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Qu’est ce que le clustering ? Définitions

La problématique

Regrouper les données en plusieurs groupes (=clusters) de manière à
ce que chaque groupe soit homogène et se distingue des autres
groupes.

Contrairement à la classification où on dispose d’un ensemble
d’apprentissage avec des classes connues, les clusters sont inconnus a
priori.
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Qu’est ce que le clustering ? Définitions

Mesures de similarité et de distance

Soit O un ensemble d’objets. Une fonction d : O× O −→ R définit une
distance si elle satisfait les propriétés suivantes pour tout x , y , z ∈ O :

d(x , y) ≥ 0
d(x , y) = 0 ssi x = y
d(x , y) = d(y , x)
d(x , z) ≤ d(x , y) + d(y , z)
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Qu’est ce que le clustering ? Définitions

Exemple

O = {R ,B ,G ,Y } et

d R B G Y

R 0 6 10 3
B 6 0 8 3
G 10 8 0 7
Y 3 3 7 0

B
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3

3

7
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Qu’est ce que le clustering ? Définitions

Qu’est-ce que le centre d’un cluster ?

Soit C ⊆ O. Qu’est-ce que le centre de C ?
Au moins deux définitions sont raisonnables :

1 Un objet m du cluster (i.e. m ∈ C ) pour lequel
∑

x∈C d(m, x)2 est
minimal (on appelle m aussi medöıde ou médiane).

2 Un objet c ∈ O, pas nécessairement dans C , pour lequel
∑

x∈C d(c , x)2 est minimal (on appelle c aussi centröıde ou moyenne).
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Qu’est ce que le clustering ? Définitions

Exemple

Soit C = {R ,B ,G}.

d(R ,R)2 + d(R ,B)2 + d(R ,G )2 = 136

d(B ,R)2 + d(B ,B)2 + d(B ,G )2 = 100

d(G ,R)2 + d(G ,B)2 + d(G ,G )2 = 164

B est donc l’objet le plus central de C . Notez néanmoins :

d(Y ,R)2 + d(Y ,B)2 + d(Y ,G )2 = 67
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Qu’est ce que le clustering ? Définitions

Exemples en R
n

Soient ~x = (x1, x2, . . . xn) et ~y = (y1, y2, . . . yn) deux points en R
n.

Distance euclidienne : dEucl(~x , ~y) =
√∑n

i=1(xi − yi )2

Distance Manhattan ou “city block” :

dManh(~x , ~y) =

n∑

i=1

|xi − yi |

Distance de Minkowski : Soit q ∈ N, q > 0.

dMink(q)(~x , ~y) =
q

√
√
√
√

n∑

i=1

|xi − yi |q

Notez : dEucl(~x , ~y) = dMink(2)(~x , ~y) et dManh(~x , ~y) = dMink(1)(~x , ~y)
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Qu’est ce que le clustering ? Définitions

Qu’est-ce qu’un cluster ?

Partitionner un ensemble S ⊆ O en plusieurs clusters.
Plusieurs charactérisations du concept “cluster” sont raisonnables. Par ex.

Centrisme Chaque objet est plus proche du centre de son propre cluster
que de tout autre centre. Il suffit donc de spécifier les
centres pour connâıtre les clusters.

Séparatisme Chaque objet est plus proche de tout objet de son propre
cluster que de n’importe quel objet d’un autre cluster.

Atteignabilité Chaque objet appartient au même cluster que son voisin le
plus proche.

J. Wijsen Clustering 10 / 76



Qu’est ce que le clustering ? Définitions

Exemples en R
2

Le clustering suivant satisfait “atteignabilité” mais pas “séparatisme”, ni
“centrisme”.

••
••
••
••
••
••
••
••
••
••
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Qu’est ce que le clustering ? Définitions

Exemples en R
2

Le clustering suivant satisfait “centrisme” et “atteignabilité” mais pas
“séparatisme”.

••••••••••••••••••••
••••••••••••••••••••

Le clustering suivant satisfait “centrisme” mais pas “atteignabilité”.

• • • • •• • • • •
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Définitions
Types de clustering

2 kMeans et kMedoids
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5 Le clustering basé sur l’atteignabilité
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Qu’est ce que le clustering ? Types de clustering

Les clusters disjoints

a

b
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d
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Qu’est ce que le clustering ? Types de clustering

Les clusters pas forcément disjoints
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Qu’est ce que le clustering ? Types de clustering

Les clusters probabilistes

1 2 3

a 0.3 0.4 0.3
b 0.1 0.2 0.7
c 0.4 0.5 0.1
...

