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Qu’est ce que le clustering ? Définitions

La problématique

@ Regrouper les données en plusieurs groupes (=clusters) de maniere a
ce que chaque groupe soit homogeéne et se distingue des autres
groupes.

@ Contrairement a la classification ou on dispose d'un ensemble
d'apprentissage avec des classes connues, les clusters sont inconnus a
priori.
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Qu’est ce que le clustering ? Définitions

Mesures de similarité et de distance

Soit @ un ensemble d'objets. Une fonction d : O x O — R définit une
distance si elle satisfait les propriétés suivantes pour tout x,y,z € O :

d(x,y) 2 0

d(x,y) =0 ssix=y
d(x,y) = d(y,x)

d(x,z) < d(x,y)+d(y,z)
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Qu’est ce que le clustering ?

Exemple

0={R,B,G,Y} et 10
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Qu’est ce que le clustering ? Définitions

Qu'est-ce que le centre d'un cluster ?

Soit C C Q. Qu'est-ce que le centre de C ?
Au moins deux définitions sont raisonnables :

© Un objet m du cluster (i.e. m € C) pour lequel 3, d(m,x)? est
minimal (on appelle m aussi medoide ou médiane).

@ Un objet ¢ € O, pas nécessairement dans C, pour lequel
> xec d(c, x)? est minimal (on appelle ¢ aussi centroide ou moyenne).
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Qu’est ce que le clustering ? Définitions

Exemple

Soit C = {R, B, G}.

d(R,R)®+ d(R,B)*+ d(R,G)* = 136
d(B,R)?> + d(B, B)? + d(B, G)? 100
d(G,R)*+d(G,B)*+d(G,G)?> = 164

B est donc I'objet le plus central de C. Notez néanmoins :

d(Y,R)? +d(Y,B)?*+d(Y,G)?* = 67

J. Wijsen Clustering
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Qu’est ce que le clustering ? Définitions

Exemples en R”
Soient X = (x1,%2,...%n) €t ¥ = (y1,¥2, ... Yn) deux points en R".

Distance euclidienne : dgyc/(X,¥) = /211 (Xi — ¥i)?
Distance Manhattan ou “city block”

dManh X y Z |XI }/l

Distance de Minkowski : Soit g € N, g > 0.

dMink(q)(X: ¥) = Z Ixi — yil9
Notez : deuci(X, ¥) = dumink(2)(X, ¥) et dmann(X,¥) = dmink(1) (X, ¥)
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Qu’est ce que le clustering ? Définitions

Qu'est-ce qu'un cluster ?

Partitionner un ensemble S C O en plusieurs clusters.
Plusieurs charactérisations du concept “cluster” sont raisonnables. Par ex.

Centrisme Chaque objet est plus proche du centre de son propre cluster
que de tout autre centre. Il suffit donc de spécifier les
centres pour connaitre les clusters.

Séparatisme Chaque objet est plus proche de tout objet de son propre
cluster que de n'importe quel objet d'un autre cluster.

Atteignabilité Chaque objet appartient au méme cluster que son voisin le
plus proche.
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Qu’est ce que le clustering ? Définitions

Exemples en Rr?

Le clustering suivant satisfait “atteignabilité” mais pas “séparatisme”, ni
“centrisme”.
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Qu’est ce que le clustering ? Définitions

Exemples en Rr?

Le clustering suivant satisfait “centrisme” et “atteignabilité” mais pas
“séparatisme” .

Le clustering suivant satisfait “centrisme” mais pas “atteignabilité”.
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Les clusters disjoints
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Les clusters pas forcément disjoints
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Les clusters probabilistes
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Qu’est ce que le clustering ? Types de clustering

Dendrogram : une hiérarchie de clusters
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Clustering en Weka

Plusieurs “clusterers”, entre autres :
@ clusterers.SimpleKMeans
@ clusterers.FarthestFirst
e clusterers.EM (expectation-maximization)
@ clusterers.HierarchicalClusterer
@ clusterers.DBScan
Quatre “cluster modes” :
Use training set : Cluster the same set that the clusterer is trained on.
Supplied test set : Cluster a user-specified dataset.

Percentage split : Train on a percentage of the data and cluster the
remainder.

