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Database

A relational database instance I will be represented by a set I of
facts.

Knows 1 2
Jeb Don
Don Jeb
An Don
Ed An
Jo Ed

Owns 1 2
Don iPad
Don iPod
Jeb iPod

⇝

I = {Knows(Jeb,Don),Knows(Don, Jeb), . . . ,Owns(Jeb, iPod)}

Knows and Owns are extensional database (edb) predicates.
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Deductive Databases

The following rule defines the Happy view.

Happy(x) ← Owns(x , iPad),Owns(x , iPod)

Happy is an intentional database (idb) predicate.

With this rule, the intentional database contains Happy(Don), but
not Happy(Jeb).
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Multiple Rules

Happy(x) ← Owns(x , iPad),Owns(x , iPod)

Happy(x) ← Owns(x , iPad)

Happy(x) ← Owns(x , iPod)

With these rules, the intentional database contains Happy(Don)
and Happy(Jeb).

The first rule is redundant.
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Composition

Likes(x , y) ← Knows(x , y),Owns(y , iPad)

Likes(x , y) ← Knows(x , y),Owns(y , iPod)

Happy(y) ← Likes(x , y)

The first two rules state that people like every person they know
who has an iPad or an iPod. The third rule states that you are
happy if someone likes you.
With these rules, the intentional database contains, among others:
▶ Likes(Jeb,Don) because Jeb knows Don, and Don owns an

iPad;
▶ Happy(Don) because Jeb likes Don.

Likes Happy
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Recursion

Happy(x) ← Owns(x , iPad)

Happy(x) ← Knows(x , y),Happy(y)

The second rule says that knowing happy people makes you happy.

With these rules, the intentional database contains, among others:

▶ Happy(Don) because Don owns an iPad;

▶ Happy(An) because An knows Don, and Don is happy;

▶ Happy(Ed) because Ed knows An, and An is happy;

▶ Happy(Jo) because Jo knows Ed, and Ed is happy.

Happy
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Safe negation of edb predicates

Unhappy(x) ← Knows(x , y),Owns(y , z),¬Owns(x , z)

The safety requirement states that every variable that occurs in a
rule, must occur positively in the body of the rule (i.e., the part of
the rule that occurs at the right of ←).

The following two rules are not safe (so they are syntactically
incorrect), because z occurs in the rule but z does not occur
positively in the body:

R(x , z) ← Knows(x , y)

S(x) ← Knows(x , y),¬Owns(x , z)
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Safe negation of idb predicates

Unhappy(x) ← Knows(x , y),Owns(y , z),¬Owns(x , z)
Happy(x) ← Owns(x , y),¬Unhappy(x)

Unhappy Happy

−
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Safe negation of idb predicates

The following program is syntactically correct but meaningless:

Unhappy(x) ← Owns(x , y),¬Happy(x)
Happy(x) ← Owns(x , y),¬Unhappy(x)

Unhappy Happy

−

−
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Recursion and Negation

Person(x) ← Knows(x , y)

Person(y) ← Knows(x , y)

Person(x) ← Owns(x , y)

Happy(x) ← Owns(x , iPad)

Happy(x) ← Knows(x , y),Happy(y)

Unhappy(x) ← Person(x),¬Happy(x)

−Happy Unhappy

Person
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Exercise

Get owners who own everything that can be owned.

Owner(x) ← Owns(x , y)

MissingSomething(x) ← Owner(x),Owns(u, z),¬Owns(x , z)
Answer(x) ← Owner(x),¬MissingSomething(x)

In relational calculus:

{x | ∃y (Owns(x , y)) ∧ ∀u∀z (Owns(u, z)→ Owns(x , z))}

In relational algebra (if the schema is Owns[A,B]):

πA(Owns)− πA((πA(Owns) ⋊⋉ πB(Owns))− Owns)
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Translating Relational Calculus into Rules
▶ Variables present in the body of a rule, yet absent in its head,

are existentially quantified.
▶ We can first rewrite ∀v⃗ (φ(v⃗)) as ¬∃v⃗ (¬φ(v⃗)).

For example,

{x | ∃y (Owns(x , y)) ∧ ∀u∀z (Owns(u, z)→ Owns(x , z))}

is equivalent to:

{x |
Owner(x)︷ ︸︸ ︷

∃y (Owns(x , y))∧¬
MissingSomething(x)︷ ︸︸ ︷

∃u∃z (Owns(u, z) ∧ ¬Owns(x , z))}.

Then, the atom Owner(x) is needed in the third rule below to
ensure the rule’s safety:

Answer(x) ← Owner(x),¬MissingSomething(x)

Owner(x) ← Owns(x , y)

MissingSomething(x) ← Owner(x),Owns(u, z),¬Owns(x , z)
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Language Design and Reasoning About Programs

Language design:

▶ restrict how rules, negation, and recursion can be used and
combined; and

▶ define a precise semantics.

SPJRUD+FP

[Positive] Datalog
≡ SPJRU+FP

Stratified Datalog

Linear Datalog
≡ SPJRU+TC

Linear Stratified Datalog
≡ SPJRUD+TC

UCQ
≡ SPJRU

CQ
≡ SPJR

Relational Calculus
≡ SPJRUD

CQ with Negated Atoms

Semipositive Datalog

without negation

with negation

Reasoning about programs (a.k.a. queries):

▶ Is there an algorithm for simplifying a given program P (i.e.,
for constructing a “shorter” program that is equivalent to P)?
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Containment (⊑) and equivalence (≡) of queries

Let q1, q2 be two queries in some query language L
(e.g., L = relational calculus or L = SPJR algebra).

