

Postacademic Interuniversity Course in Information Technology – Module D2 p61

Undo Logging

The recovery procedure

Postacademic Interuniversity Course in Information Technology – Module D2 p62

Recovery Using Undo Logging

• Basically like in Undo/Redo logging with Redo
removed.

• The recovery manager scans the log backward
from the end, remembering [COMMIT T] records.

 As it sees a record [T,X,before_image], then:

o If T is a trx whose COMMIT record has been

seen, then do nothing.

o Otherwise, T is an uncommitted trx. The

recovery manager must change the value of X

in the database to before_image.

Postacademic Interuniversity Course in Information Technology – Module D2 p63

Undo Logging

Checkpointing

Postacademic Interuniversity Course in Information Technology – Module D2 p64

Checkpointing an Undo Log (1)

• Log records of T can be discarded once T has
committed!

• Checkpointing here means waiting until currently
active trx have completed:

1. Write a [START CKPT (T1,…,Tk)] record to the

log, where T1,…,Tk are the active trx, and flush

the log.

2. Wait until T1,…,Tk commit.

3. When all T1,…,Tk have completed, write a log

record [END CKPT] and flush the log.

Postacademic Interuniversity Course in Information Technology – Module D2 p65

Checkpointing an Undo Log (2)

ignore

ignore

undo

Can discard log part preceding START CKPT.

T1

T2

T3

[START CKPT (T2)]
[END CKPT]

Postacademic Interuniversity Course in Information Technology – Module D2 p66

Undo Logging

Exercise

Postacademic Interuniversity Course in Information Technology – Module D2 p67

Exercise 2

• The following is the

content of an undo

log after a crash.

Describe the changes

to disk that have to be

made by the recovery

manager.

[START T1]

[T1,A,5]

[START T2]

[T2,B,10]

[START CKPT(T1,T2)]

[T2,C,15]

[START T3]

[T1,D,20]

[COMMIT T1]

[T3,E,25]

[COMMIT T2]

[END CKPT]

[T3,F,30]

Postacademic Interuniversity Course in Information Technology – Module D2 p68

Exercise 2 (Cntd)
[START T1]

[T1,A,5]

[START T2]

[T2,B,10]

[START CKPT(T1,T2)]

[T2,C,15]

[START T3]

[T1,D,20]

[COMMIT T1]

[T3,E,25]

[COMMIT T2]

[END CKPT]

[T3,F,30]

• Undo/No-Redo Log

• T3 is the only uncommitted trx

and must be undone.

• The recovery manager sets F

to 30 and E to 25.

Postacademic Interuniversity Course in Information Technology – Module D2 p69

TOC
Recovery From System Failures
• Transactions
• Logging to recover from system failure
• Undo/Redo logging
• Undo logging
• Redo logging

– The rules
– The recovery procedure
– Checkpointing
– Exercise

• Finale

Postacademic Interuniversity Course in Information Technology – Module D2 p70

Redo Logging

The rules

Postacademic Interuniversity Course in Information Technology – Module D2 p71

Redo/No-Undo Logging

• Undo-work is needed because updates of
uncommitted trx may have reached disk.

• Redo/No-Undo logging requires that no update of
a trx reach the database on disk before the trx has
committed.

• Advantage: avoids undo-work, and hence the need
for before-images.

• WRITE(X,v) is logged as [T,X,after_image].

• Redo logging = Redo/No-Undo logging.

Postacademic Interuniversity Course in Information Technology – Module D2 p72

Rule for Redo Logging (1)

• Rule R1: Before modifying any database

element X on disk, it is necessary that all

log records pertaining to this modification

of X, including both the update record

[T,X,after_image] and the [COMMIT T]

record, must appear on disk.

Postacademic Interuniversity Course in Information Technology – Module D2 p73

Rule for Redo Logging (2)

Since COMMIT record follows all update log
records, the order in which material associated
with one trx gets written to disk is:

1. The log records indicating changed

database elements.

2. The COMMIT log record.

3. The changed database elements

themselves.

Postacademic Interuniversity Course in Information Technology – Module D2 p74

Redo Logging

The recovery procedure

Postacademic Interuniversity Course in Information Technology – Module D2 p75

Recovery With Redo Logging

• Identify the committed trx.