...
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Qu’est ce que le clustering ? Types de clustering

Dendrogram : une hiérarchie de clusters
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Qu’est ce que le clustering ? Types de clustering

Clustering en Weka

Plusieurs “clusterers”, entre autres :

clusterers.SimpleKMeans

clusterers.FarthestFirst

clusterers.EM (expectation-maximization)

clusterers.HierarchicalClusterer

clusterers.DBScan

Quatre “cluster modes” :

Use training set : Cluster the same set that the clusterer is trained on.

Supplied test set : Cluster a user-specified dataset.

Percentage split : Train on a percentage of the data and cluster the
remainder.

Classes to clusters evaluation : Evaluate clusters with respect to a class.
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kMeans et kMedoids
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kMeans et kMedoids

Le clustering vu comme un problème d’optimisation

On souhaite partitionner un ensemble S en k ≥ 2 clusters.
Soient C1,C2, . . . ,Ck des clusters avec centres c1, c2, . . . , ck
respectivement. Définissons la dispersion intra-cluster comme :

SSE =
k∑

i=1

∑

x∈Ci

d(ci , x)
2

(SSE : Sum of the Squared Error)
Le but est de trouver un clustering avec une dispersion intra-cluster
minimale.
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kMeans et kMedoids

Principe de kMeans clustering

Partitionner un ensemble S en k clusters.

1 Choisir les moyennes m1,m2, . . . ,mk .

2 Attribuer tout objet de S à la moyenne la plus proche. Soient
C1,C2, . . . ,Ck les ensembles d’objets attribués respectivement à
m1,m2, . . . ,mk .

3 Ajuster les moyennes :

m1 := la moyenne de C1

m2 := la moyenne de C2

. . .

mk := la moyenne de Ck

4 Goto 2.
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kMeans et kMedoids

kMeans : algorithme

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to

Data Mining. Addison Wesley, 2006
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kMeans et kMedoids

kMeans : Example

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to

Data Mining. Addison Wesley, 2006
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kMeans et kMedoids

kMeans : Example
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kMeans et kMedoids

kMeans : Example

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to

Data Mining. Addison Wesley, 2006
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kMeans et kMedoids

kMeans : Example

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to

Data Mining. Addison Wesley, 2006
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kMeans et kMedoids

Discussion

Comment déterminer k ?

kMeans garantit “centrisme” (voir transparent 8), mais pas
“atteignabilité”.

a

b

c

d

Résultat si on démarre avec a, b :

a c

b d

Une meilleure solution est {{a, b}, {c , d}}.
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kMeans et kMedoids

kMedoids clustering

Partitionner un ensemble S en k clusters.

1 Choisir les medöıdes m1,m2, . . . ,mk ∈ S .

2 Chercher mj ∈ {m1,m2, . . . ,mk} et p ∈ S \ {m1,m2, . . . ,mk} tel que
remplacer mj par p améliore le clustering.

3 Goto 2.
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kMeans et kMedoids

Farthest First

Pour un objet o et en ensemble S d’objets, définissons
d(o, S) := min{d(o, p) | p ∈ S}.

Choisir un point m1.

Choisir pour m2 le point le plus éloigné de m1.

Choisir pour m3 le point le plus éloigné de {m1,m2}.
Choisir pour m4 le point le plus éloigné de {m1,m2,m3}.
. . .

Choisir pour mk le point le plus éloigné de {m1,m2, . . . ,mk−1}.
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kMeans et kMedoids

Farthest First k = 3

Le premier point est choisi au hasard.

1

2

3
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kMeans et kMedoids

Farthest First k = 3 : garantie de performance

Le rayon de chaque cluster est ≤ R4.

1

2

3

R2R3

4

R4
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kMeans et kMedoids

Tout 3-clustering contiendra un cluster regroupant deux points parmi
{1, 2, 3, 4} (pigeon hole principle). Soit c le centre de ce cluster.

i , j ∈ {1, 2, 3, 4} et i 6= j .

i j

+c

≥ R4

Soit r le rayon de ce cluster. Évidemment, r ≥ d(c , i) et r ≥ d(c , j).