We write q1 ≡ q2 if for every database I ,

q1(I ) = q2(I ).

We write q1 ⊑ q2 if for every database I ,

q1(I ) ⊆ q2(I ).

Note:

▶ q1(I ) denotes the answer of q1 on database I ; and

▶ q1(x⃗) denotes that x⃗ is the sequence of free variables of q1.
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Problems
Let L be a query language.

▶ The containment problem for L is the following: Given two
queries q1, q2 ∈ L, decide whether q1 ⊑ q2.

▶ The equivalence problem for L is the following: Given two
queries q1, q2 ∈ L, decide whether q1 ≡ q2.

▶ The satisfiability problem for L is the following: Given q ∈ L,
is there a database I such that q(I ) ̸= ∅?

These problems are related:

q1(x⃗) ⊑ q2(x⃗) ⇐⇒ q1 ≡ q1 ∧ q2

q1(x⃗) ≡ q2(x⃗) ⇐⇒ (q1 ∧ ¬q2) ∨ (q2 ∧ ¬q1) is not satisfiable

That is, the containment problem can be “reduced” to the
equivalence problem, provided that L is closed under ∧.
The equivalence problem can be “reduced” to the complement of
the satisfiability problem, provided that L is closed under ∧, ∨,
and ¬.
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Undecidability

Theorem

1. The containment problem for relational calculus is
undecidable.

2. The equivalence problem for relational calculus is undecidable.

3. The satisfiability problem for relational calculus is undecidable.

This is different from the undecidability of the
Entscheidungsproblem [Tur36] because database instances are
finite, whereas in conventional predicate calculus, both finite and
infinite structures are considered.
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The Geography of First-Order Sentences (inspired
by [Pap94])

▶ ∃x (P(x) ∧ ¬P(x)) is unsatisfiable
▶ ¬∃x (P(x) ∧ ¬P(x)) is valid
▶ ∃x(P(x)) is satisfiable and not valid

Negation can be thought of as “flipping” of the figure around its
vertical axis of symmetry.
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Digression on Computable Numbers
We define a decimal program as a (finite) program P(n) that takes
a positive integer n as input, and deterministically outputs a string
0.d1d2 . . . dn, where each di belongs to the set {0, 1, 2, . . . , 9}.
An example is a program P(n) that outputs the decimal part of π:

1. P(1) = 0.1;

2. P(2) = 0.14;

3. P(3) = 0.141;

4. P(4) = 0.1415;

5. . . .

▶ The number of distinct decimal programs is at most countably
infinite, or the cardinality of N; and

▶ there are uncountably many real numbers between 0 and 1.

Conclusion: There are real numbers that are not computable.
While this conclusion is interesting, it is even more intriguing to
have a concrete example of a real number that is not computable.
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Trakhtenbrot, Boris (1950). The Impossibility of an Algorithm for
the Decidability Problem on Finite Classes. Proceedings of the
USSR Academy of Sciences (in Russian). 70 (4): 569–572.

Theorem (Trakhtenbrot’s theorem)

The following problem is undecidable: Given a first-order logic
sentence φ, is there a finite model (i.e., a database) that
satisfies φ?
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Finite and Unrestricted Satisfiability

σ1 = ∀x∀y∀z ((R(x , y) ∧ R(x , z))→ y = z)

σ2 = ¬∃w∃z (R(w , z) ∧ ¬∃z ′ (R(z ′,w)))

σ3 = ∃z∃w (R(z ,w) ∧ ¬∃z ′ (R(w , z ′)))

1. No constant occurs more than once in the first column.

2. Every constant in the first column also occurs in the second column.

3. Some constant c in the second column does not occur in the first
column.

The formula σ1 ∧ σ2 ∧ σ3 cannot be satisfied by a finite database, but is
satisfied by the infinite structure shown next.

R 1 2
0 c
1 0
2 1
...
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Languages

▶ Conjunctive queries (single nonrecursive rule)

▶ Unions of conjunctive queries (a family of conjunctive queries
with the same head predicate)

▶ Conjunctive queries with atomic negation

▶ Nonrecursive queries with negation = relational calculus

▶ Recursive queries without negation = datalog

▶ Datalog with stratified negation
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Overview

SPJRUD+FP

[Positive] Datalog
≡ SPJRU+FP

Stratified Datalog

Linear Datalog
≡ SPJRU+TC

Linear Stratified Datalog
≡ SPJRUD+TC

UCQ
≡ SPJRU

CQ
≡ SPJR

Relational Calculus
≡ SPJRUD

CQ with Negated Atoms

Semipositive Datalog

without negation

with negation
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Datalog Syntax

Read A Datalog Primer.