• Scan the log forward from the beginning. For
each record [T,X,after_image] encountered:

o If T is not a committed trx, do nothing.

o If T is committed, change the value of X in

the database to after_image.

Basically like in Undo/Redo logging with Undo

removed:

Postacademic Interuniversity Course in Information Technology – Module D2 p76

Redo Logging

Checkpointing

Postacademic Interuniversity Course in Information Technology – Module D2 p77

Checkpointing a Redo Log

1. Write a [START CKPT (T1,…,Tk)] record to the

log, where T1,…,Tk are the active trx, and flush

the log.

2. Write to disk all database elements that were

written to buffers but not yet to disk by

transactions that had already committed when

the START CKPT record was written to the log.

3. Write an [END CKPT] record to the log and

flush the log.
Unlike Undo/Redo logging,

where all dirty buffers are

flushed.

Postacademic Interuniversity Course in Information Technology – Module D2 p78

Checkpointing a Redo Log

Can discard log records of trx

that committed before START CKPT.

ignore

redo

redo

T1

T2

T3

Postacademic Interuniversity Course in Information Technology – Module D2 p79

Disadvantages of Redo Logging

• Redo logging requires us to keep all modified

blocks in buffers until the trx commits and the log

records have been flushed, perhaps increasing the

average number of buffers required by trx.

• Problems if database elements can share disk

blocks.
START CKPT

T1
T2

T1’s updates must reach disk,

T2’s updates must not.

Contradictory if T1 and T2

updated same memory block!

Postacademic Interuniversity Course in Information Technology – Module D2 p80

Redo Logging

Exercise

Postacademic Interuniversity Course in Information Technology – Module D2 p81

Exercise 3

• The following is the

content of a redo log

after a crash. Describe

the changes to disk

that have to be made

by the recovery

manager.

[START T1]

[T1,A,5]

[START T2]

[COMMIT T1]

[T2,B,10]

[START CKPT(T2)]

[T2,C,15]

[START T3]

[T3,D,20]

[END CKPT]

[COMMIT T2]

Postacademic Interuniversity Course in Information Technology – Module D2 p82

Exercise 3 (Cntd.)

[START T1]

[T1,A,5]

[START T2]

[COMMIT T1]

[T2,B,10]

[START CKPT(T2)]

[T2,C,15]

[START T3]

[T3,D,20]

[END CKPT]

[COMMIT T2]

All updates

of T1 have

reached the

database.

T2 has to be redone.

In Redo/No-Undo logging,

there is no need to undo

the changes of the

uncommitted trx T3.

• The recovery

manager rewrites

10 for B and 15

for C.

• Note: We do not

flush B to disk

during the

checkpoint.

Postacademic Interuniversity Course in Information Technology – Module D2 p83

TOC
Recovery From System Failures
• Transactions

• Logging to recover from system failure

• Undo/Redo logging

• Undo logging

• Redo logging

• Finale

Postacademic Interuniversity Course in Information Technology – Module D2 p84

Summary

• Commit = END + FLUSH LOG

• Undo/Redo Logging:
UR1: WRITE(A,v) < FLUSH LOG < OUTPUT(A)
No constraint regarding Commit!

• Undo Logging:
U1 = rule UR1
U2: OUTPUT < Commit

• Redo Logging:
R1: Commit < OUTPUT
R1 implies UR1 (as END is last operation of trx)

Postacademic Interuniversity Course in Information Technology – Module D2 p85

Dirty-Read Problem
A:=A+B B:=0

A:=A+1

A=2

B=1

A=3 A=4 A=4

B=0

U

T

[START U]

[U,A,2,3]

[START T]

[T,A,3,4]

[COMMIT T]

[U,B,1,0]

[COMMIT U]

Should recover to A=3:

starting from A=2, execute T, but not U.

However, undoing U yields A=2,

redoing T yields A=4.

Postacademic Interuniversity Course in Information Technology – Module D2 p86

Individual Trx Failure

• System failure erases main-memory, and hence all
trx in progress. Certain conditions (e.g., division
by zero) may cause an individual trx T to fail.