Puisque d(i , c) + d(c , j) ≥ d(i , j) ≥ R4, r ≥ R4/2 .

Tout 3-clustering contiendra donc un cluster avec rayon ≥ R4/2.

Les clusters trouvés pas Farthest First ont tous un rayon qui est au
pire deux fois ce rayon minimal.
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kMeans et kMedoids

Exemple

Rayon maximal
Farthest First Optimal(+)

1
+ 4 2.5

1 2
+ + 2 1

1 23
+ + + 1 0.5
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kMeans et kMedoids

Exercice

Supposons 1000 points en 2D distribués de manière uniforme entre (0, 0)
et (100, 100). Supposons m1 = (50, 75).

1 Comment l’algorithme FarthestFirst va-t-il partitionner ce jeu de
données en deux clusters ?

2 Comment l’algorithme SimpleKMeans va-t-il partitionner ce jeu de
données en deux clusters à partir des deux centres de
FarthestFirst ?
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kMeans et kMedoids

Générer des nombres aléatoires

Pour générer des nombres aléatoires en MS Excell :

1 suivre Outils > Macros complémentaires et cocher Utilitaire
d’analyse;

2 puis utiliser Outils > Utilitaire d’analyse > Génération de nombres
aléatoires.
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kMeans et kMedoids

Note pratique

Voir http://www.xycoon.com/nor random.htm

Approximation pour générer des points selon une distribution normale avec
µ = 0 et σ = 1 :

12∑

i=1

Ui − 6

avec Ui un nombre aléatoire entre 0 et 1.
Il est clair que le resultat se trouve entre −6 et +6, avec une moyenne de
0.
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Le clustering basé sur les probabilités

Distribution normale

Distribution normale avec moyenne µ et écart type σ :

f (x) =
1

σ
√
2π

e−(x−µ)2/(2σ2)

La probabilité qu’une valeur se trouve dans l’interval [a, b] :

∫ b

a

f (x)dx

On a
∫ +∞

−∞
f (x)dx = 1

∫ µ+σ
µ−σ f (x)dx ≈ 0.68

∫ µ+2σ
µ−2σ f (x)dx ≈ 0.95

Pour petit ε,
∫ a+ε/2

a−ε/2
f (x)dx ≈ ε · f (a)
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Le clustering basé sur les probabilités

Génération des clusters

Soit pA + pB = 1. Générer n valeurs de manière suivante :
(i) Générer pA · n valeurs selon la distribution fA;
(ii) Générer pB · n, valeurs selon la distribution fB .

Cette génération dépend de cinq paramètres : pA, µA, σA, µB , σB .
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Le clustering basé sur les probabilités

Retrouver les clusters

Soit S un ensemble avec n valeurs.

On suppose que les valeurs on été générées comme expliqué ci-dessus.

On souhaite retrouver les cinq paramètres.

Plus précisément, on souhaite trouver les cinq paramètres qui
maximisent le log-likelihood :

L =
∑

x∈S

log(pA × fA(x) + pB × fB(x)
︸ ︷︷ ︸

∼ probabilité de générer x

)
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Le clustering basé sur les probabilités

Estimer les cinq paramètres

Supposons qu’on observe deux clusters A et B :

A = {x1, x2, . . . , xmA
}

B = {y1, y2, . . . , ymB
}

Estimer les cinq paramètres µA, σA, µB , σB , pA est facile :

sample mean µA = 1
mA

∑mA

i=1 xi

sample variance σ2
A = 1

mA−1

∑mA

i=1(xi − µA)
2

pA = mA

mA+mB

Idem pour B .
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Le clustering basé sur les probabilités

EM-clustering

On demande de diviser l’ensemble S avec n valeurs en deux clusters A et
B . On ne connâıt aucun des cinq paramètres.

1 Choisir deux clusters A et B = S \ A de départ.

2 Calculer µA, σA, µB , σB , pA.

3 Expectation : Calculer Pr(A | x) et Pr(B | x) pour tout x ∈ S .
4 Maximization :

µA :=
∑

x∈S Pr(A|x)·x
∑

x∈S Pr(A|x) σ2
A :=

∑
x∈S Pr(A|x)(x−µA)

2

∑
x∈S Pr(A|x) pA :=

∑
x∈S Pr(A|x)

n

Idem pour B .