A set of rules without negation.
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Immediate Consequence Operator TP

P :

{
Path(x , y) ← R(x , y)
Path(x , z) ← Path(x , y),R(y , z)

J =

deductive database︷ ︸︸ ︷
{R(a, b),R(b, c),R(c , d),R(d , e)︸ ︷︷ ︸

edb

,Path(a, c),Path(c, e)︸ ︷︷ ︸
idb

}

TP(J) =



copy of edb︷ ︸︸ ︷
R(a, b),R(b, c),R(c, d),R(d , e),

1st rule︷ ︸︸ ︷
Path(a, b),Path(b, c),Path(c , d),Path(d , e),
2nd rule︷ ︸︸ ︷

Path(a, d)


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Fixpoint of the Immediate Consequence Operator TP

P :

{
Path(x , y) ← R(x , y)
Path(x , z) ← Path(x , y),R(y , z)

J =


R(a, b),R(b, c),R(c , d),R(d , e),
Path(a, b),Path(a, c),Path(a, d),Path(a, e),
Path(b, c),Path(b, d),Path(b, e),
Path(c , d),Path(c , e),Path(d , e)


TP(J) = J

We define datalog semantics in a non-procedural way, as follows:

Definition
Given a database instance I (i.e., a set of edb facts), the answer to
a datalog program P is the smallest fixpoint of TP that includes I .
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Datalog Semantics
Let P be a datalog program.
▶ We use the term deductive database for a set of facts that

can use both edb and idb predicates.
▶ The immediate consequence operator TP maps each deductive

database J to the deductive database TP(J) satisfying
1. TP(J) “copies” all edb facts of J;
2. TP(J) contains all idb facts that can be derived from J by

executing once every rule of P; and
3. no other facts belong to TP(J).

▶ Given an edb database I , the answer P(I ) is defined as the
(unique) smallest (w.r.t. ⊆) deductive database J such that
I ⊆ J and TP(J) = J. That is, the answer is the smallest
fixed point of TP that includes I .

Intuition: Accept all and only those idb facts that are
supported by the rules.

“Couldn’t there be two smallest fixed points, J1 and J2,
both including I , such that J1 ⊈ J2 and J2 ⊈ J1?”
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Properties of the Immediate Consequence Operator TP

Lemma (Monotonicity)

Let P be a datalog program (without negation). Let J1 and J2 be
deductive databases. If J1 ⊆ J2, then TP(J1) ⊆ TP(J2).

Lemma (Smallest fixed point)

Let P be a datalog program (without negation). Let I be a set of
edb facts. There is a fixed point of TP that (i) includes I , and
(ii) is a subset of any other fixed point of TP that includes I .

Proof.
See next slide.
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Proof that there is a unique smallest fixed point
Proof. Let J be an arbitrary fixed point of TP that includes I . That is
I ⊆ TP(J) = J.

I ⊆ J (Given.)
TP(I ) ⊆ TP(J) = J (Monotonicity .)

T 2
P(I ) :=TP(TP(I )) ⊆ TP(TP(J)) = J (Monotonicity .)

T 3
P(I ) :=TP(TP(TP(I ))) ⊆ TP(TP(TP(J))) = J (Monotonicity .)

etc.

I ⊆ TP(I ) (TP copies all edb facts.)
TP(I ) ⊆ TP(TP(I )) (Monotonicity.)

TP(TP(I )) ⊆ TP(TP(TP(I ))) (Monotonicity.)
etc.

We must reach n such that T n
P(I ) = T n+1

P (I ), because there are only
finitely many facts that can be added. Consequently,

1. T n
P(I ) is a fixed point;

2. T n
P(I ) includes I ; and

3. T n
P(I ) ⊆ J.

Note: the proof tells us how to construct the smallest fixed point!
32 / 90



Immediate Consequence Operator: Example

Let P contain two rules:

A(x , y) ← R(x , y)

A(x , y) ← R(x , z),A(z , y)

Let
J = {R(1, 2),R(2, 3),A(2, 5)}.

Then

TP(J) = {R(1, 2),R(2, 3),A(1, 2),A(2, 3),A(1, 5)}
TP(TP(J)) = {R(1, 2),R(2, 3),A(1, 2),A(2, 3),A(1, 3)}

TP(TP(TP(J))) = TP(TP(J))

Note that monotonicity does not imply J ⊆ TP(J). Indeed, in the
preceding example, J ⊈ TP(J) and TP(J) ⊈ TP(TP(J)).
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Multiple Fixpoints

Let P contain one rule:

A(x) ← R(x),A(x)

Let

I = {R(a)};
J1 = {R(a)};
J2 = {R(a),A(a)}.

Then,

TP(J1) = J1;

TP(J2) = J2.
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Undecidability

Theorem
▶ The containment problem for datalog is undecidable.

▶ The equivalence problem for datalog is undecidable.
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Syntax of Datalog with Stratified Negation

▶ a set of safe rules such that

▶ the program dependence graph (PDG) contains no cycle with
a negated edge
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Semantics of Datalog with Stratified Negation

▶ The stratum of an idb predicate S is the greatest number of
negated edges on any path in the PDG that starts from S .

▶ Since the PDG contains no cycle with a negated edge, the
stratum of an idb predicate cannot be +∞.

▶ Evaluate the idb predicates “lowest-stratum-first.” Once an
idb predicate has been evaluated, it is treated as an edb
predicate for higher strata.
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Recursion and Negation

Person(x) ← Knows(x , y)

Person(y) ← Knows(x , y)

Person(x) ← Owns(x , y)

Unhappy(x) ← Person(x),¬Happy(x)
Happy(x) ← Owns(x , iPad)

Happy(x) ← Knows(x , y),Happy(y)

−Happy Unhappy

Person

▶ Person and Happy have stratum 0; Unhappy has stratum 1.

▶ First, we evaluate the rules for Person and Happy . Then, we
evaluate the rule for Unhappy , treating Person and Happy as
edb predicates.
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The Barber Paradox

There is a male village barber who shaves all and only those men
in the village who do not shave themselves.
Does the barber shave himself?

Shaves(Barber, x) ← Male(x),¬Shaves(x , x)

The negation in this program is not stratified.