Classes to clusters evaluation : Evaluate clusters with respect to a class.
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kMeans et kMedoids

Le clustering vu comme un probleme d'optimisation

On souhaite partitionner un ensemble S en k > 2 clusters.
Soient Cy, Gy, ..., C, des clusters avec centres ¢y, ¢, ..., Ck
respectivement. Définissons la dispersion intra-cluster comme :

k
SSE = Z Z d(ci, x)?

i=1 xe(C;

(SSE : Sum of the Squared Error)

Le but est de trouver un clustering avec une dispersion intra-cluster
minimale.
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kMeans et kMedoids

Principe de kMeans clustering

Partitionner un ensemble S en k clusters.
@ Choisir les moyennes my, mo, ..., mg.
@ Attribuer tout objet de S a la moyenne la plus proche. Soient

Gy, G, ..., Cy les ensembles d'objets attribués respectivement a
my,mo, ..., M.

© Ajuster les moyennes :

my; := la moyenne de (;
my := la moyenne de G,
my = la moyenne de Cj

Q Goto 2.
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kMeans : algorithme

Algorithm 8.1 Basic K-means algorithm.
1: Sclect K points as initial centroids.
2: repeat
3 Form K clusters by assigning cach point to its closest centroid.
4:  Recompute the centroid of each cluster.
until Centroids do not change.

[

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to
Data Mining. Addison Wesley, 2006
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kMeans et kMedoids

kMeans : Example

Iteration 1
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Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to
Data Mining. Addison Wesley, 2006
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kMeans et kMedoids

kMeans : Example
Iteration 2
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Data Mining. Addison Wesley, 2006
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kMeans et kMedoids

kMeans : Example

Iteration 3
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Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to
Data Mining. Addison Wesley, 2006
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kMeans et kMedoids

kMeans : Example

lteration 4
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Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to
Data Mining. Addison Wesley, 2006
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kMeans et kMedoids

kMeans : Example

Iteration 5
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kMeans et kMedoids

kMeans : Example

Iteration 6
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Data Mining. Addison Wesley, 2006
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kMeans et kMedoids

Discussion

@ Comment déterminer k 7

@ kMeans garantit “centrisme” (voir transparent 8), mais pas
“atteignabilité”.

b d
3 ¢
Résultat si on démarre avec a, b :
b d
Ce )
Ce °)
a C

Une meilleure solution est {{a, b}, {c,d}}.
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kMedoids clustering

Partitionner un ensemble S en k clusters.

@ Choisir les medoides my, mp, ..., my € S.

@ Chercher mj € {my,my,...,my} et pe S\ {my, m,
remplacer m; par p améliore le clustering.

@ Goto 2.

J. Wijsen Clustering
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Farthest First

Pour un objet o et en ensemble S d'objets, définissons
d(o,S) := min{d(o,p) | p € S}.
@ Choisir un point ms.
@ Choisir pour my le point le plus éloigné de m;.
@ Choisir pour ms le point le plus éloigné de {my, my}.
@ Choisir pour my le point le plus éloigné de {my, my, ms}.
° ...

e Choisir pour my le point le plus éloigné de {my, my,... ,my_1}.

J. Wijsen Clustering 31/76



kMeans et kMedoids

Farthest First k = 3

@ Le premier point est choisi au hasard.
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kMeans et kMedoids

Farthest First k = 3 : garantie de performance

@ Le rayon de chaque cluster est < R,.
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kMeans et kMedoids

@ Tout 3-clustering contiendra un cluster regroupant deux points parmi
{1,2,3,4} (pigeon hole principle). Soit c le centre de ce cluster.

o i je{l1,2,3,4} eti#].
je—=——oj
+cC
Soit r le rayon de ce cluster. Evidemment, r > d(c, i) et r > d(c, ).
Puisque d(i, ) + d(c,j) > d(i,j) > Ra, |r > Ra/2|

@ Tout 3-clustering contiendra donc un cluster avec rayon > Ry/2.

@ Les clusters trouvés pas Farthest First ont tous un rayon qui est au
pire deux fois ce rayon minimal.
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kMeans et kMedoids

Exemple
Rayon maximal
Farthest First Optimal(+)
1
(6 o ete o o 4 2.5
1 2
(o & o o (& o 2 1
3 2
(o+e ot(e o-+(e 1 0.5
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kMeans et kMedoids

Exercice
:4-\? 'E-'iﬁ.

P =
i

Supposons 1000 points en 2D distribués de maniére uniforme entre (0, 0)
et (100, 100). Supposons m; = (50, 75).
@ Comment l'algorithme FarthestFirst va-t-il partitionner ce jeu de
données en deux clusters ?
@ Comment I'algorithme SimpleKMeans va-t-il partitionner ce jeu de
données en deux clusters a partir des deux centres de
FarthestFirst 7
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kMeans et kMedoids

Générer des nombres aléatoires

Pour générer des nombres aléatoires en MS Excell :

@ suivre Outils > Macros complémentaires et cocher Utilitaire
d’analyse;

@ puis utiliser Outils > Utilitaire d’analyse > Génération de nombres
aléatoires.
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kMeans et kMedoids

Note pratique

Voir http://wuw.xycoon.com/nor_random.htm
Approximation pour générer des points selon une distribution normale avec

p=0eto=1:
S U6
i=1

avec U; un nombre aléatoire entre 0 et 1.