• If trx T fails, its updates that reached the database
must be undone. (like with system failure)

• Also, updates of T that reside in the buffer must be
canceled! (unlike system failure)

• An [ABORT T] record will be written in the log to
indicate that T could not complete successfully
and has been rolled back.

Postacademic Interuniversity Course in Information Technology – Module D2 p87

Recovery From System Failures

END

COMING NEXT:

Concurrency Control

	Slide 1: Fundamentals of Database Systems Transaction Management
	Slide 2: Reference
	Slide 3: Transaction Management
	Slide 4: TOC Recovery From System Failures
	Slide 5: Transactions
	Slide 6: Transaction (Trx)
	Slide 7: SQL
	Slide 8: ACID Properties
	Slide 9: ACID By Example (1)
	Slide 10: ACID By Example (2)
	Slide 11: Transaction Management
	Slide 12: Failures
	Slide 13: Transactions
	Slide 14: Address Spaces
	Slide 15: Primitive Operations
	Slide 16: Our Trx Revisited
	Slide 17: What is a Database Element?
	Slide 18: Effect of Trx (1)
	Slide 19: Effect of Trx (2)
	Slide 20: Concurrent Transactions (1)
	Slide 21: Concurrent Transactions (2)
	Slide 22: A Note on Interleaving and Isolation
	Slide 23: Transactions
	Slide 24: Effect of System Failure (1)
	Slide 25: Effect of System Failure (2)
	Slide 26: Effect of System Failure (3)
	Slide 27: Effect of System Failure (4)
	Slide 28: TOC Recovery From System Failures
	Slide 29: Logging
	Slide 30: Log Entries
	Slide 31: Transaction Commit
	Slide 32: Roll Back or Roll Forward?
	Slide 33: Graphical Representation
	Slide 34: TOC Recovery From System Failures
	Slide 35: Undo/Redo Logging
	Slide 36: Rule for Undo/Redo Logging
	Slide 37: Need For before_image
	Slide 38: Need For after_image
	Slide 39: Rule UR1 Example
	Slide 40: Transaction Manager
	Slide 41: Problem With Delayed Commit
	Slide 42: Undo/Redo Logging
	Slide 43: How to recover from [START T][T,A,2,3]?
	Slide 44: How to recover from [START T][T,A,2,3][T,B,1,0][COMMIT T]?
	Slide 45: Recovery With Undo/Redo Logging (in general)
	Slide 46: Example
	Slide 47: Notes
	Slide 48: Undo/Redo Logging
	Slide 49: Checkpointing
	Slide 50: Checkpointing an Undo/Redo Log
	Slide 51: Effect of Checkpoint
	Slide 52: Undo/Redo Logging
	Slide 53: Exercise 1
	Slide 54: Exercise 1 (Cntd.)
	Slide 55: TOC Recovery From System Failures
	Slide 56: Undo Logging
	Slide 57: Undo/No-Redo Logging
	Slide 58: Rules for Undo Logging (1)
	Slide 59: Rules for Undo Logging (2)
	Slide 60: Disadvantage of Undo Logging
	Slide 61: Undo Logging
	Slide 62: Recovery Using Undo Logging
	Slide 63: Undo Logging
	Slide 64: Checkpointing an Undo Log (1)
	Slide 65: Checkpointing an Undo Log (2)
	Slide 66: Undo Logging
	Slide 67: Exercise 2
	Slide 68: Exercise 2 (Cntd)
	Slide 69: TOC Recovery From System Failures
	Slide 70: Redo Logging
	Slide 71: Redo/No-Undo Logging
	Slide 72: Rule for Redo Logging (1)
	Slide 73: Rule for Redo Logging (2)
	Slide 74: Redo Logging
	Slide 75: Recovery With Redo Logging
	Slide 76: Redo Logging
	Slide 77: Checkpointing a Redo Log
	Slide 78: Checkpointing a Redo Log
	Slide 79: Disadvantages of Redo Logging
	Slide 80: Redo Logging
	Slide 81: Exercise 3
	Slide 82: Exercise 3 (Cntd.)
	Slide 83: TOC Recovery From System Failures
	Slide 84: Summary
	Slide 85: Dirty-Read Problem
	Slide 86: Individual Trx Failure
	Slide 87: Recovery From System Failures END