Let I = {Male(Barber)}.

What happens if we try fixpoint semantics?

TP(I ) = {Male(Barber),Shaves(Barber,Barber)}
TP(TP(I )) = {Male(Barber)}

There is no fixpoint.
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Semipositive Datalog

▶ Semipositive Datalog = Datalog +
negation that applies only
on edb predicates

▶ Thus, the PDG contains no negative edges.

▶ Semipositive Datalog can express some queries that are
neither in the relational calculus nor in Datalog.

▶ Semipositive Datalog cannot express universal quantification.
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Stratified Datalog (defined without using PDG)
A stratified Datalog program is a sequence P = (P0, . . . ,Pr ) of
basic Datalog programs, which are called the strata of P, such that
each of the IDB predicates of P is an IDB predicate of precisely
one stratum Pi and can be used as an EDB predicate (but not as
an IDB predicate) in higher strata Pj where j > i . In particular,
this means that

1. if an IDB predicate of stratum Pj occurs positively in the
body of a rule of stratum Pi , then j ≤ i , and

2. if an IDB predicate of stratum Pj occurs negatively in the
body of a rule of stratum Pi , then j < i .

Stratified Datalog programs are given natural semantics using
semantics for Datalog programs for each Pi , where the IDB
predicates of a lower stratum are viewed as EDB predicates for a
higher stratum.

In other words, each program slice Pi is a semipositive Datalog
program relative to IDB predicates of lower strata Pj , j < i .
A rule is recursive if its body contains an IDB predicate of the
same stratum.
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Multiple Stratifications


R(x) ← A(x),¬S(x)
S(x) ← B(x)
T (x) ← S(x)

The stratification found by the PDG is(
P0 :

{
S(x) ← B(x)
T (x) ← S(x)

,P1 :
{

R(x) ← A(x),¬S(x)
)
.

Another stratification is:(
P0 :

{
S(x) ← B(x) ,P1 :

{
R(x) ← A(x),¬S(x)
T (x) ← S(x)

)
.

It is known that all stratifications are equivalent.
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Datalog and Prolog

▶ Datalog semantics does not, repeat not, depend on the order
in which the rules are stated.

▶ Cite from [BBS06, p. 47]
“But Prolog is not, repeat not, a full logic programming
language. If you only think about the declarative meaning
of a Prolog program, you are in for a very tough time.”
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Linear Stratified Datalog
[Following up on a question by a student in 2017.]
A linear program for transitive closure:

Trans(x , y) ← Knows(x , y)

Trans(x , y) ← Knows(x , z),Trans(z , y)

A nonlinear program for transitive closure:

Trans(x , y) ← Knows(x , y)

Trans(x , y) ← Trans(x , z),Trans(z , y)

▶ Two predicates R and R ′ are mutually recursive if R = R ′ or
R and R ′ participate in the same cycle of the PDG.

▶ A rule with head predicate R is linear if there is at most one
atom in the body of the rule whose predicate is mutually
recursive with R.
Note: this allows more than one idb predicate in the body.

▶ A program is linear if each rule in it is linear.
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Transitive Closure in SQL

Trans(x , y) ← Knows(x , y)

Trans(x , y) ← Trans(x , z),Knows(z , y)

Ans(y) ← Trans(Jo, y)

Assume that the schema of Knows is [A,B]

WITH RECURSIVE Trans(A’,B’) AS

( (SELECT A as A’, B as B’ FROM Knows)

UNION

(SELECT Trans.A’, Knows.B as B’

FROM Trans, Knows

WHERE Trans.B’ = Knows.A) )

SELECT B’ FROM Trans WHERE A’= "Jo"
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Extending Relational Calculus with Transitive Closure

1. Every formula in relational calculus is a formula in Transitive
Closure Logic (TC).

2. If φ(x , y , z) is a formula in TC with free variables x , y , z , then

[tclx ,yφ(x , y , z)](x
′, y ′)

is a formula in TC with free variables x ′, y ′, z .

The semantics is as follows. For any fixed value c for z ,

[tclx ,yφ(x , y , c)](a, b)

evaluates to true on a database if (a, b) is in the transitive closure
of the answer to the query {x , y | φ(x , y , c)}.
[In general, x , y , z can be sequences of variables.]
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Mimicking [tclx ,yφ(x , y , z)](x ′, y ′) in Datalog

Trans(x , y , z) ← φ(x , y , z)

Trans(x , y , z) ← Trans(x , u, z),Trans(u, y , z)

Answer(x ′, y ′) ← Trans(x ′, y ′, z)
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In Other Words. . .

[slide added for completeness]

[tclx ,yφ(x , y , z)](x
′, y ′)

is the same as

[fp∆:x ,y ,z (φ(x , y , z) ∨ ∃w (φ(x ,w , z) ∧∆(w , y , z))](x ′, y ′, z)

See Sections 6 and 7 of “Adding Recursion to SPJRUD”
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Example: Graph Connectivity
Let the binary relation E encode the directed edges of a graph, i.e.,
E (a, b) holds true if there is a directed edge from a to b.
Is the undirected graph associated with E (obtained by ignoring
the directions of the edges) connected?