Il est clair que le resultat se trouve entre —6 et +6, avec une moyenne de
0.
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Le clustering basé sur les probabilités
Outline
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Le clustering basé sur les probabilités

Distribution normale

Distribution normale avec moyenne u et écart type o :

f(x) = e~ (x—n)?/(20?)

oV 2

La probabilité qu'une valeur se trouve dans l'interval [a, b] :

/ab f(x)dx

Ona [TXf(x)dx=1 ["7f(x)dx~068 ["77F(x)dx~ 095

Pour petit €,
ate/2
/ F(x)dx ~ - £(a)
a—¢/2
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Le clustering basé sur les probabilités

Génération des clusters
Soit pa + pg = 1. Générer n valeurs de maniere suivante :

(i) Générer pa - n valeurs selon la distribution fga;
(ii) Générer pg - n, valeurs selon la distribution fg.

fs

fa

—L—=(m=pa)"/00%)

¥,

A 295 ]

T A an

Cette génération dépend de cing paramétres : pa, ta, 0, 4B, OB.
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Le clustering basé sur les probabilités

Retrouver les clusters

Soit S un ensemble avec n valeurs.
@ On suppose que les valeurs on été générées comme expliqué ci-dessus.
@ On souhaite retrouver les cing paramétres.

@ Plus précisément, on souhaite trouver les cinq paramétres qui
maximisent le log-likelihood :

L= Z log(pa x fa(x) + ps % fe(x))
x€S

~ probabilité de générer x
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Le clustering basé sur les probabilités

Estimer les cinq parametres

Supposons qu’on observe deux clusters A et B :
o A= {x1,x2,...,Xm,}

e B={yi,y2, .-, Yms}
Estimer les cinq parameétres ua, 04, 48,08, pa est facile :

sample mean s = miA ST X
sample variance 03 = ﬁ S (% — pa)?
— ma
PA = matme

Idem pour B.
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EM-clustering

On demande de diviser I'ensemble S avec n valeurs en deux clusters A et

B. On ne connait aucun des cinq parametres.
© Choisir deux clusters A et B =5\ A de départ.
Q Calculer pua, 04, 18,08, PA.

© Expectation : Calculer Pr(A | x) et Pr(B | x) pour tout x € S.
©Q Maximization :

. 2xes Pr(Alx)-x  Tees PrA) (x—pa)? _ 2oxes Pr(Alx)
pa = Zf:s Pr(A|x) 0/24 T eixes Pr(Alx) . PA = Esn
Idem pour B.
@ Goto 3.
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Le clustering basé sur les probabilités

Une fois les cing parameétres connus, la probabilité Pr(A | x) qu'une valeur

X appartient a cluster A est calculé comme suit :

Pr(x | A) x Pr(A) N fa(x) X pa

Pr(A| x) = Pr(x)
PrB|x) — Pr(x | Er)(;:) Pr(B)

On sait calculer Pr(A | x) a partir de :

Pr(A | X) _ fA(X) X PA
Pr(B | x) fa(x) x ps

Pr(A| x)+Pr(B|x) = 1
Deés lors :

fa(x) x pa

Pr(A| x)

J. Wijsen Clustering
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Le clustering basé sur les pr lités

De méme manieére :

fB(X) X pPB

Pr(B|x) = fa(x) x pa+ fa(x) x ps

Comme chez Naive Bayes, les dénominateurs sont les mémes et peuvent
étre “oubliés” des le début.
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Le clustering basé sur les probabilités

Exercice

o Utiliser MS Excell pour génerer deux clusters en 2D.

Choisir un cluster avec centre (0,0) et une distribution normale
N(0,1) selon les deux axes.

e Choisir un cluster avec centre (2,2) et une distribution normale
N(2,1) selon les deux axes.

Chaque cluster contient > 100 points.

Retrouver les clusters a |'aide de EM.
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Bottom-up hierarchical clustering
Outline

@ Bottom-up hierarchical clustering
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Bottom-up hierarchical clustering

Principe de bottom-up hierarchical clustering

© Au départ, chaque objet constitue un cluster avec un seul élément.