5 Goto 3.
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Le clustering basé sur les probabilités

Une fois les cinq paramètres connus, la probabilité Pr(A | x) qu’une valeur
x appartient à cluster A est calculé comme suit :

Pr(A | x) =
Pr(x | A)× Pr(A)

Pr(x)
∼ fA(x)× pA

Pr(x)

Pr(B | x) =
Pr(x | B)× Pr(B)

Pr(x)

On sait calculer Pr(A | x) à partir de :

Pr(A | x)
Pr(B | x) =

fA(x)× pA
fB(x)× pB

Pr(A | x) + Pr(B | x) = 1

Dès lors :

Pr(A | x) =
fA(x)× pA

fA(x)× pA + fB(x)× pB
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Le clustering basé sur les probabilités

De même manière :

Pr(B | x) =
fB(x)× pB

fA(x)× pA + fB(x)× pB

Comme chez Naive Bayes, les dénominateurs sont les mêmes et peuvent
être “oubliés” dès le début.
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Le clustering basé sur les probabilités

Exercice

Utiliser MS Excell pour génerer deux clusters en 2D.

Choisir un cluster avec centre (0, 0) et une distribution normale
N(0, 1) selon les deux axes.

Choisir un cluster avec centre (2, 2) et une distribution normale
N(2, 1) selon les deux axes.

Chaque cluster contient > 100 points.

Retrouver les clusters à l’aide de EM.
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Bottom-up hierarchical clustering

Principe de bottom-up hierarchical clustering

1 Au départ, chaque objet constitue un cluster avec un seul élément.

2 A plusieurs reprises, joindre les clusters les plus proches. (Comment
mesurer la distance entre deux clusters ?)

J. Wijsen Clustering 49 / 76



Bottom-up hierarchical clustering

Bottom-up hierarchical clustering : algorithme

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to

Data Mining. Addison Wesley, 2006
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Bottom-up hierarchical clustering

Single-link et complete-link

Single-link The distance between C and C ′ is defined as
min{d(o, o ′) | o ∈ C , o ′ ∈ C ′}.

Complete-link The distance between C and C ′ is defined as
max{d(o, o ′) | o ∈ C , o ′ ∈ C ′}.

Exercice Appliquer sur S = {0, 2, 5, 9}.

J. Wijsen Clustering 51 / 76



Bottom-up hierarchical clustering

Hiéarchie vs performance

optimal 3-clustering optimal 2-clustering
mauvais 2-clustering mauvais 3-clustering
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3 Le clustering basé sur les probabilités

4 Bottom-up hierarchical clustering

5 Le clustering basé sur l’atteignabilité
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Le clustering basé sur l’atteignabilité

Principe

Fixer un seuil ε.

1 Si d(~x , ~y) ≤ ε, alors ~x et ~y appartiennent au même cluster.

2 Si ~x et ~y appartiennent au même cluster et d(~y ,~z) ≤ ε, alors ~x et ~z
appartiennent au même cluster.

3 Deux points appartiennent au même cluster seulement si les règles 1
et 2 l’imposent.
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Le clustering basé sur l’atteignabilité

Problème des “ponts”
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Le clustering basé sur l’atteignabilité

Principe de DBSCAN

Fixer un seuil ε. Un point est ~x est dense s’il y a au moins δ points ~y qui
satisfont d(~x , ~y) ≤ ε.

1 Si d(~x , ~y) ≤ ε et ~x est dense, alors ~x et ~y appartiennent au même
cluster.

2 Si ~x et ~y appartiennent au même cluster et d(~y ,~z) ≤ ε et ~y est
dense, alors ~x et ~z appartiennent au même cluster.

3 Deux points appartiennent au même cluster seulement si les règles 1
et 2 l’imposent.
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Le clustering basé sur l’atteignabilité

Problème des “ponts”

Supposons que la distance entre deux points voisins est plus petit que ε.
Prenons δ = 4. Les points noirs sont non-denses et n’appartiennent à
aucun cluster! Le point rouge le plus à droite est non-dense. Le point bleu
le plus à gauche est non-dense.