∀u∀v (ν(u) ∧ ν(v)→ [tclx ,yE (x , y) ∨ E (y , x)](u, v))

where ν(z) is a syntactic shorthand for “z is a vertex”:

ν(z) := ∃w (E (z ,w) ∨ E (w , z))

In linear stratified Datalog:

Adjacent(x , y) ← E(x , y)

Adjacent(x , y) ← E(y , x)

Trans(u, v) ← Adjacent(u, v)

Trans(u, v) ← Adjacent(u,w),Trans(w , v)

V (x) ← Adjacent(x , y)

Disconnected() ← V (u),V (v),¬Trans(u, v)
Connected() ← ¬Disconnected()
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Expressiveness and Complexity

Fact
Linear stratified Datalog is equivalent to Transitive Closure Logic.

Intuitively,

Linear stratified Datalog = relational algebra + transitive closure

Transitive closure is not as expressive as general recursion.

Fact
The data complexity of linear stratified Datalog is lower than for
Datalog (NL versus P-complete).
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Recursion that is Not Linear

Here is a program that is not linear (and you will not be able to
find an equivalent linear program).

T (x) ← A(x)

T (x) ← R(x , y , z),T (y),T (z)

To give a meaning to this program, think of the variables as
placeholders for Boolean propositions:

▶ R(p, q, r) says that “p IF (q AND r)”

▶ A(p) says that “p is TRUE”

So this is an interpreter for [a subset of] propositional logic.
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Overview

SPJRUD+FP

[Positive] Datalog
≡ SPJRU+FP

Stratified Datalog

Linear Datalog
≡ SPJRU+TC

Linear Stratified Datalog
≡ SPJRUD+TC

UCQ
≡ SPJRU

CQ
≡ SPJR

Relational Calculus
≡ SPJRUD

CQ with Negated Atoms

Semipositive Datalog

without negation

with negation
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Exercise

Let the binary relation E encode the directed edges of a graph.
Express the following questions in Datalog (or explain why this is
impossible).

▶ Is the undirected graph associated with E two-colorable?

▶ Is the undirected graph associated with E three-colorable?

Hint: An undirected graph is two-colorable iff it contains no
undirected cycle of odd length.
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Exercise

Let the binary relation E encode the directed edges of a graph,
without self-loops. Let C be a binary relation such that C (v , c)
means that the vertex v has color c . Every vertex has exactly one
color. Say that a directed path from vertex v1 to vertex v2 is
well-colored if no three successive vertices on the path have the
same color (but two successive vertices can have the same color).
Express the following questions in Datalog (or explain why this is
impossible); the disequality predicate ̸= can be used.

▶ Find pairs (v1, v2) of vertices such that there exists no
well-colored directed path from v1 to v2.

▶ Find pairs (v1, v2) of vertices such that (i) there exists a
directed path from v1 to v2 and (ii) all directed paths from v1
to v2 are well-colored.
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Executing Datalog Programs in DLV

You can download dlv.exe from http://www.dlvsystem.com/

Three useful commands: dlv -help

dlv input.txt

dlv -filter=Answer input.txt

%%% This is input.txt %%%

%%% The database facts %%%

C(1,blue). C(2,red). C(3,red). C(4,red).

E(1,2). E(2,3). E(3,4). E(4,1).

%%% The Datalog program %%%

V(X) :- E(X,Y).

V(Y) :- E(X,Y).

WCP(X,Y,R) :- E(X,Y), C(X,R).

WCP(X,Y,R) :- WCP(X,Z,S), E(Z,Y), C(Z,R), R != S.

WCP(X,Y,R) :- WCP(X,Z,S), E(Z,Y), C(Z,R), C(Y,T), R != T.

ExistsWCP(X,Y) :- WCP(X,Y,R).

ExistsWCP(X,X) :- V(X).

% Every vertex has a well-colored path to itself...

Answer(X,Y) :- V(X), V(Y), not ExistsWCP(X,Y).
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Exercice
Soient Rouge Cy et Bleu Cy deux compagnies d’autobus qui utilisent des
prédicats Rouge/2 et Bleu/2 pour stocker leurs connexions directes. Écrivez un
programme en Datalog stratifié avec ̸= pour le prédicat IDB Critique/2 tel que
Critique(v1, v2) est vrai si les conditions suivantes sont toutes les deux
satisfaites:

1. Une des deux compagnies, mais pas les deux, assure une connexion de v1

à v2. Donc, soit Rouge(v1, v2) est vrai et Bleu(v1, v2) est faux, soit
Rouge(v1, v2) est faux et Bleu(v1, v2) est vrai; et

2. si la connexion de v1 à v2 est supprimée, il ne sera plus possible
d’atteindre v2 à partir de v1.

Par exemple, pour la base de données ci-dessous, Critique(mons, dour) est vrai.
Critique(huy, ath) n’est pas vrai : si la connexion Rouge(huy, ath) est
supprimée, il est encore possible d’aller de huy à ath en utilisant, par exemple,
les connexions Bleu(huy, dour) et Rouge(dour, ath).

Rouge 1 2
ath mons

mons dour

dour ath

dour huy

huy ath

Bleu 1 2
mons ath

ath mons

huy dour

dour huy
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Connexions Critiques

%%%

Con(X,Y) :- Bleu(X,Y).

Con(X,Y) :- Rouge(X,Y).

%%%

% TConWO(X,Y,U,V) est vrai s’il est possible d’aller de X à Y sans

% utiliser la connexion existante de U à V.

% (TConWO = Transitive Connection Without)

%%%

TConWO(X,Y,U,V) :- Con(X,Y), Con(U,V), X!=U.

TConWO(X,Y,U,V) :- Con(X,Y), Con(U,V), Y!=V.