@ A plusieurs reprises, joindre les clusters les plus proches. (Comment
mesurer la distance entre deux clusters ?7)
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Bottom-up hierarchical clustering

Bottom-up hierarchical clustering : algorithme

Algorithm 8.3 Basic agglomerative hierarchical clustering algorithm.
1: Compute the proximity matrix, if necessary.
2: repeat
3: Merge the closesl two clusters.
4;  Update the proximity matrix to reflect the proximity between the new
cluster and the original clusters.
5: until Only one cluster remains.

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to
Data Mining. Addison Wesley, 2006
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Bottom-up hierarchical clustering

Single-link et complete-link

Single-link The distance between C and C’ is defined as
min{d(0,0') |0 € C,0' € C'}.
Complete-link The distance between C and C' is defined as
max{d(o,0’) | o€ C,0o' € C'}.

Exercice Appliquer sur S = {0,2,5,9}.
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Bottom-up hierarchical clustering

Hiéarchie vs performance

Sl LA

optimal 3-clustering optimal 2-clustering
mauvais 2-clustering mauvais 3-clustering
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Le clustering basé sur I'atteignabilité
Outline
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Le clustering basé sur |'atteignabilité

Principe

Fixer un seuil €.
O Si d(X,y) < ¢, alors X et y appartiennent au méme cluster.
@ Si X et y appartiennent au méme cluster et d(y,Z) < ¢, alors X et Z
appartiennent au méme cluster.

© Deux points appartiennent au méme cluster seulement si les regles 1
et 2 I'imposent.
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Le clustel

ng basé sur I'atteignabil

Probleme des “ponts”
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Principe de DBSCAN

Fixer un seuil . Un point est X est dense s'il y a au moins § points ¥ qui
satisfont d(X, y) < e.

O Si d(X,y) < e et X est dense, alors X et y appartiennent au méme
cluster.

@ Si X et y appartiennent au méme cluster et d(y,Z) < e et y est
dense, alors X et Z appartiennent au méme cluster.

© Deux points appartiennent au méme cluster seulement si les regles 1
et 2 I'imposent.
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Le clustering basé sur |'atteignabilité

Probleme des “ponts”

Supposons que la distance entre deux points voisins est plus petit que ¢.
Prenons § = 4. Les points noirs sont non-denses et n’appartiennent a
aucun cluster! Le point rouge le plus a droite est non-dense. Le point bleu
le plus 3 gauche es'g)on—dense.
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Le clustering basé sur |'atteignabilité

Core points, border points, and noise points

border pomt _core pomt

///’ '"““\ nolfe point / /\ \
. VR

.'/ @ A |
b ° 1
.\ I \‘y'
\ Eps
\ / 1N \ / /
P ____,/ \
\\""ﬁ-.
Figure 8.20. Center-based s
Figure 8.21. Core, border, and noise points.

density.
Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to

Data Mining. Addison Wesley, 2006
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DBSCAN : algorithme

Algorithm 8.4 DBSCAN algorithm.

1: Label all points as core, border, or noise points.

: Eliminate noise points.

: Put an edge between all core poluts that are within Eps of each other.

: Make each group of connected core points into a separate cluster.

: Assign each border point to one of the clusters of its associated core points.

R

o

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to
Data Mining. Addison Wesley, 2006
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Le clustering basé sur I'atteignabilité

DBSCAN : Example

{a) Clusters found by DBSCAN,

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to

Data Mining. Addison Wesley, 2006
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Le clustering basé sur |'atteignabilité

DBSCAN : Example

x x x x
% = * 3x X ox X ®x
x X ’4“-3 y X % X%, xx + XX %
% "
x % Ooo'oboo%nm o o g%boﬁ%% X %% x
b2 o SRS gTTa,d xX o g %
% ogc(zacg QO}B(I?J - UO?EE’O% oo % x&D%'jo x
x Con
%y o* aP Mam” X xo * xegbn
xgo Xo 50 %C.QEO; gooo x Tag o%‘}% ” %%%‘_ﬁx&
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x So00+ Oy dod K TRe et X et}
985 oSV IeP eBe  Cafes | xITuLe
D@ =} r : B T
x 90ca %om‘{f’?'" 3%00 ’%Owigi?: 35%%0200%5’0&
XE).O § g ogoo $O+ éﬁ: o0 g 290, X
Befs eranse Foo G S

=1%) b x
* o0 0% ()
X b x %
x X X
* — Noise Point + — Border Point 2 - Gore Point

(1) Clove, horder, and naise pointa.