ε
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Le clustering basé sur l’atteignabilité

Core points, border points, and noise points

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to

Data Mining. Addison Wesley, 2006
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Le clustering basé sur l’atteignabilité

DBSCAN : algorithme

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to

Data Mining. Addison Wesley, 2006
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Le clustering basé sur l’atteignabilité

DBSCAN : Example

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to

Data Mining. Addison Wesley, 2006
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Le clustering basé sur l’atteignabilité

DBSCAN : Example

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to

Data Mining. Addison Wesley, 2006
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Le clustering basé sur l’atteignabilité

Exercice DBSCAN

Exécuter DBSCAN sur dbscan.arff avec différentes valeurs pour
epsilon et minPoints.
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Les algorithmes génétiques

L’encodage

Partitionner S = {o1, . . . , on} en k clusters C1,C2, . . . ,Ck . Soit
K = {1, 2, . . . , k}. Un élément 〈i1, i2, . . . , in〉 ∈ K n représente le
clustering où o1 ∈ Ci1 , o2 ∈ Ci2 , . . . , on ∈ Cin .

Notez que chaque permutation de 〈1, 2, . . . , k〉 donne le même
clustering!

Chaque élément de K n est un individu (ou chromosome). L’aptitude
d’un individu pourrait être l’inverse de la dispersion intra-cluster.

Une population est un ensemble d’individus.
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Les algorithmes génétiques

Les opérateurs

Le cross-over de 〈i1, . . . , in〉 et 〈j1, . . . , jn〉 entre les positions l et l + 1
donne 〈i1, . . . , il , jl+1, . . . , jn〉 et 〈j1, . . . , jl , il+1, . . . , in〉.
La mutation change une valeur dans un individu de manière arbitraire.

Le principe de survival of the fittest crée une nouvelle population avec
le même nombre d’individus. La probabilité d’un individu de se
retrouver (une ou plusieurs fois) dans la prochaine génération, est
proportionnel à son aptitude (roue de la fortune).
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Les algorithmes génétiques

L’algorithme

fixer la population de départ
loop

appliquer cross-over et mutation
choisir les individus de la prochaine génération (survival of the
fittest)

end-loop
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Cluster Evaluation
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Cluster Evaluation

Cohesion and Separation

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to

Data Mining. Addison Wesley, 2006
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Cluster Evaluation

Cohesion and Separation w.r.t. Prototypes

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to

Data Mining. Addison Wesley, 2006
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Cluster Evaluation

Visualize Similarity Matrix

This technique is not limited to clustering in 2D!

Source: Pang-Ning Tan, Michael Steinbach, and Vipin Kumar: Introduction to

Data Mining. Addison Wesley, 2006
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Cluster Evaluation

Pearson’s Correlation Coefficient

A measure of the linear relationship between attributes.
Let ~x = (x1, x2, . . . , xn) and ~y = (y1, y2, . . . , yn).

corr(~x , ~y) =
covar(~x , ~y)

√

var(~x) ·
√

var(~y)

covar(~x , ~y) =
1

n − 1
Σn
k=1(xk − x̄)(yk − ȳ)

var(~x) =
1

n − 1
Σn
k=1(xk − x̄)2

x̄ =
1

n
Σn
k=1xk
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Cluster Evaluation

Pearson Correlation Coefficient

Source: Wikipedia
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Cluster Evaluation

Note

On the following slides, correlation between




a11 a12 a13
a21 a22 a23
a31 a32 a33



 and





b11 b12 b13
b21 b22 b23
b31 b32 b33





means correlation between
(a11, a12, a13, a21, a22, a23, a31, a32, a33) and
(b11, b12, b13, b21, b22, b23, b31, b32, b33).
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Cluster Evaluation

Correlation for Partitional Clustering

Assume a partitional clustering of n points p1, p2, . . . , pn.
Compute correlation between similarity matrix S [n × n] and ideal similarity
matrix C [n × n] based on cluster labels.

Si ,j is the similarity between points pi and pj ;

Ci ,j =

{
1 if pi and pj belong to the same cluster
0 otherwise
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Cluster Evaluation

Correlation for Hierarchical Clustering

Assume a hierarchical clustering of n points p1, p2, . . . , pn.
Compute correlation between distance matrix D[n × n] and cophenetic
distance matrix C [n × n].

Di ,j is the distance between points pi and pj ;

Ci ,j is the cophenetic distance between points pi and pj .

The cophenetic distance between pi and pj is defined as follows.

Let A be the smallest cluster that contains both pi and pj .
Clearly, A has two “child” clusters B1 and B2 such that pi ∈ B1

and pj ∈ B2. The cophenetic distance between pi and pj is the
distance between B1 and B2.
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