TConWO(X,Y,U,V) :- Con(X,Z), TConWO(Z,Y,U,V), X!=U.

TConWO(X,Y,U,V) :- Con(X,Z), TConWO(Z,Y,U,V), Z!=V.

%%%

Critique(X,Y) :- Bleu(X,Y), not Rouge(X,Y), not TConWO(X,Y,X,Y).

Critique(X,Y) :- not Bleu(X,Y), Rouge(X,Y), not TConWO(X,Y,X,Y).
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Conjunctive Queries

Read A Primer on the Containment Problem for Conjunctive
Queries.

A conjunctive query is an expression of the form

Answer(x⃗) ← R1(x⃗1), . . . ,Rn(x⃗n)

where every variable that occurs in x⃗ also occurs in some x⃗i .

Answer(x⃗) is called the head, and each Ri (x⃗i ) is called a subgoal.
The set of all subgoals is called the body.

Given a database instance, the answer to this query is defined as
follows:

for every valuation θ,
if the facts R1(θ(x⃗1)), . . . , Rn(θ(x⃗n)) all belong to the
database, then Answer(θ(x⃗)) belongs to the answer.
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Boolean Conjunctive Query

A conjunctive query is Boolean if its head contains no variables.
For example,

Answer(yes) ← Knows(An, y),Owns(y , iPad)

One can use a predicate of arity 0 instead:

AnswerProposition() ← Knows(An, y),Owns(y , iPad)

Given a database instance I , the answer to the latter query is
either {AnswerProposition()} or {}, interpreted as true and false
respectively.

63 / 90



Containment of Conjunctive queries (intuition by example)

q1 : Answer(y) ← {Knows(An, y),Owns(y , iPad),Owns(y , iPod)}

q2 : Answer(z) ← {Knows(An, z),Owns(z , iPod),
Knows(An, u),Owns(u, iPad) }

First, argue, semantically, that q1 ⊑ q2.
Then, can you think of a syntactic characterization of ⊑?
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Containment of Conjunctive queries [Ull00]

Let q1 and q2 be conjunctive queries. To test whether q1 ⊑ q2:

1. Freeze the body of q1 by turning each of its subgoals into
facts in the database. That is, replace each variable in the
body by a distinct constant, and treat the resulting subgoals
as the only tuples in the database.

2. Apply q2 to this canonical database.

3. If the frozen head of q1 is derived by q2, then q1 ⊑ q2.
Otherwise, not; in fact, the canonical database is a
counterexample to the containment, since surely q1 derives its
own frozen head from this database.
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Example [Ull00]

q1 : Answer(x , z)← Knows(x , y),Knows(y , z);

q2 : Answer(x , z)← Knows(x , u),Knows(v , z).

The canonical database I constructed from q1 is

I = {Knows(0, 1),Knows(1, 2)}.

The frozen head is Answer(0, 2).

Let θ = {x 7→ 0, u 7→ 1, v 7→ 1, z 7→ 2}. Since θ maps the body of
q2 into I , we have Answer(0, 2) ∈ q2(I ).
From this, it is correct to conclude q1 ⊑ q2.
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Another Example

q1 : Answer(x)← Owns(x , iPad),Owns(x , iPod);

q2 : Answer(y)← Owns(y , iPad).

1. Freezing q1 gives us I1 := {Owns(0, iPad),Owns(0, iPod)} and
Answer(0) ∈ q1(I1).
Since also Answer(0) ∈ q2(I1), it is correct to conclude q1 ⊑ q2.

2. Freezing q2 gives us I2 := {Owns(42, iPad)} and Answer(42) ∈ q2(I2).
Since Answer(42) ̸∈ q1(I2), it is correct to conclude q2 ̸⊑ q1.

3. {y 7→ x} is a homomorphism from q2 to q1.

4. There is no homomorphism of q1 to q2.
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Homomorphism Theorem

Let q1 and q2 be conjunctive queries.
A homomorphism from q2 to q1 is a substitution µ such that

▶ µ maps the head of q2 to the head of q1; and

▶ µ maps every subgoal of q2 to a subgoal of q1.

For example,

q1 : Answer(x , z)← Knows(x , y),Knows(y , z);

q2 : Answer(x , z)← Knows(x , u),Knows(v , z).

A homomorphism µ from q2 to q1 is µ = {x 7→ x , z 7→ z , u 7→ y ,
v 7→ y}.
Theorem (Homomorphism Theorem)

q1 ⊑ q2 ⇐⇒ there exists a homomorphism from q2 to q1
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Valuation and Substitution

▶ A valuation maps variables to constants.

▶ A substitution maps variables to variables or constants.

▶ A renaming is a substitution that is injective (i.e., no two
distinct variables are substituted with the same variable) and
maps no variable to a constant.

▶ It is understood that any constant is mapped to itself.
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Homomorphism Theorem: Example

q1 : Answer(x)← Knows(x , y),Knows(y , x),Knows(y ,Don);

q2 : Answer(v)← Knows(u, v),Knows(v , z).

▶ A homomorphism µ from q2 to q1 is µ = {v 7→ x , u 7→ y ,
z 7→ y}. Hence, q1 ⊑ q2.

▶ There exists no homomorphism from q1 to q2, hence q2 ̸⊑ q1.

70 / 90



Homomorphism Theorem: Sketch of Proof

Theorem (Homomorphism Theorem)

q1 ⊑ q2 ⇐⇒ there exists a homomorphism from q2 to q1

=⇒ Take the canonical database for q1. Since the
frozen head of q1 is in the answer to q1, it must be in the
answer to q2. This implies a homomorphism from q2 to q1
(because the constants in the frozen database map
one-to-one to the variables in q1).