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to
Data Mining. Addison Wesley, 2006
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Le clustering basé sur |'atteignabilité

’ﬁ!‘% Exercice DBSCAN
= %;B‘

o Exécuter DBSCAN sur dbscan.arff avec différentes valeurs pour
epsilon et minPoints.

J. Wijsen Clustering



Outline

@ Les algorithmes génétiques

J. Wijsen Clustering



Les algorithmes génétiques

L’'encodage

e Partitionner S = {o01,...,0,} en k clusters C, Gy, ..., Cx. Soit
K ={1,2,...,k}. Un élément (i1, i2,...,In) € K" représente le
clustering ot 01 € Cj,,00 € G, ..., 0, € C,.

e Notez que chaque permutation de (1,2,..., k) donne le méme
clustering!

e Chaque élément de K" est un individu (ou chromosome). L'aptitude
d'un individu pourrait étre I'inverse de la dispersion intra-cluster.

@ Une population est un ensemble d'individus.
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Les algorithmes génétiques

Les opérateurs

@ Le cross-over de (i1,...,In) €t (j1,...,jn) entre les positions [ et [+ 1
donne <i1, N N | AR T ,_j,-,> et <_/1, N T A TR in>.

@ La mutation change une valeur dans un individu de maniere arbitraire.

@ Le principe de survival of the fittest crée une nouvelle population avec
le méme nombre d'individus. La probabilité d'un individu de se
retrouver (une ou plusieurs fois) dans la prochaine génération, est
proportionnel a son aptitude (roue de la fortune).
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Les algorithmes génétiques

L'algorithme

fixer la population de départ
loop

appliquer cross-over et mutation
choisir les individus de la prochaine génération (survival of the

fittest)
end-loop

66 / 76



Outline

@ Cluster Evaluation
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Cluster Evaluation

Cohesion and Separation

{a) Cohesion. () Separation.
Figure 8.27. Graph-based view of cluster cohesion and separation.

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to
Data Mining. Addison Wesley, 2006
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Cluster Evaluation

Cohesion and Separation w.r.t. Prototypes
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{a) Cohesion. {b) Separation.

Figure 8.28. Prototype-based view of cluster cohesion and separation.

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to
Data Mining. Addison Wesley, 2006

J. Wijsen Clustering 69 / 76



Cluster Evaluation

Visualize Similarity Matrix
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{a) Well-separaled clusters (b} Similarity matrix sorted by K-means
cluster labels.

Figure 8.30. Similarity matrix for well-separated clusters.

This technique is not limited to clustering in 2D!

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to
Data Mining. Addison Wesley, 2006
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Cluster Evaluation

Visualize Similarity Matrix
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M v sorted by K-means
{e} Three clisters fomnd by T-means. Cluster labels-

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to
Data Mining. Addison Wesley, 2006
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Pearson’s Correlation Coefficient

A measure of the linear relationship between attributes.
Let X = (x1,x2,...,xn) and ¥ = (y1,¥2,- -, ¥n)-
covar(X, y)

Vvar(X) - \/var(y)
1

corr(X,y) =

covar(X,y) = ] Y1k —X)(vk — %)
. 1 -
var(X) = P Y7 (x — X)?
1
X = ;ZZZW
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Cluster Evaluation

Pearson Correlation Coefficient
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Cluster Evaluation
Note

On the following slides, correlation between

a1l ar ans bi1 b1z b1z
a1 ax axs | and | by by b3
a1 a3 asz bs1 b3 b33

means correlation between

(311,3127 413, a21, 422, 423, 431, 3327333) and
(b117 b12a b13a b21; b227 b237 b317 b327 b33)-
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Cluster Evaluation

Correlation for Partitional Clustering

Assume a partitional clustering of n points p1, po,. .., Pn.

Compute correlation between similarity matrix S[n x n| and ideal similarity
matrix C[n x n] based on cluster labels.

e §;j is the similarity between points p; and pj;

o C.— 1 if p; and p; belong to the same cluster
Y771 0 otherwise
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Cluster Evaluation

Correlation for Hierarchical Clustering

Assume a hierarchical clustering of n points p1, p2,. .., pn.
Compute correlation between distance matrix D[n x n] and cophenetic
distance matrix C[n x n].

@ D;j is the distance between points p; and p;;

e (;; is the cophenetic distance between points p; and p;.

The cophenetic distance between p; and p; is defined as follows.

Let A be the smallest cluster that contains both p; and p;.
Clearly, A has two ‘child” clusters By and By such that p; € By

and p; € By. The cophenetic distance between p; and pj is the
distance between By and Bs.
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