⇐= Let µ be the homomorphism from q2 to q1.
Assume that the fact h belongs to the answer to
q1 : H ← B on some database I . Then, there exists a
valuation θ such that θ(H) = h and θ(B) ⊆ I . The
composition θ ◦ µ shows that h ∈ q2(I ).
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Rough Visualization of the ⇐= Proof

q2 

q1 

I 

(q2) 

(q1) 
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Side Remark: 3-Colorability

Containment of conjunctive
queries is fundamental in
computer science, beyond
database courses.

x1n
x2n

x3n
x4n

x5n
���

PPP
@
@

b, g , r are three distinct constants, representing three colors.

q1 : Answer()← R(b, g),R(g , b),R(b, r),R(r , b),R(g , r),R(r , g)

q2 : Answer()← R(x1, x2),R(x2, x1), . . . ,R(x4, x5),R(x5, x4)

Whenever there is an edge between xi and xj in the graph, the body of

q2 contains R(xi , xj) and R(xj , xi ).

Check: q1 ⊑ q2 ⇐⇒ the graph encoded by q2 is 3-colorable
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Data Complexity and Query Complexity

For a database I and a query q, what is the time complexity of
computing q(I )?

One can distinguish between three complexities:

Data complexity Time complexity in terms of the size of the
database, for a fixed query. This is the complexity
that matters in most practical applications.

Query complexity Time complexity in terms of the size of the
query, for a fixed database. E.g., one could fix a
canonical database {R(b, g), R(g , b), R(b, r),
R(r , b), R(g , r), R(r , g)}.

Combined complexity Time complexity in terms of both the size of
the database and the size of the query.

The data complexity of datalog is polynomial-time , but the
query complexity is already exponential-time for conjunctive
queries (unless P = NP).
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Side Remark: Satisfiability

φ = (p ∨ q) ∧ (¬q ∨ r) ∧ (¬r ∨ p) ∧ (¬q ∨ ¬r)

q1 : Answer() ← PP(0, 1),PP(1, 0),PP(1, 1),

NP(0, 0),NP(1, 1),NP(0, 1),

NN(0, 1),NN(1, 0),NN(0, 0)

q2 : Answer() ← PP(p, q),NP(q, r),NP(r , p),NN(q, r)

A homomorphism from q2 to q1 is µ = {p 7→ 1, q 7→ 0, r 7→ 0}.
µ is also a satisfying truth assignment for φ.

Check: q1 ⊑ q2 ⇐⇒ the 2-CNF formula encoded by q2 is
satisfiable
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Query Optimization for Conjunctive Queries

A conjunctive query is minimal if it is not equivalent to any
conjunctive query with a strictly smaller number of subgoals.

Theorem
For every conjunctive query q1 : H ← B1, there exists a subset
B2 ⊆ B1 such that q2 : H ← B2 is minimal and equivalent to q1.

Theorem
If two minimal conjunctive queries are equivalent, then they are
identical up to a renaming of variables.

For the proofs, see A Primer on the Containment Problem for
Conjunctive Queries.
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Unions of Conjunctive Queries

A union of conjunctive queries is a finite set Q = {q1, . . . , qℓ} of
conjunctive queries, all with the same head predicate.
The semantics is natural: Q(I ) =

⋃ℓ
i=1 qi (I ).

Theorem
For Q1 and Q2 unions of conjunctive queries,

Q1 ⊑ Q2 ⇐⇒ ∀q ∈ Q1∃p ∈ Q2 : q ⊑ p

The proof of ⇐= is straightforward. For the =⇒ direction, see
what happens if we take the canonical database for any q ∈ Q1.
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Query Optimization for Unions of Conjunctive Queries

Check:

Answer(y) ← Knows(y , x),Knows(x , y),Knows(y ,Don)

Answer(y) ← Knows(x , y),Knows(y , x),Knows(y , z)

is equivalent to

Answer(y) ← Knows(x , y),Knows(y , x)
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UCQ ≡ SPJRU

σA=c(E ∪ F ) ≡ σA=c(E ) ∪ σA=c(F )

σA=B(E ∪ F ) ≡ σA=B(E ) ∪ σA=B(F )

πX (E ∪ F ) ≡ πX (E ) ∪ πX (F )

ρA 7→B(E ∪ F ) ≡ ρA7→B(E ) ∪ ρA 7→B(F )

E ⋊⋉ (F ∪ G ) ≡ (E ⋊⋉ F ) ∪ (E ⋊⋉ G )

(E ∪ F ) ⋊⋉ G ≡ (E ⋊⋉ G ) ∪ (F ⋊⋉ G )

=⇒ every expression E in SPJRU can be equivalently rewritten in
the form E1 ∪ E2 ∪ · · · ∪ Eℓ where each Ei is union-free (i.e., each
Ei is a conjunctive query).

Note: the last two rules result in an exponential blowup in the size
of the query (but that does not matter if we are only concerned
about data complexity).
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Containment of Conjunctive queries in Datalog Queries

[slide added for completeness]

Let q1 be a conjunctive query, and q2 a datalog query. To test
whether q1 ⊑ q2:

1. Freeze the body of q1 by turning each of its subgoals into
facts in the database.

2. Apply q2 to the canonical database.

3. If the frozen head of q1 is derived by q2, then q1 ⊑ q2.
Otherwise, not.
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Containment of Conjunctive Queries with Safe Atomic
Negation

Failure of the “canonical database” approach.

q1 : Answer() ← R(x , y , z)

q2 : Answer() ← R(x , y , z),¬R(z , x , y)

▶ Clearly, q1 ̸≡ q2, but
▶ q1 and q2 agree on {R(a, b, c)}; and
▶ q1 and q2 even agree on I = {R(a, b, c),R(c , a, b)} (because

R(c , a, b) ∈ I and R(b, c , a) ̸∈ I ).

▶ q1 and q2 disagree on I = {R(a, b, c),R(c, a, b),R(b, c , a)}.

83 / 90



Containment of Conjunctive Queries with Safe Atomic
Negation

The Levy-Sagiv test [LS93] for testing q1 ⊑ q2, where q1, q2 are
queries without constants.

▶ We use an alphabet A of k constants, where k is the number
of variables in q1.

▶ We consider all databases I whose active domain is contained
in A. If q1(I ) ⊆ q2(I ) for each of these canonical databases,
then q1 ⊑ q2, and if not, then not.

That is, if q1 ̸⊑ q2, then there exists a database I whose active
domain contains no more than k constants such that
q1(I ) ⊈ q2(I ).
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Choice of constants

The choice of constants in A is not important, because database
queries q are generic:

for each permutation σ of constants, q(σ(I )) = σ(q(I )).
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Correctness Proof (Sketch)

1. Assume that for every database I in the Levy-Sagiv test,
q1(I ) ⊆ q2(I ).

2. Let E be an arbitrary database, and let t be a fact such that
t ∈ q1(E ). It suffices to show t ∈ q2(E ).

3. Let {c1, . . . , cn} be the (necessarily finite) set of constants that
variables of q1 are mapped to when showing t ∈ q1(E ).

4. Let D be the database containing all (and only) the facts of E all of
whose components are in {c1, . . . , cn}. From 1 and genericity, it
follows q1(D) ⊆ q2(D). From t ∈ q1(D) (because t ∈ q1(E )), it
follows t ∈ q2(D).

5. The valuation that shows t ∈ q2(D) maps positive subgoals of q2 to
facts in E , and maps negative subgoals of q2 to facts not in E
(Why?). Hence, t ∈ q2(E ). Recall that every variable that occurs in
q2, occurs in a nonnegated subgoal of q2 (safety).
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Correctness Proof (in More Detail)
1. Assume q1(I ) ⊆ q2(I ) for every database I in the Levy-Sagiv test.

2. Let E be an arbitrary database, and let t be a fact such that
t ∈ q1(E ). It suffices to show t ∈ q2(E ).

3. Let B+
1 and B+

2 be the sets of positive subgoals in, respectively, q1
and q2. Let H1 and H2 be the heads of, respectively, q1 and q2.

4. Since t ∈ q1(E ), there is a valuation θ such that θ(H1) = t,
θ(B+

1 ) ⊆ E , and θ maps negative subgoals of q1 to facts not in E .

5. Let D be the database that contains all (and only) facts of E that
use only constants occurring in θ(B+

1 ). Clearly, θ(B
+
1 ) ⊆ D ⊆ E .

From item 1 and genericity, it follows q1(D) ⊆ q2(D). From
t ∈ q1(D) (because t ∈ q1(E )), it follows t ∈ q2(D). Hence, there
is a valuation µ such that µ(H2) = t, µ(B+

2 ) ⊆ D, and µ maps
negative subgoals of q2 to facts not in D.

6. Let ¬R(x⃗) be a subgoal of q2, and let b⃗ = µ(x⃗). Since every
variable of x⃗ occurs in B+

2 (safety) and since µ(B+
2 ) ⊆ D, it follows

that R(b⃗) uses only constants occurring in D. Since R(b⃗) /∈ D (by

item 5), we have R(b⃗) /∈ E (by our construction of D). Thus, µ
maps negative subgoals of q2 to facts not in E . Hence, t ∈ q2(E ). 87 / 90



Example

q1 : Ans(x , z)← Knows(x , y),Knows(y , z),¬Knows(x , z)
q2 : Ans(x , z)← Knows(x , y),Knows(y , z),Knows(y , u),¬Knows(x , u)

Is q1 ⊑ q2?

The query q1 contains three variables. Let A = {0, 1, 2}.
▶ Let I = ∅. Since q1(I ) ⊆ q2(I ) = ∅, this is not a counterexample for

q1 ⊑ q2.

▶ . . .

▶ Let I = {Knows(0, 1),Knows(1, 0)}, a database whose active
domain is contained in A. We have q1(I ) = {Ans(0, 0), Ans(1, 1)}.
Since q1(I ) ⊆ q2(I ), this is not a counterexample for q1 ⊑ q2.

▶ . . .

After a lot (but finite amount) of work, we will have found no
counterexample for q1 ⊑ q2. It is correct to conclude q1 ⊑ q2.
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Example

q1 : Ans(x , z)← Knows(x , y),Knows(y , z),¬Knows(x , z)
q2 : Ans(x , z)← Knows(x , y),Knows(y , z),Knows(y , u),¬Knows(x , u)

Is q2 ⊑ q1?

Let I = {Knows(0, 1),Knows(1, 2),Knows(0, 2),Knows(1, 3)}.
We have Ans(0, 2) ∈ q2(I ) and Ans(0, 2) ̸∈ q1(I ), hence q2 ̸⊑ q1.
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